
Supplement to “Markovian Sliced Wasserstein Distances: Beyond542

Independent Projections"543

In this supplementary material, we present additional materials in Appendix A. In particular, we544

provide additional background on sliced Wasserstein variants in Appendix A.1, background on von545

Mises-Fisher distribution in Appendix A.2, algorithms for computing Markovian sliced Wasserstein546

distances in Appendix A.3, additional information about burned thinned MSW in Appendix A.4, and547

discussion on related works in Appendix A.5. We then provide skipped proofs in the main paper in548

Appendix B. Additional experiments are presented in Appendix C.549

A Additional Materials550

A.1 Background on Sliced Wasserstein Variants551

We review computational aspects of sliced Wasserstein variants.552

Computation of Max sliced Wasserstein distance. We demonstrate the empirical estimation of553

Max-SW via projected sub-gradient ascent algorithm in Algorithm 1. The initialization step for ✓̂0554

is rarely discussed in previous works. Normally, ✓̂0 is randomly initialized by drawing from the555

uniform distribution over the unit-hypersphere. Many previous works [25, 43, 44, 41] use Adam556

update instead of the standard gradient ascent update for Max-SW. In this work, we find out that557

using the standard gradient ascent update is more stable and effective.558

Algorithm 1 Max sliced Wasserstein distance
Input. Probability measures µ, ⌫, learning rate ⌘, the order p, and the number of iterations T .
Initialize ✓̂0.
for t = 1 to T � 1 do

✓̂t = ✓̂t�1 + ⌘ ·r✓̂t�1
Wp(✓̂t�1]µ, ✓̂t�1]⌫)

✓̂t =
✓̂t

||✓̂t||2
end for

Return. Wp(✓̂T ]µ, ✓̂T ]⌫)

K sliced Wasserstein distance. We first review the Gram–Schmidt process in Algorithm 2. With559

the Gram–Schmidt process, the sampling from U(VK(Rd)) can be done by sampling ✓1, . . . , ✓k560

i.i.d from N (0, Id) then applying the Gram-Schmidt process on them. Therefore, we present the561

computation of K sliced Wasserstein distance in Algorithm 3. We would like to recall that the original562

work of K-SW [49] uses only one set of orthogonal projecting directions. Here, we generalize the563

original work by using L sets of orthogonal projecting directions.564

Algorithm 2 Gram–Schmidt process
Input. K vectors ✓1, . . . , ✓K
✓1 = ✓1

||✓1||2
for k = 2 to K do

for i = 1 to k � 1 do

✓k = ✓k �
h✓i,✓ki
h✓i,✓ii ✓i

end for

✓k = ✓k
||✓k||2

end for

Return. ✓1, . . . , ✓K

Max K sliced Wasserstein distance. We now present the empirical estimation of Max-K-SW565

via projected sub-gradient ascent algorithm in Algorithm 4. This algorithm is first discussed in566

the original paper of Max-K-SW [12]. The optimization of Max-K-SW can be solved by using567

Riemannian optimization since the Stiefel manifold is a Riemannian manifold. However, to the best568

of our knowledge, Riemannian optimization has not been applied to Max-K-SW.569
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Algorithm 3 K sliced Wasserstein distance
Input. Probability measures µ, ⌫, the dimension d, the order p, the number of projections L, the
number of orthogonal projections K.
for l = 1 to L do

Draw ✓l1, . . . , ✓lK i.i.d from N (0, Id).
✓l1, . . . , ✓lK = Gram–Schmidt(✓l1, . . . , ✓lK)

end for

Return.

⇣
1

LK

PL
l=1

PK
k=1 Wp

p(✓lk]µ, ✓lk]⌫)
⌘ 1

p

Algorithm 4 Max-K sliced Wasserstein distance
Input. Probability measures µ, ⌫, learning rate ⌘, the dimension d, the order p, the number of
iterations T > 1, and the number of orthogonal projections K > 1.
Initialize ✓̂01, . . . , ✓̂0K to be orthogonal.
for t = 1 to T � 1 do

for k = 1 to K do

✓̂tk = ✓tk + ⌘ ·r✓̂t�1k
Wp(✓̂t�1k]µ, ✓̂t�1k]⌫)

end for

✓̂t1, . . . , ✓̂tK = Gram-Schmidt(✓̂t1, . . . , ✓̂tK)
end for

Return.

⇣
1
K

PK
k=1 Wp

p(✓̂Tk]µ, ✓̂Tk]⌫)
⌘ 1

p

A.2 Von Mises-Fisher Distribution570

We first start with the definition of von Mises-Fisher (vMF) distribution.571

Algorithm 5 Sampling from vMF distribution
Input. location ✏, concentration , dimension d, unit vector e1 = (1, 0, .., 0)
Draw v ⇠ U(Sd�2)

b 
�2+

p
42+(d�1)2

d�1 , a (d�1)+2+
p

42+(d�1)2

4 , m 4ab
(1+b) � (d� 1) log(d� 1)

repeat

Draw  ⇠ Beta
�
1
2 (d� 1), 1

2 (d� 1)
�

!  h( ,) = 1�(1+b) 
1�(1�b) 

t 
2ab

1�(1�b) 

Draw u ⇠ U([0, 1])
until (d� 1) log(t)� t+m � log(u)
h1  (!,

p
1� !2v>)>

✏
0
 e1 � ✏

u = ✏0

||✏0||2
U = I � 2uu>

Output. Uh1

Definition 3. The von Mises–Fisher distribution (vMF)[22] is a probability distribution on the unit572

hypersphere Sd�1 with the density function be:573

f(x|✏,) := Cd() exp(✏
>
x), (2)

where ✏ 2 Sd�1 is the location vector,  � 0 is the concentration parameter, and Cd() :=574

d/2�1

(2⇡)d/2Id/2�1()
is the normalization constant. Here, Iv is the modified Bessel function of the first575

kind at order v [55].576

The vMF distribution is a continuous distribution, its mass concentrates around the mean ✏, and its577

density decrease when x goes away from ✏. When ! 0, vMF converges in distribution to U(Sd�1),578

and when !1, vMF converges in distribution to the Dirac distribution centered at ✏ [54].579
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Sampling: We review the sampling process in Algorithm 5 [13, 44]. The sampling process of580

vMF distribution is based on the rejection sampling procedure. It is worth noting that the sampling581

algorithm is doing reparameterization implicitly. However, we only use the algorithm to obtain582

random samples without estimating stochastic gradients.583

A.3 Algorithms for Computing Markovian Sliced Wasserstein Distances584

We first start with the general computation of MSW in Algorithm 6. For the orthogonal-based transi-585

tion in oMSW, we use ✓lt ⇠ U(Sd�1
✓lt�1

) by first sampling ✓0lt ⇠ U(Sd�1) then set ✓lt = ✓lt�
h✓0lt,✓lti
h✓0lt,✓0lti

✓
0
lt586

then normalize ✓lt = ✓lt
||✓lt||2 . For deterministic input-awared transition, iMSW, we set ✓lt = ✓lt�1 +587

⌘r✓lt�1Wp(✓lt�1]µ, ✓lt�1]⌫) then normalize ✓lt = ✓lt
||✓lt||2 . For probabilistic input-awared transition,588

viMSW, ✓lt ⇠ vMF(✓t|✏ = ProdSd�1✓
0
lt,) with ✓0lt = ✓lt�1 + ⌘r✓lt�1Wp(✓lt�1]µ, ✓lt�1]⌫).589

Algorithm 6 Markovian sliced Wasserstein distance
Input. Probability measures µ, ⌫, the dimension d, the order p, the number of projections L, and
the number of timesteps T .
for l = 1 to L do

Draw ✓l0 ⇠ �(✓0)
for t = 1 to T � 1 do

Draw ✓lt ⇠ �t(✓t|✓lt�1)
end for

end for

Return.

⇣
1

LT

PL
l=1

PT
t=1 Wp

p(✓lt]µ, ✓lt]⌫)
⌘ 1

p

A.4 Burned Thinned Markovian Sliced Wasserstein Distance590

We continue the discussion on burned thinned MSW in Section 3.3. We first start with the Monte591

Carlo estimation of burned thinned MSW.592

Monte Carlo Estimation: We samples ✓11, . . . , ✓L1 ⇠ �1(✓1) for L � 1, then we samples593

✓lt ⇠ �t(✓t|✓lt�1) for t = 1, . . . , T and l = 1, . . . , L. We then obtain samples ✓0lt by filtering out594

t < M and t%N 6= 0 from the set {✓lt} for l = 1, . . . , L and t = 1, . . . , T . The Monte Carlo595

approximation of the burned-thinned Markovian sliced Wasserstein distance is:596

\MSWp,T,N,M (µ, ⌫) =

0

@ N

L(T �M)

LX

l=1

(T�M)/NX

t=1

W
p
p (✓0lt]µ, ✓

0
lt]⌫)

1

A

1
p

. (3)

Theoretical properties. We first state the following assumption: A2. Given T > M � 0, N � 1, the597

prior distribution �1(✓1) and the transition distribution �t(✓t|✓t�1) are chosen such that there exists598

marginals �t(✓t) =
R
t� �(✓1, . . . , ✓t)dt

� with t �M and t%N = 0, t� = {t
0 = 1, . . . , T |t0 6= t}.599

The assumption A2 can be easily obtained by using vMF transition, e.g., in probabilistic input-awared600

transition. From this assumption, we can derive theoretical properties of burned-thinned MSW601

including topological properties and statistical complexity.602

Proposition 4. For any p � 1, T � 1, M � 0, N � 1, and dimension d � 1, if A2 holds, the burned603

thinned Markovian sliced Wasserstein distance MSWp,T,N,M (·, ·) is a valid metric on the space of604

probability measures Pp(Rd), namely, it satisfies the (i) non-negativity, (ii) symmetry, (iii) triangle605

inequality, and (iv) identity.606

The proof of Proposition 4 follows directly the proof of Theorem 1 in Appendix B.1.607

Proposition 5 (Weak Convergence). For any p � 1, T � 1, M � 0, N � 1, and dimension d � 1,608

if A2 holds, the convergence of probability measures in Pp(Rd) under the burned thinned Markovian609

sliced Wasserstein distance MSWp,T,N,M (·, ·) implies weak convergence of probability measures and610

vice versa.611
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The proof of Proposition 5 follows directly the proof of Theorem 2 in Appendix B.2.612

Proposition 6. For any p � 1 and dimension d � 1, for any T � 1, M � 0, N � 1 and613

µ, ⌫ 2 Pp(Rd), MSWp,T,N,M (µ, ⌫)  Max-SWp(µ, ⌫)  Wp(µ, ⌫).614

The proof of Proposition 6 follows directly the proof of Proposition 1 in Appendix B.3.615

Proposition 7 (Sample Complexity). Let X1, X2, . . . , Xn be i.i.d. samples from the probability mea-616

sure µ being supported on compact set of Rd. We denote the empirical measure µn = 1
n

Pn
i=1 �Xi .617

Then, for any p � 1 and T � 1, M � 0, N � 1, there exists a universal constant C > 0 such that618

E[MSWp,T,N,M (µn, µ)]  C

p
(d+ 1) log n/n,

where the outer expectation is taken with respect to the data X1, X2, . . . , Xn.619

The proof of Proposition 7 follows directly the proof of Proposition 2 in Appendix B.4.620

Proposition 8 (Monte Carlo error). For any p � 1, T � 1, M � 0, N � 1, dimension d � 1, and621

µ, ⌫ 2 Pp(Rd), we have:622

E|[MSW
p

p,T,N,M (µ, ⌫)�MSWp
p,T,N,M (µ, ⌫)|


N

p
LT (T �M)

V ar

2

4
(T�M)/NX

t=1

W
p
p (✓0t]µ, ✓

0
t]⌫)

3

5

1
2

,

where the variance is with respect to �(✓01, . . . , ✓0(T�M)/N ).623

The proof of Proposition 8 follows directly the proof of Proposition 3 in Appendix B.5.624

A.5 Discussions on Related Works625

K-SW is autoregressive decomposition. In MSW, we assume that the joint distribu-626

tion over projecting directions has the first-order Markov structure: �(✓1, . . . , ✓T ) =627

�1(✓1)
QT

t=2 �t(✓t|✓t�1). However, we can consider the full autoregressive decomposition628

�(✓1, . . . , ✓T ) = �1(✓1)
QT

t=2 �t(✓t|✓1, . . . , ✓t�1). Let T = K in K-SW, hence the transition629

distribution that is used in K-SW is: �t(✓t|✓1, . . . , ✓t�1) = Gram-Schmidt✓1,...,✓t�1]U(Sd�1), where630

Gram-Schmidt✓1,...,✓t�1(✓t) denotes the Gram-Schmidt process update that applies on ✓t.631

Generalization of Max-K-SW. Similar to Max-SW, we can derive a Markovian-based K-sliced632

Wasserstein distance that generalizes the idea of the projected gradient ascent update in Max-K-SW.633

However, the distance considers the transition on the Stiefel manifold instead of the unit hypersphere,634

hence, it will be more computationally expensive. Moreover, orthogonality might not be a good635

constraint. Therefore, the generalization of Max-K-SW might not have many advantages.636

Beyond the projected sub-gradient ascent update. In the input-awared transition for MSW, we637

utilize the projected sub-gradient update as the transition function to create a new projecting direction.638

Therefore, we could other optimization techniques such as momentum, adaptive stepsize, and so on639

to create the transition function. We will leave the investigation about this direction to future work.640

Applications to other sliced Wasserstein variants. The Markovian approach can be applied to other641

variants of sliced Wasserstein distances e.g., generalized sliced Wasserstein [25], augmented sliced642

Wasserstein distance [10], projected robust Wasserstein (PRW) [46, 31, 21] (k > 1 dimensional643

projection), convolution sliced Wasserstein [42], sliced partial optimal transport [6, 2], and so on.644

Markovian sliced Wasserstein distances in other applications. We can apply MSW to the setting645

in [30] which is an implementation technique that utilizes both RAM and GPUs’ memory for training646

sliced Wasserstein generative models. MSW can also replace sliced Wasserstein distance in pooling647

in [37]. Similarly, MSW can be used in applications that exist sliced Wasserstein distance e.g.,648

clustering [27], Bayesian inference [38, 60], domain adaptation [59], and so on.649
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B Proofs650

B.1 Proof of Theorem 1651

(i), (ii): the MSW is an expectation of the one-dimensional Wasserstein distance hence the non-652

negativity and symmetry properties of the MSW follow directly by the non-negativity and symmetry653

of the Wasserstein distance.654

(iii) From the definition of MSW in Definition 1, given three probability measures µ1, µ2, µ3 2655

Pp(Rd) we have:656

MSWp,T (µ1, µ3) =

 
E(✓1:T )⇠�(✓1:T )

"
1

T

TX

t=1

W
p
p (✓t]µ1, ✓t]µ3)

#! 1
p



 
E(✓1:T )⇠�(✓1:T )

"
1

T

TX

t=1

(Wp (✓t]µ1, ✓t]µ2) +Wp (✓t]µ2, ✓t]µ3))
p

#! 1
p



 
E(✓1:T )⇠�(✓1:T )

"
1

T

TX

t=1

W
p
p (✓t]µ1, ✓t]µ2)

#! 1
p

+

 
E(✓1:T )⇠�(✓1:T )

"
1

T

TX

t=1

W
p
p (✓t]µ2, ✓t]µ3)

#! 1
p

= MSWp,T (µ1, µ2) + MSWp,T (µ2, µ3),

where the first inequality is due to the triangle inequality of Wasserstein distance and the second657

inequality is due to the Minkowski inequality. We complete the triangle inequality proof.658

(iv) We need to show that MSWp,T (µ, ⌫) = 0 if and only if µ = ⌫. First, from the definition of MSW,659

we obtain directly µ = ⌫ implies MSWp,T (µ, ⌫) = 0. For the reverse direction, we use the same proof660

technique in [8]. If MSWp,T (µ, ⌫) = 0, we have
R
S(d�1)⌦T

1
T

PT
t=1 Wp (✓t]µ, ✓t]⌫) d�(✓1:T ) = 0.661

If A1 holds, namely, the prior distribution �1(✓1) is supported on all the unit-hypersphere or exists a662

transition distribution �t(✓t|✓t�1) is supported on all the unit-hypersphere, we have Wp(✓]µ, ✓]⌫) =663

0 for all ✓ 2 Sd�1 where � denotes the prior or the transition distribution that satisfies the assumption664

A1. From the identity property of the Wasserstein distance, we obtain ✓]µ = ✓]⌫ for �-a.e ✓ 2 Sd�1.665

Therefore, for any t 2 R and ✓ 2 Sd�1, we have:666

F [µ](t✓) =

Z

Rd

e
�ith✓,xi

dµ(x) =

Z

R
e
�itz

d✓]µ(z) = F [✓]µ](t)

= F [✓]⌫](t) =

Z

R
e
�itz

d✓]⌫(z) =

Z

Rd

e
�ith✓,xi

d⌫(x) = F [⌫](t✓),

where F [�](w) =
R
Rd0 e

�ihw,xi
d�(x) denotes the Fourier transform of � 2 P(Rd0

). By the injectiv-667

ity of the Fourier transform, we obtain µ = ⌫ which concludes the proof.668

B.2 Proof of Theorem 2669

Our goal is to show that for any sequence of probability measures (µk)k2N and µ in Pp(Rd),670

limk!+1 MSWp,T (µk, µ) = 0 if and only if for any continuous and bounded function f : Rd
! R,671

limk!+1
R
f dµk =

R
f dµ. The proof follows the techniques in [40]. We first state the following672

lemma.673

Lemma 1. For any p � 1, T � 1, and dimension d � 1, if A1 holds and a sequence of proba-674

bility measures (µk)k2N satisfies limk!+1 MSWp,T (µk, µ) = 0 with µ in Pp(Rd), there exists an675

increasing function � : N! N such that the subsequence
�
µ�(k)

�
k2N converges weakly to µ.676

Proof. We are given that limk!+1 MSWp,T (µk, µ) = 0, therefore677

limk!1
R
S(d�1)⌦T

1
T

PT
t=1 Wp (✓t]µk, ✓t]µ) d�(✓1:T ) = 0. If A1 holds, namely, the prior678

18



distribution �1(✓1) is supported on all the unit-hypersphere or exists a transition distribution679

�t(✓t|✓t�1) is supported on all the unit-hypersphere, we have680

lim
k!1

Z

Sd�1

Wp (✓]µk, ✓]µ) d�(✓) = 0,

where � denotes the prior or the transition distribution that satisfies the assumption A1. From Theorem681

2.2.5 in [3], there exists an increasing function � : N! N such that limk!1 Wp(✓]µ�(k), ✓]⌫) = 0682

for �-a.e ✓ 2 Sd�1. Since the Wasserstein distance of order p implies weak convergence in683

Pp(Rd) [57],
�
✓]µ�(k)

�
k2N converges weakly to ✓]µ for �-a.e ✓ 2 Sd�1.684

Let �µ =
R
Rd eihv,widµ(w) be the characteristic function of µ 2 Pp(Rd), we have the weak conver-685

gence implies the convergence of characteristic function (Theorem 4.3 [23]): limk!1 �✓]µ�(k)
(s) =686

�✓]µ(s), 8s 2 R, for �-a.e ✓ 2 Sd�1. Therefore, limk!1 �µ�(k)
(z) = �µ(z), for almost most687

every z 2 Rd.688

For any � > 0 and a continuous function f : Rd
! R with compact support, we denote f�(x) =689

f ⇤ g�(x) =
�
2⇡�2

��d/2 R
Rd f(x� z) exp

�
�kzk

2
/
�
2�2
��

dz where g� is the density function of690

N (0, �Id). We have:691
Z

Rd

f�(z)dµ�(k)(z) =

Z

Rd

Z

Rd

f(w)g�(z � w)dw dµ�(k)(z)

=

Z

Rd

Z

Rd

f(w)
�
2⇡�2

��d/2
exp(�||z � w||

2
/(2�2))dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e
ihz�w,xi

g1/�(x)dx dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e
�ihw,xi

e
ihz,xi

g1/�(x)dx dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xi
g1/�(x)

Z

Rd

e
ihz,xi dµ�(k)(z)dx dw

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xi
g1/�(x)�µ�(k)

(x)dx dw

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx,

where the third equality is due to the fact that
R
Rd e

ihz�w,xi
g1/�(x)dx = exp(�||z�w||2/(2�2)) and692

F [f ](w) =
R
Rd0 f(x)e�ihw,xi

dx denotes the Fourier transform of the bounded function f . Similarly,693

we have694 Z

Rd

f�(z)dµ(z) =

Z

Rd

Z

Rd

f(w)g�(z � w)dw dµ(z)

=

Z

Rd

Z

Rd

f(w)
�
2⇡�2

��d/2
exp(�||z � w||

2
/(2�2))dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e
ihz�w,xi

g1/�(x)dx dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e
�ihw,xi

e
ihz,xi

g1/�(x)dx dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xi
g1/�(x)

Z

Rd

e
ihz,xi dµ(z)dx dw

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xi
g1/�(x)�µ(x)dx dw

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ(x)dx.

Since f is assumed to have compact support, F [f ] exists and is bounded by
R
Rd |f(w)|dw <695

+1. Hence, for any k 2 R and x 2 Rd, we have
��F [f ](x)g1/�(x)�µ�(k)

(x)
�� 696
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g1/�(x)
R
Rd |f(w)|dw and

��F [f ](x)g1/�(x)�µ(x)
��  g1/�(x)

R
Rd |f(w)|dw. Using the proved697

result of limk!1 �µ�(k)
(z) = �µ(z) and Lebesgue’s Dominated Convergence Therefore, we obtain698

lim
k!1

Z

Rd

f�(z)dµ�(k)(z) = lim
k!1

�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx

=

Z

Rd

f�(z)dµ(z).

Moreover, we have:699

lim
�!0

lim sup
k!+1

����
Z

Rd

f(z)dµ�(k)(z)�

Z

Rd

f(z)dµ(z)

����

 lim
�!0

lim sup
k!+1


2 sup
z2Rd

|f(z)� f�(z)|+

����
Z

Rd

f�(z)dµ�(k)(z)�

Z

Rd

f�(z)dµ(z)

����

�

= lim
�!0

2 sup
z2Rd

|f(z)� f�(z)| = 0,

which implies
�
µ�(k)

�
k2N converges weakly to µ.700

We now continue the proof of Theorem 2. We first show that if limk!1 MSWp,T (µk, µ) =701

0, (µk)k2N converges weakly to µ. We consider a sequence
�
µ�(k)

�
k2N such that702

limk!1 MSWp,T (µk, µ) = 0 and we suppose
�
µ�(k)

�
k2N does not converge weakly to µ. There-703

fore, let dP be the Lévy-Prokhorov metric, limk!1 dP(µk,µ) 6= 0 that implies there exists " > 0704

and a subsequence
�
µ (k)

�
k2N with an increasing function  : N ! N such that for any k 2 N:705

dP(µ (k), µ) � ". However, we have706
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by the Holder inequality with µ, ⌫ 2 Pp(Rd). Therefore, limk!1 MSW1,T (µ (k), µ) = 0 which707

implies that there exists s a subsequence
�
µ�( (k))

�
k2N with an increasing function � : N ! N708

such that
�
µ�( (k))

�
k2N converges weakly to µ by Lemma 1. Hence, limk!1 dP

�
µ�( (k)), µ

�
= 0709

which contradicts our assumption. We conclude that if limk!1 MSWp,T (µk, µ) = 0, (µk)k2N710

converges weakly to µ.711

Now, we show that if (µk)k2N converges weakly to µ, we have limk!1 MSWp,T (µk, µ) = 0. By712

the continuous mapping theorem, we obtain (✓]µk)k2N converges weakly to ✓]µ for any ✓ 2 Sd�1.713

Since the weak convergence implies the convergence under the Wasserstein distance [57], we obtain714

limk!1 Wp(✓]µk, µ) = 0. Moreover, the Wasserstein distance is also bounded, hence the bounded715

convergence theorem:716
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By the continuous mapping theorem with function x! x
1/p, we obtain limk!1 MSWp,T (µk, µ)!717

0 which completes the proof.718
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B.3 Proof of Proposition 1719

(i) We recall the definition of Max-SW:720

Max-SWp(µ, ⌫) = max
✓2Sd�1

Wp(✓]µ, ✓]⌫).

Let ✓⇤ = argmax✓2Sd�1Wp(✓]µ, ✓]⌫), from Definition 1, for any p � 1, T � 1, dimension d � 1,721

and µ, ⌫ 2 Pp(Rd) we have:722
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Furthermore, by applying the Cauchy-Schwartz inequality, we have:723
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which completes the proof.724

(ii) This result can be directly obtained from the definitions of MSW and SW.725

B.4 Proof of Proposition 2726

In this proof, we denote ⇥ ⇢ Rd as the compact set of the probability measure µ. From Proposition 1,727

we find that728

E[MSWp,T (µn, µ)]  E [Max-SWp(µn, µ)] .

Therefore, the proposition follows as long as we can demonstrate that

E[Max-SWp(µn, µ)]  C

p
(d+ 1) log2 n/n

where C > 0 is some universal constant and the outer expectation is taken with respect to the data.729

The proof for this result follows from the proof of Proposition 3 in [42]. Here, we provide the proof730

for the completeness. By defining Fn,✓ and F✓ as the cumulative distributions of ✓]µn and ✓]µ, the731

closed-form expression of the Wasserstein distance in one dimension leads to the following equations732

and inequalities:733
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p
.

We can check that734

max
✓2Rd:k✓k1

|Fn,✓(x)� F✓(x)| = sup
B2B

|µn(B)� µ(B)|,
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Algorithm 7 Gradient flow with the Euler scheme
Input. the start distribution µ = 1

n

Pn
i=1 �Xi , the target distribution ⌫ = 1

n

Pn
i=1 �Yi , number of

Euler iterations T (abuse of notation), Euler step size ⌘ (abuse of notation), a metric D.
for t = 1 to T do

X = X � n · ⌘rXD(PX , PY )
end for

Output. µ = 1
n

Pn
i=1 �Xi

where B is the set of half-spaces {z 2 Rd : ✓>z  x} for all ✓ 2 Rd such that k✓k  1. From [58],735

we can show that the Vapnik-Chervonenkis (VC) dimension of B is at most d + 1. Therefore, the736

following inequality holds:737

sup
B2B

|µn(B)� µ(B)| 

r
32

n
[(d+ 1) log2(n+ 1) + log2(8/�)]

with probability at least 1� �. Putting the above results together leads to738

E[Max-SWp(µn, µ)]  C

p
(d+ 1) log2 n/n,

where C > 0 is some universal constant. As a consequence, we obtain the conclusion of the739

proposition.740

B.5 Proof of Proposition 3741

For any p � 1, T � 1, dimension d � 1, and µ, ⌫ 2 Pp(Rd), using the Holder’s inequality, we have:742
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which completes the proof.743

C Additional Experiments744

In this section, we present the detail of experimental frameworks and additional experiments on745

gradient flows, color transfer, and deep generative modeling which are not in the main paper.746

C.1 Gradient Flows747

Framework. We have discussed in detail the framework of gradient flow in Section 4.1 in the main748

paper. Here, we summarize the Euler scheme for solving the gradient flow in Algorithm 7.749

Visualization of gradient flows. We show the visualization of gradient flows from all distances750

(Table 1) in Figure 4. Overall, we observe that the quality of the flows is consistent with the751

quantitative Wasserstein-2 score which is computed using [17]. From the figures, we see that iMSW752

and viMSW help the flows converge very fast. Namely, Wasserstein-2 scores at steps 200 of iMSW753

and viMSW are much lower than other distances. For oMSW, with L = 5, T = 2, it achieves a754

comparable result to SW, K-SW, and Max-SW while being faster.755
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Figure 4: The figures show the gradient flows that are from the empirical distribution over the
color points to the empirical distribution over S-shape points produced by different distances. The
corresponding Wasserstein-2 distance between the empirical distribution at the current step and the
S-shape distribution and the computational time (in second) to reach the step is reported at the top of
the figure.
Table 3: Summary of Wasserstein-2 scores, computational time in second (s) of different distances in gradient
flow application.

Distances Wasserstein-2 (#) Time (#) Distances Wasserstein-2 (#) Time (#)

SW (L=10) 0.0113⇥ 10�2 0.85 SW (L=100) 0.0096⇥ 10�2 4.32

Max-SW (T=5) 0.0231⇥ 10�2 1.02 Max-SW (T=100) 0.0083⇥ 10�2 10.46

K-SW (L=5,K=2) 0.0104⇥ 10�2 0.92 K-SW (L=20,K=2) 0.0096⇥ 10�2 1.97

Max-K-SW (K=2,T=5) 0.0152⇥ 10�2 1.41 Max-K-SW (K=2,T=100) 0.0083⇥ 10�2 10.46

iMSW (L=1,T=5) 0.0109⇥ 10�2 1.07 iMSW (L=5,T=5) 0.0055⇥ 10�2 2.44
iMSW (L=2,T=10) 0.0052⇥ 10�2 2.79 iMSW (L=5,T=2) 0.0071⇥ 10�2 1.14
iMSW (L=2,T=5,M=4) 0.0101⇥ 10�2 1.2 iMSW (L=2,T=5,M=2) 0.0055⇥ 10�2 1.25
iMSW (L=2,T=5,M=0,N=2) 0.0066⇥ 10�2 1.28 iMSW (L=2,T=5,M=2,N=2) 0.0072⇥ 10�2 1.19

viMSW (L=2,T=5,=10) 0.0052⇥ 10�2 3.12 viMSW (L=2,T=5,=100) 0.0053⇥ 10�2 2.76

Studies on hyper-parameters. We run gradient flows with different values of hyper-parameters and756

report the Wasserstein-2 scores and computational time in Table 3. From the table and Figure 4, we757

see that SW with L = 10 is worse than oMSW, iMSW, and viMSW with L = 2, T = 5 (10 total758

projections). Increasing the number of projections to 100, SW gets better, however, its Wasserstein-2759

score is still higher than the scores of iMSW and viMSW while its computational time is bigger.760

Similarly, Max-(K)-SW with T = 100 is better than Max-(K)-SW with T = 5 and T = 10, however,761

it is still worse than iMSW and viMSW in terms of computation and performance. For burning762

and thinning, we see that the technique can help improve the computation considerably. More763

importantly, the burning and thinning techniques do not reduce the performance too much. For764

iMSW, increasing L and T leads to a better flow. For the same number of total projections e.g., 10,765

L = 2, T = 5 is better than L = 5, T = 2. For viMSW, it usually performs better than iMSW,766

however, its computation is worse due to the sampling complexity of the vMF distribution. We vary767

the concentration parameter  2 {10, 50, 100} and find that  = 50 is the best. Hence, it might768
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Figure 5: The figures show the source image, the target image, and transferred images from
different distances. The corresponding Wasserstein-2 distance between the empirical distribution
over transferred color palates and the empirical distribution over the target color palette and the
computational time (in second) is reported at the top of the figure. The color palates are given below
the corresponding images.

Algorithm 8 Color Transfer
Input. source color palette X 2 {0, . . . , 255}n⇥3, target color palette Y 2 {0, . . . , 255}n⇥3,
number of Euler iterations T (abuse of notation), Euler step size ⌘ (abuse of notation), a metric D.
for t = 1 to T do

X = X � n · ⌘rXD(PX , PY )
end for

X = round(X, {0, . . . , 255})
Output. X

suggest that a good balance between heading to the “max" projecting direction and exploring the769

space of projecting directions is the best strategy.770

C.2 Color Transfer771

Framework. In our experiments, we first compress the color palette of the source image and the772

target image to 3000 colors by using K-Mean clustering. After that, the color transfer application is773

conducted by using Algorithm 8 which is a modified version of the gradient flow algorithm since the774

color palette contains only positive integer in {0, . . . , 255}. The flow can be seen as an incomplete775

transportation map that maps from the source color palette to a color palette that is close to the target776

color palette. This is quite similar to the iterative distribution transfer algorithm [8], however, the777

construction of the iterative map is different.778

Visuallization of transferred images. We show the source image, the target image, and the779

corresponding transferred images from distances in Figure 5 and Figure 6. The color palates are given780

below the corresponding images. The corresponding Wasserstein-2 distance between the empirical781

distribution over transferred color palates and the empirical distribution over the target color palette782

and the computational time (in second) is reported at the top of the figure. First, we observe that783

the qualitative comparison (transferred images and color palette) is consistent with the Wasserstein784

scores. We observe that iMSW and viMSW have their transferred images closer to the target image785

in terms of color than other distances. More importantly, iMSW and viMSW are faster than other786

distances. Max-SW and Max-K-SW do not perform well in this application, namely, they are slow787
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Figure 6: The figures show the source image, the target images, and transferred images from
different distances. The corresponding Wasserstein-2 distance between the empirical distribution
over transferred color palates and the empirical distribution over the target color palette and the
computational time (in second) is reported at the top of the figure. The color palates are given below
the corresponding images.

Table 4: Summary of Wasserstein-2 scores, computational time in second (s) of different distances in the color
transfer application.

Distances Wasserstein-2 (#) Time (#) Distances Wasserstein-2 (#) Time (#)

SW (L=45) 414.51 41.77 SW (L=15) 421.5 12.96

Max-SW (T=45) 449.42 59.13 Max-SW (T=15) 450.37 19.03

K-SW (L=15,K=3) 411.74 38.86 K-SW (L=5,K=3) 413.16 14.2

Max-K-SW (K=3,T=15) 479.43 53.95 Max-K-SW (K=3,T=5) 510.43 17.46

oMSW (L=3,T=5) 415.06 13.69 oMSW (L=3,T=15) 414.29 38.51

iMSW (L=3,T=5) 16.97 25.91 iMSW (L=3,T=15) 15.23 79.47
iMSW (L=5,T=5) 21.63 39.82 iMSW (L=5,T=3) 24.02 22.27
iMSW (L=3,T=15,M=14) 26.23 48.08 iMSW (L=3,T=15,M=10) 18.67 55.55
iMSW (L=3,T=15,M=0,N=2) 16.6 62.66 iMSW (L=3,T=15,M=10,N=2) 19.2 50.1

viMSW (L=3,T=5,=50) 16.48 29.14 viMSW (L=3,T=5,=100) 16.49 29.06

and give high Wasserstein distances. For oMSW, it is comparable to SW and K-SW while being788

faster.789

Studies on hyper-parameters. In addition to result in Figure 5, we run color transfer with other790

settings of distances in Table 4. From the table, increasing the number of projections L lead to791

a better result for SW and K-SW. However, they are still worse than iMSW and viMSW with a792

25



smaller number of projections. Similarly, increasing T helps Max-SW, Max-K-SW, and iMSW better.793

As discussed in the main paper, the burning and thinning technique improves the computation and794

sometimes enhances the performance.795

C.3 Deep Generative Models796

Framework. We follow the generative modeling framework from [19, 41]. Here, we state an797

adaptive formulation of the framework. We are given a data distribution µ 2 P(X ) through its798

random samples (data). Our goal is to estimate a parametric distribution ⌫� that belongs to a family of799

distributions indexed by parameters � in a parameter space �. Deep generative modeling is interested800

in constructing ⌫� via pushforward measure. In particular, ⌫� is implicitly represented by pushing801

forward a random noise ⌫0 2 P(Z) e.g., standard multivariable Gaussian, through a parametric802

function G� : Z ! X (a neural network with weights �). To estimate � (⌫�), the expected distance803

estimator [53, 40] is used:804

argmin�2�E(X,Z)⇠µ⌦m⌦⌫⌦m
0

[D(PX , PG�(Z))],

where m � 1, D can be any distance on space of probability measures, µ⌦ is the product measures,805

namely, X = (x1, . . . , xm) ⇠ µ
⌦ is equivalent to xi ⇠ µ for i = 1, . . . ,m, and PX = 1

m

Pm
i=1 �xi .806

Similarly, Z = (z1, . . . , zm) with zi ⇠ ⌫0 for i = 1, . . . ,m, and G�(Z) is the output of the neural807

work given the input mini-batch Z.808

By using Wasserstein distance, sliced Wasserstein distance, and their variants as the distance D, we809

obtain the corresponding estimators. However, applying directly those estimators to natural image810

data cannot give perceptually good results [19, 15]. The reason is that Wasserstein distance, sliced811

Wasserstein distances, and their variants require a ground metric as input e.g., L2, however, those812

ground metrics are not meaningful on images. Therefore, previous works propose using a function813

that maps the original data space X to a feature space F where the L2 norm is meaningful [51]. We814

denote the feature function F� : X ! F . Now the estimator becomes:815

argmin�2�E(X,Z)⇠µ⌦m⌦⌫⌦m
0

[D(PF�(X), PF�(G�(Z)))].

The above optimization can be solved by stochastic gradient descent algorithm with the following816

stochastic gradient estimator:817

r�E(X,Z)⇠µ⌦m⌦⌫⌦m
0

[D(PF�(X), PF�(G�(Z)))] = E(X,Z)⇠µ⌦m⌦⌫⌦m
0

[r�D(PF�(X), PF�(G�(Z)))]

⇡
1

K

KX

k=1

r�D(PF�(Xk), PF�(G�(Zk))),

where X1, . . . , XK are drawn i.i.d from µ
⌦m and Z1, . . . , ZK are drawn i.i.d from ⌫

⌦m
0 . There are818

several ways to estimate the feature function F� in practice. In our experiments, we use the following819

objective [15]:820

min
�

⇣
EX⇠µ⌦m [min(0,�1 +H(F�(X)))] + EZ⇠⌫⌦m

0
[min(0,�1�H(F�(G�(Z)))))]

⌘
,

where H : F ! R. The above optimization problem is also solved by the stochastic gradient descent821

algorithm with the following gradient estimator:822

r�

⇣
EX⇠µ⌦m [min(0,�1 +H(F�(X)))] + EZ⇠⌫⌦m

0
[min(0,�1�H(F�(G�(Z)))))]

⌘

= EX⇠µ⌦m [r� min(0,�1 +H(F�(X)))] + EZ⇠⌫⌦m
0

[r� min(0,�1�H(F�(G�(Z)))))]

⇡
1

K

KX

k=1

[r� min(0,�1 +H(F�(Xk)))] +
1

K

KX

k=1

[r� min(0,�1�H(F�(G�(Zk)))))],

where X1, . . . , XK are drawn i.i.d from µ
⌦m and Z1, . . . , ZK are drawn i.i.d from ⌫

⌦m
0 .823

Settings. We use the following neural networks for G� and F� :824

• CIFAR10:825

26



SW Max-K-SW K-SW

oMSW iMSW viMSW

Figure 7: Random generated images of distances on CIFAR10.

– G�: z 2 R128(⇠ ⌫0 : N (0, 1)) ! 4 ⇥ 4 ⇥ 256(Dense, Linear) !826

ResBlock up 256 ! ResBlock up 256 ! ResBlock up 256 ! BN, ReLU, !827

3⇥ 3 conv, 3 Tanh .828

– F�1 : x 2 [�1, 1]32⇥32⇥3
! ResBlock down 128 ! ResBlock down 128 !829

ResBlock down 128! ResBlock 128! ResBlock 128.830

– F�2 : x 2 R128⇥8⇥8
! ReLU ! Global sum pooling(128) !831

1(Spectral normalization).832

– F�(x) = (F�1(x), F�2(F�1(x))) and H(F�(x)) = F�2(F�1(x)).833

• CelebA.834

– G�: z 2 R128(⇠ ⌫0 : N (0, 1)) ! 4 ⇥ 4 ⇥ 256(Dense, Linear) !835

ResBlock up 256 ! ResBlock up 256 ! ResBlock up 256 !836

ResBlock up 256! BN, ReLU, ! 3⇥ 3 conv, 3 Tanh .837

– F�1 : x 2 [�1, 1]32⇥32⇥3
! ResBlock down 128 ! ResBlock down 128 !838

ResBlock down 128! ResBlock 128! ResBlock 128.839

– F�2 : x 2 R128⇥8⇥8
! ReLU ! Global sum pooling(128) !840

1(Spectral normalization).841

– F�(x) = (F�1(x), F�2(F�1(x))) and H(F�(x)) = F�2(F�1(x)).842

For all datasets, the number of training iterations is set to 50000. We update the generator G� each843

5 iterations while we update the feature function F� every iteration. The mini-batch size m is set844

128 in all datasets. The learning rate for G� and F� is 0.0002 and the optimizer is Adam [24] with845

parameters (�1,�2) = (0, 0.9). We use the order p = 2 for all sliced Wasserstein variants. We use846

50000 random samples from estimated generative models G� for computing the FID scores and the847

Inception scores. In evaluating FID scores, we use all training samples for computing statistics of848

datasets1.849

Generated images. We show generated images on CIFAR10 and CelebA from different generative850

models trained by different distances in Figure 7 and in Figure 8 in turn. Overall, images are visually851

consistent with the quantitative FID scores in Table 2.852

1We evaluate the scores based on the code from https://github.com/GongXinyuu/sngan.pytorch.
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Table 5: Summary of FID and IS scores of methods on CIFAR10 (32x32), and CelebA (64x64)

Method CIFAR10 (32x32) CelebA (64x64)

FID (#) IS (") FID (#)

iMSW (L=100,T=10,M=0,N=1) 14.61±0.72 8.15±0.15 9.73±0.33
iMSW (L=100,T=10,M=9,N=1) 14.16±1.11 8.17±0.07 9.10±0.34
iMSW (L=100,T=10,M=5,N=1) 13.93±0.21 8.15±0.05 9.49±0.52
iMSW (L=100,T=10,M=0,N=2) 14.33±0.32 8.15±0.06 8.99±0.64

iMSW (L=10,T=100,M=0,N=1) 14.26±0.74 8.15±0.07 8.89±0.23
iMSW (L=10,T=100,M=99,N=1) 14.50±0.70 8.12±0.08 9.55±0.35
iMSW (L=10,T=100,M=50,N=1) 14.41±0.58 8.12±0.06 9.46±0.73
iMSW (L=10,T=100,M=0,N=2) 14.65±0.01 8.11±0.06 9.49±0.39

SW Max-K-SW K-SW

oMSW iMSW viMSW

Figure 8: Random generated images of distances on CelebA.

Studies on hyperparameters. We run some additional settings of iMSW to investigate the perfor-853

mance of the burning thinning technique and to compare the role of L and T in Table 5. First, we854

see that burning and thinning helps to improve FID score and IS score on CIFAR10 and CelebA in855

the settings of L = 100, T = 10. It is worth noting that the original purpose of burning and thinning856

is to reduce computational complexity and memory complexity. The side benefit of improving857

performance requires more investigation that is left for future work. In addition, we find that for the858

same number of total projections 1000 without burning and thinning, the setting of L = 10, T = 100859

is better than the setting of L = 100, T = 10 on CIFAR10. However, the reverse direction happens860

on CelebA. Therefore, on different datasets, it might require hyperparameter tunning for finding the861

best setting of the number of projections L and the number of timesteps T .862
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