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A EXPERIMENTAL DETAILS

In this section, we describe the datasets, models, hyper-parameter choices and eigenspectrum ad-
justment used in our experiments. All of our experiments are run using PyTorch 1.12.1 on Nvidia
RTX3090s with ubuntu20.04-cuda11.3.1-cudnn8 docker.

A.1 DATASET

CIFAR-10. CIFAR-10 consists of 60,000 color images, with each image belonging to one of ten
different classes with size 32 × 32. The classes include common objects such as airplanes, auto-
mobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The CIFAR-10 dataset is divided
into two subsets: a training set and a test set. The training set contains 50,000 images, while the test
set contains 10,000 images (Krizhevsky et al., 2009). For data processing, we follow the standard
augmentation: normalize channel-wise, randomly horizontally flip, and random cropping.

CIFAR-100. The CIFAR-100 dataset consists of 60,000 color images, with each image belonging
to one of 100 different fine-grained classes (Krizhevsky et al., 2009). These classes are organized
into 20 superclasses, each containing 5 fine-grained classes. Similar to CIFAR-10, the CIFAR-100
dataset is split into a training set and a test set. The training set contains 50,000 images, and the test
set contains 10,000 images. Each image is of size 32x32 pixels and is labeled with its corresponding
fine-grained class. Augmentation includes normalize channel-wise, randomly horizontally flip, and
random cropping.

TinyImageNet. TinyImageNet comprises 100,000 images distributed across 200 classes, with
each class consisting of 500 images (Le & Yang, 2015). These images have been resized to 64
× 64 pixels and are in full color. Each class encompasses 500 training images, 50 validation images,
and 50 test images. Data augmentation techniques encompass normalization, random rotation, and
random flipping. The dataset includes distinct train, validation, and test sets for experimentation.
For data preprocessing, please refer to Lokesh (2020).

A.2 MODEL

In all experiments, pruning skips bias and batchnorm, which have little effect on the sparsity of the
network. Use non-affine batchnorm in the network, and the initialization of the network is kaiming
normal initialization.

Full Connect Network(FC-5, FC-12). We train a five-layer fully connected network (FC-5) and
a twelve-layer fully connected network FC-12 on CIFAR-10, the network architecture details can be
found in Table 1.

Table 1: FC-5 and FC-12 architecture used in our experiments.

Model Layer Width
FC-5 1000, 600, 300, 100, 10

FC-12 1000, 900, 800, 750, 700, 650, 600, 500, 400, 200, 100, 10
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Table 2: AlexNet architecture used in our experiments.

Layer Shape Stride Padding
conv1 3× 96× 11× 11 4 1

max pooling kernel size:3 2 N/A
conv2 96× 256× 5× 5 1 2

max pooling kernel size:3 2 N/A
conv3 256× 384× 3× 3 1 1
conv4 384× 384× 3× 3 1 1
conv4 384× 256× 3× 3 1 1

max pooling kernel size:3 2 N/A
linear1 6400× 4096 N/A N/A
linear1 4096× 4096 N/A N/A
linear1 4096× 10 N/A N/A

Table 3: VGG-16 architecture used in our experiments.

Layer Shape Stride Padding
conv1 3× 64× 3× 3 1 1
conv2 64× 64× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv3 64× 128× 3× 3 1 1
conv4 128× 128× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv5 128× 256× 3× 3 1 1
conv6 256× 256× 3× 3 1 1
conv7 256× 256× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv8 256× 512× 3× 3 1 1
conv9 512× 512× 3× 3 1 1
conv10 512× 512× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv11 512× 512× 3× 3 1 1
conv12 512× 512× 3× 3 1 1
conv13 512× 512× 3× 3 1 1

max pooling kernel size:2 2 N/A
avg pooling kernel size:1 1 N/A

linear1 512× 10 N/A N/A

AlexNet (Krizhevsky et al., 2017). We use the standard AlexNet architecture. In order to use
CIFAR-10 to train AlexNet, we upsample each picture of CIFAR-10 to 3× 224× 224. The detailed
network architecture parameters are shown in Table 2.

VGG-16 (Simonyan & Zisserman, 2014). In the original VGG-16 network, there are 13 convo-
lution layers and 3 FC layers (including the last linear classification layer). We follow the VGG-16
architectures used in Frankle et al. (2020a;b) to remove the first two FC layers while keeping the last
linear classification layer. This finally leads to a 14-layer architecture, but we still call it VGG-16
as it is modified from the original VGG-16 architectural design. Detailed architecture is shown in
Table 3. VGG-16 is trained on CIFAR-10.

ResNet-18 and ResNet-50 (He et al., 2016). We use the standard ResNet architecture for Tiny-
ImageNet and tune it for the CIFAR-100 dataset. The detailed network architecture parameters are
shown in Table 4. ResNet-18 and ResNet-50 is trained on CIFAR-100 and TinyImageNet.
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Table 4: ResNet architecture used in our experiments.

Layer ResNet-18 ResNet-50
conv1 64, 3× 3; stride:1; padding:1 64, 3× 3; stride:1; padding:1

block1
(
64, 3× 3; stride:1; padding:1
64, 3× 3; stride:1; padding:1

)
× 2

(
64, 1× 1; stride:1; padding:0
64, 3× 3; stride:1; padding:1
256, 1× 1; stride:1; padding:0

)
× 3

block1
(
128, 3× 3; stride:2; padding:1
128, 3× 3; stride:1; padding:1

)
× 2

(
128, 1× 1; stride:1; padding:0
128, 3× 3; stride:2; padding:1
512, 3× 3; stride:1; padding:0

)
× 4

block1
(
128, 3× 3; stride:2; padding:1
256, 3× 3; stride:1; padding:1

)
× 2

(
256, 1× 1; stride:1; padding:0
256, 3× 3; stride:2; padding:1
1024, 1× 1; stride:1; padding:0

)
× 6

block1
(
512, 3× 3; stride:2; padding:1
512, 3× 3; stride:1; padding:0

)
× 2

(
512, 1× 1; stride:1; padding:1
512, 3× 3; stride:2; padding:1
2048, 1× 1; stride:1; padding:0

)
× 3

avg pooling kernel size:1; stride:1 kernel size:1; stride:1
linear1 512× ClassNum 2048× ClassNum

A.3 TRAIN HYPER-PARAMETER SETUP

In this section, we will describe in detail the training hyper-parameters of the Global One-shot
Pruning algorithm on multiple datasets and models. The various hyperparameters are detailed in
Table 5.

Table 5: Hyper Parameters used for different Datasets and Models.
Model Dataset Batch Size Epochs Optimizer LR Momentum Warm Up Weight Decay CosineLR Lambda
FC5 CIFAR10 128 200 SGD 0.01 0.9 0 0 N/A 0.00005

FC12 CIFAR10 128 200 SGD 0.01 0.9 0 0 N/A 0.00005
VGG16 CIFAR10 128 200 SGD 0.01 0.9 5 0 True 0.00015
AlexNet CIFAR10 128 200 SGD 0.01 0.9 5 0 True 0.00003

ResNet18 CIFAR100 128 200 SGD 0.1 0.9 5 0 True 0.000055
ResNet50 CIFAR100 128 200 SGD 0.1 0.9 5 0 True 0.00002
ResNet18 TinyImageNet 128 200 SGD 0.01 0.9 5 0 True 0.00023
ResNet50 TinyImageNet 128 200 SGD 0.01 0.9 5 0 True 0.0001

A.4 SUBLEVEL SET PARAMETER SETUP.

Given that the test data is often unavailable and the network can ensure the Hessian matrix is pos-
itive definite as much as possible by utilizing the training data for computation. Additionally, we
generally assume that the training and test data share the same distribution, thus we use the training
data to define the loss sublevel set as ϵ̂ = ϵ − L(w0). We compute the standard deviation of the
network’s loss across multiple batches on the training data set and denote it by ϵ̂.

Table 6: Hyper Parameters used in SLQ Algorithm.

Model Dataset Runs Iterations Bins Squared Sigma
FC5 CIFAR10 1 128 100000 1e-10

FC12 CIFAR10 1 128 100000 1e-10
VGG16 CIFAR10 1 128 100000 1e-07
AlexNet CIFAR10 1 96 100000 1e-07

ResNet18 CIFAR100 1 128 100000 1e-07
ResNet50 CIFAR100 1 128 100000 1e-07
ResNet18 TinyImageNet 1 128 100000 1e-07
ResNet50 TinyImageNet 1 88 100000 1e-07
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A.5 LOSS SUBLEVEL SET

Given a dense well-trained neural network M with weighted donated as w∗, the loss sublevel set is
{w ∈ RD : 1

2ŵ
THŵ ≤ ϵ̂} where ϵ̂ = ϵ − L(w∗), as we operate under the assumption of having

access only to training data, we calculate the training loss for each batch and utilize the standard
deviation of all training losses as the variable ϵ̂.

A.6 THEORETICALLY PREDICTED PRUNING RATIO

Taking w∗ as the initial pruning point and calculating the corresponding value of R for different
pruning ratios. We then plot the corresponding curve of the theoretically predicted pruning ratio and
the calculated R in the same graph. The intersection point of these two curves is taken as the upper
bound of the theoretically predicted pruning ratio. All results are shown in Figure 4.
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Figure 1: The theoretically predicted pruning ratio in eight tasks. The first row, from left to right,
corresponds to FC5, FC12, AlexNet, and VGG16. The second row, from left to right, corresponds
to ResNet18 and ResNet50 on CIFAR100, as well as ResNet18 and ResNet50 on TinyImagenet.

B APPROXIMATE CALCULATION OF GAUSSIAN WIDTH

In practical experiments, determining the Gaussian width of the ellipsoid defined by the network
loss function is a challenging task. There are two primary challenges encountered in this section:
1. the computation of eigenvalues for high-dimensional matrices poses significant difficulty; 2.
the network fails to converge perfectly to the extremum, leading to a non-positive definite Hessian
matrix for the loss function. In this section, we tackle these challenges through the utilization of a
fast eigenspectrum estimation algorithm and an algorithm that approximates the Gaussian width of
a deformed ellipsoid body. These approaches effectively address the aforementioned problems.
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Figure 2: The statistical analysis of the L1 norm of the Hessian matrix in eight tasks. The first row,
from left to right, corresponds to FC5, FC12, AlexNet, and VGG16. The second row, from left to
right, corresponds to ResNet18 and ResNet50 on CIFAR100, as well as ResNet18 and ResNet50 on
TinyImagenet.
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B.1 IMPROVED SLQ (STOCHASTIC LANCZOS QUADRATURE) SPECTRUM ESTIMATION

Calculating the eigenvalues of large matrices has long been a challenging problem in numerical anal-
ysis. One widely used method for efficiently computing these eigenvalues is the Lanczos algorithm,
which is presented in Appendix B. However, due to the huge amount of parameters of the deep neu-
ral network, it is still impractical to use this method to calculate the eigenspectrum of the Hessian
matrix of a deep neural network. To tackle this problem, Yao et al. (2020) proposed SLQ(Stochastic
Lanczos Quadrature) Spectrum Estimation Algorithm, which estimates the overall eigenspectrum
distribution based on a small number of eigenvalues obtained by Lanczos algorithm. This method
enables the efficient computation of the full eigenvalues of large matrices. Algorithm 1 outlines the
step-by-step procedure for the classic Lanczos algorithm, providing a comprehensive guide for its
implementation. The algorithm requires the selection of the number of iterations, denoted as m,
which determines the size of the resulting triangular matrix T.

Algorithm 1: The Lanczos Algorithm
Input: a Hermitian matrix A of size n× n, a number of iterations m
Output: a tridiagonal real symmetric matrix T of size m×m

initialization:
1. Draw a random vector v1 of size n× 1 from N (0,1) and normalize it;
2. w

′

1 = Av1; α1 =< w
′

1,v1 >; w1 = w
′

1 − α1v1;
3.
for j = 2, ...,m do

1). βj = ∥wj−1∥;
2).

if βj = 0 then
stop

else
vj = wj−1/βj

end if
3). w

′

j = Avj;
4). αj = < w

′

j,vj >;
5). wj = w

′

j − αjvj − βjvj−1;
end for
4. T(i, i) = αi, i = 1, . . . ,m;
T(i, i+ 1) = T(i+ 1, i) = βi, i = 1, . . . ,m− 1.

return T

In general, the Lanczos algorithm is not capable of accurately computing zero eigenvalues, and this
limitation becomes more pronounced when the SLQ algorithm has a small number of iterations.
Similarly, vanishingly small eigenvalues are also ignored by Lanczos. However, in a well-trained
large-scale deep neural network, the experiment found that the network loss function hessian matrix
has a large number of zero eigenvalues and vanishingly small eigenvalues. In the Gaussian width
of the ellipsoid, the zero eigenvalues and vanishingly small eigenvalues have the same effect on
the width (insensitive to other parameters), and we collectively refer to these eigenvalues as the
“important” eigenvalues. We divide the weight into 100 parts from small to large, calculate the
second-order derivative (including partial derivative) of smallest weight in each part, and sum the
absolute values of all second-order derivatives of the weight, which corresponds to l1-norm of a row
in hessian matrix, and the row l1-norm is zero or a vanishingly small corresponds to an “important”
eigenvalue, the experimental results can be seen in the first column of Figure ??, from which the
number of missing eigenvalues of the SLQ algorithm can be estimated, we then add the same number
of 1e-30 as the missing eigenvalues in the Hessian matrix eigenspectrum.SLQ algorithm parameters
adjustment is discribed in Table 6 and the statistical analysis of the L1 norm of Hessian matrix rows
for all experiments is presented in Figure 2. For details of the SLQ algorithm, see Algorithm 2
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Algorithm 2: SLQ(Stochastic Lanczos Quadrature) Spectrum Estimation Algorithm
Input: A hermitian matrix A of size n× n, Lanczos iterations m, ESD computation iterations

l, gaussian kernel f and variance σ2.
Output: The spectral distribution of matrix A

for i = 2, ..., l do
1). Get the tridiagonal matrix T if size m×m through Lanczos algorithm;
2). Compute τ

(i)
k and λ

(i)
k from T;

3). ϕi
σ(t) =

∑m
k=1 τ

(i)
k f(λ

(i)
k ; t, σ);

end for
4). ϕ(t) = 1

l

∑l
i=1 ϕ

i
σ(t)

return ϕ(t)

B.2 GAUSSIAN WIDTH OF THE DEFORMED ELLIPSOID

After effective training, it is generally assumed that a deep neural network will converge to the global
minimum of its loss function. However, in practice, even after meticulous tuning, the network tends
to oscillate around the minimum instead of converging to it. This leads to that the Hessian matrix
of the loss function would be non-positive definite, and the resulting geometric body defined by this
matrix would change from an expected ellipsoid to a hyperboloid, which is unfortunately nonconvex.
To quantify the Gaussian width of the ellipsoid corresponding to the perfect minima, we propose to
approximate it by convexifying the deformed ellipsoid through replacing the associated negative
eigenvalues with its absolute value. This processing turns out to be very effective, as demonstrated
by the experimental results.

Lemma 1 Consider a well-trained neural network M with weights w, whose loss function defined
by w has a Hessian matrix H. Due to the non-positive definiteness of H, there exist negative
eigenvalues. Let the eigenvalue decomposition of H be H = vTΣv, where Σ is a diagonal matrix
of eigenvalues. Let D = vT |Σ|v, where |·| means absolute operation. the geometric objects defined
by H and D are S(ϵ) := {w ∈ RD : 1

2w
THw ≤ ϵ} and Ŝ(ϵ) := {w ∈ RD : 1

2w
TDw ≤ ϵ}, then:

w(S(ϵ)) ≈ w(Ŝ(ϵ)) (1)

The proof of Lemma 1 is in Appendix C.2. Lemma 1 indicates that if the deep neural network
converges to a vicinity of the global minimum of the loss function, the Gaussian width of the de-
formed ellipsoid body can be approximated by taking the convex hull of S(ϵ). Experimental results
demonstrate that the two approximation methods, namely setting negative features to zero and taking
absolute values, yield nearly indistinguishable outcomes.

C THEORETICAL PART SUPPLEMENT

In this section, we provide details regarding the threshold of network pruning ratio, specifically, the
dimension of the sublevel sets of quadratic wells.

C.1 GAUSSIAN WIDTH OF THE QUADRATIC WELL

Gaussian width is an extremely useful tool to measure the complexity of a convex body. In our
proof, we will use the following expression for its definition:

w(S) =
1

2
E sup

x,y∈S
⟨g,x− y⟩ ,g ∼ N (0, ID×D)

Concentration of measure is a universal phenomenon in high-dimensional probability. Basically, it
says that a random variable which depends in a smooth way on many independent random variables
(but not too much on any of them) is essentially constant.?
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Theorem C. 1 (Gaussian concentration) Consider a random vector x ∼ N (0, In) and an L-
Lipschitz function f : Rn → R (with respect to the Euclidean metric). Then for t ≥ 0

P(|f(x)− Ef(x)| ≥ t) ≤ ϵ, ϵ = e−
t2

2L2 .

Therefore, if ϵ is small, f(x) can be approximated as f(x) ≈ Ef(x) +
√
−2L2lnϵ.

Lemma C. 1 Given a random vector x ∼ N (0, In) and the inverse of a positive definite Hessian
matrix Q = H−1, where H ∈ Rn×n, we have:

E
√
xTQx ≈

√
ExTQx

Proof.
1.) Concentration of xTQx

Define f(x) = xTQx, we have

f(x) = xTQx

= xTUΣUTx Eigenvalue Decomposition of Q : Q = UΣUT.

=

n∑
i=1

λix
2
i Invariance of Gaussian under rotation.

where λi is the eigenvalue of Q. The lipschitz constant Lf of function f(x) is :

Lf = max(|∂f
∂x

|) = max(|2λixi|)

Let g(xi) = 2λixi, whose lipschitz constant is Lg = |2λi|. Invoking Theorem 1, we have:

g(xi) ≈ Eg(xi) +
√
−2(2λi)2lnϵ1

=
√

−8λ2
i lnϵ1.

Therefore, the lipschitz constant of f(x) can be approximated by:

Lf = max(
√
−8λ2

i lnϵ1) =
√
−8lnϵ1λmax

Invoking Theorem 1 again, we establish the concentration of f(x) as follows:

f(x) ≈ Ef(x) +
√

−2(Lf )2lnϵ2 Theorem 1.

= Ef(x) + 4
√

lnϵ1lnϵ2λmax

2.) Jensen ratio of
√
xTQx:

E
√
f(x) ≈ E

√
Ef(x) + 4

√
lnϵ1lnϵ2λmax Concentration of f(x).

≈
√
Ef(x) +

2
√
lnϵ1lnϵ2λmax√

Ef(x)
Taylor Expansion.

Therefore, the Jensen ratio of
√
f(x) equals:

E
√
f(x)√

Ef(x)
= 1 + 2

√
lnϵ1lnϵ2

λmax∑n
i=1 λi

= 1 + δ

If Q is a Wishart matrix, i.e., Q = ATA, where A is a random matrix whose elements are indepen-
dently and identically distributed with unit variance, according to the Marchenko-Pastur law (Tao,
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2012), the maximum eigenvalue of Q is approximately 4n and the trace of Q is approximately n2.
Therefore, the above Jensen ratio approaches to 1 with decaying rate O( 1n ).

For the inverse of a positive definite Hessian matrix which is of our concern, we take ϵ1 = ϵ2 =
10−4, numerical simulations show that when the dimension n = 105, the corresponding δ in the
above Jensen ratio is on the order of 10−3, which is in good agreement with the theoretical value
and is arguably negligible. Similar as the case of the above-discussed Wishart matrix, when the
dimension n increases, the value of δ will further decrease.

Definition C. 1 (Definition of ball) A (closed) ball B(c, r) (in RD) centered at c ∈ RD with radius
r is the set

B(c, r) := {x ∈ RD : xTx ≤ r2}
The set B(0, 1) is called the unit ball. An ellipsoid is just an affine transformation of a ball.

Lemma C. 2 (Definition of ellipsoid). An ellipsoid S centered at the origin is the image L(B(0, 1))
of the unit ball under an invertible linear transformation L : RD → RD. An ellipsoid centered at
a general point c ∈ RD is just the translate c+ S of some ellipsoid S centered at the origin.

Proof.
L(B(0, 1)) = {Lx : x ∈ B(0, 1)}

= {y : L−1y ∈ B(0, 1)}
= {y : (L−1y)TL−1y ≤ 1}
= {y : yT (LLT )−1y ≤ 1}
= {y : yTQ−1y ≤ 1}

where Q = LLT is positive definite.
The radius ri along principal axis ei obeys r2i = 1

λi
, where λi is the eigenvalue of Q−1 and ei is

eigen vector.

Lemma C. 3 (Gaussian width of ellipsoid). Let S be an ellipsoid in RD defined by the positive
definite matrix H ∈ RD×D:

S(ϵ) := {w ∈ RD :
1

2
wTHw ≤ ϵ}

Then w(S)2 or the Gaussian width squared of the ellipsoid satisfies:

w(S)2 ≈ 2ϵTr(H−1) =
∑
i

r2i

where ri =
√

2ϵ/λi with λi is i-th eigenvalue of H.

Proof. Let g ∼ N (0, ID×D) and LLT = 2ϵH−1. Then:

w(L(Bn
2 )) =

1

2
E supx,y∈B(0,1) < g,Lx− Ly >

=
1

2
E supx,y∈B(0,1) < gL,x− y >

= E∥gL∥2 Definition of Ball.

= E
√

(gLLTgT) ∥g∥2 =
√
ggT, where g ∈ R1×D.

= E
√
2ϵgH−1gT

≈
√
2ϵE[gH−1gT] Lemma 1.

=
√
2ϵTr(H−1) Invariance of Gaussian under rotation.

Thus, w(S)2 ≈ 2ϵTr(H−1) =
∑

i r
2
i .
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C.2 GAUSSIAN WIDTH OF THE DEFORMED ELLIPSOID

Generally, it is assumed that the gradient descent algorithm will converge to a minimum point.
However, in practice, even with small learning rates, the network may oscillate near the minimum
point and not directly converge to it, but rather get very close to it. As a result, the actual Hessian
matrix is often not positive definite and its eigenvalues may have negative values.

Lemma C. 4 Let the Hessian matrix at the minimum point be denoted by H with eigenvalue λi,
and the Hessian matrix at an oscillation point be denoted by Ĥ with eigenvalue λ̂i. The negative
eigenvalues of Ĥ have small magnitudes.

Proof. Let the weights at the minimum point be denoted by w0 and the Hessian matrix at an
oscillation point be denoted by ŵ0. Consider a loss function L and a loss landscape defined by
L(w), taking taylor expansion of L(w) at w0:

L(w) = L(w0) +
1

2
(w −w0)

TH(w −w0) +R(w0)

Let ŵ0 = w0 + v with v is closed to 0:

L(ŵ0) = L(w0 + v)

= L(w0) +
1

2
vTHv +R(w0 + v)

Therefore, the second order derivative of L(ŵ0) is:

L
′′
(w) = L

′′
(w0 + v)

= H+R
′′
(w0 + v)

≈ H

where L
′′
(w) = Ĥ, Let H = Ĥ+H0 with H0 is closed to 0, considering the Weyl inequality:

λi(H)− λ̂i(Ĥ) ≤ ∥H0∥2
where ∥H0∥2 is small enough. So if λ̂i(Ĥ) is less than 0, since λ̂i(Ĥ) ≥ λi(H) − ∥H0∥2, its
absolute value |λ̂i(Ĥ)| ≤ ∥H0∥2 − λi(H) ≤ ∥H0∥2, which means that the negative eigenvalues of
the Hessian matrix have small magnitudes.

Lemma C. 5 For a sublevel set S(ϵ) := {w : wTHw ≤ ϵ} defined by a matrix H with small
magnitude negative eigenvalues. The Gaussian width of S(ϵ) can be estimated by obtaining the
absolute values of the eigenvalues of the matrix H.

Proof. Assuming that the eigenvalue decomposition of H is H = vTΣv, where Σ is a diagonal
matrix consisting of the eigenvalues of H, let D = vT |Σ|v be a positive definite matrix and M =
H−D = vT (Σ− |Σ|)v be a negative definite matrix. Consider the definition of S(ϵ):

wTHw = wT (H−D+D)w

= wTMw +wTDw

≤ ϵ

Therefore, S(ϵ) can be expressed as wTDw ≤ ϵ−wTMw. Since the magnitudes of the negative
eigenvalues of H are very small, we can assume that wTMw is also small, and thus wTDw ≤
ϵ−wTMw can be approximately equal to wTDw ≤ ϵ. As a result, we can estimate the Gaussian
width of S(ϵ) by approximating it with the absolute values of the eigenvalues of H.

Corollary C. 1 Consider a well-trained neural network M with weights w, whose loss function
defined by w has a Hessian matrix H. Due to the non-positive definiteness of H, there exist negative
eigenvalues. Let the eigenvalue decomposition of H be H = vTΣv, where Σ is a diagonal matrix
of eigenvalues. Let D = vT |Σ|v, where |·| means absolute operation. the geometric objects defined
by H and D are S(ϵ) := {w ∈ RD : 1

2w
THw ≤ ϵ} and Ŝ(ϵ) := {w ∈ RD : 1

2w
TDw ≤ ϵ}, then:

w(S(ϵ)) ≈ w(Ŝ(ϵ))

9
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D ANALYSIS OF THE RELATIONSHIP BETWEEN THE UPPER AND LOWER
BOUND

This section provided the proofs of the lower bound derivation and roughly analyzed how the lower
bound changes when the upper bound varies.

D.1 D −m DIMENSION SUBLEVEL SET IS STILL AN ELLIPSOID

In the derivation of the lower bound for the pruning ratio threshold, we employed a D −m dimen-
sional loss sublevel set:

S(w2) = {w2 ∈ RD−m : L(w1,w2) ≤ ϵ} (2)

Perform Taylor expansion to L(w1,w2) with respect to w2, the sublevel set is represented as:

S(w2) = {w2 ∈ RD−m :
1

2
(w2)TH2w2 ≤ ϵ} (3)

where H2 is the Hessian matrix of L(w1,w2) with respect to w2.

Given that the sublevel set S(ϵ,w∗) = {ŵ ∈ RD : 1
2ŵ

THŵ ≤ ϵ̂} is an ellipsoid body, which
implies that H is a positive definite matrix, it is evident that H2 is the principal submatrix of H.
Consequently, H2 is also a positive definite matrix, which implies that the sublevel set remains an
ellipsoid.

D.2 RELATIONSHIP BETWEEN THE UPPER AND LOWER BOUND

Theorem 1 (Eigenvalue Interlacing Theorem) Suppose A ∈ Rn×n is symmetric, Let B ∈ Rm×m

with m < n be a principal submatrix(obtained by deleting both i-th row and i-th column for some
values of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues β1 ≤ · · · ≤ βm.
Then

λk ≤ βk ≤ λk+n−m for k = 1, . . . ,m (4)
And if m = n− 1,

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn (5)

Theorem 1 indicates that: if H2 the principal submatrix of H, where H is a positive definite matrix,
when the eigenvalues of H increase, the eigenvalues of H2 also increase. Conversely, as the eigen-
values of H decrease, the eigenvalues of H2 decrease. In essence, this implies that the changes in
the upper and lower bounds resulting from the eigenvalues occur in the same direction. The changes
in the lower bound also exhibit the same direction as the variations in the upper bound of the pruning
ratio threshold when the magnitude of network parameters increases or decreases. Investigating the
exact numerical relationship between the upper and lower bound is left to future work.

E FULL RESULTS

Here we present the full set of experiments performed for the results in the main text.

E.1 SMALL WEIGHTS BENEFITS PRUNING

We verify that high flatness is not equal to high sparsity through hypothetical experiments. Con-
sidering that the hessian matrix of network A and network B1, B2, B3, B4 share eigenvalues
{λ1, λ2, . . . , λn}, the weight magnitude of network B1, B2, B3, B4 is 2,3,4,5 times that of net-
work A, we take the eigenvalues and weights from a FC network trained without regularization. In
this way, the gap between the curves will be more obvious. For other networks, the trend of the
curve gap is consistent, the prediction of the network pruning ratio is shown in the Figure. 3. It is
observed from Figure. 3 that as the magnitude of network weights increases, the capacity of the net-
work to tolerate pruning decreases. The pruning ratio threshold is affected not only by loss flatness
but also the magnitude of weights. This finding, on the other hand, provides further evidence of the
effectiveness of the l1-norm in pruning tasks.
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Figure 3: Pruning ratio prediction on different weight magnitude.

E.2 STATISTICAL INFORMATION OF WEIGHTS IN VARIOUS EXPERIMENTS
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Figure 4: The same plots as Fig. 2(b) and Fig. 2(c) on CIFAR10 FC5,FC12,AlexNet,VGG16, and
CIFAR100 ResNet18,ResNet50 and TinyImageNet ResNet18,ResNet50.
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