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A Further evaluation of the empirical performance of PI-FL

A.1 Ablatian study of clustering performance with Incentive in PI-FL.

Table 3: Test accuracy of ablation study with Incentive (I) and without incentive (NI)
10:90 30:70 linear random
c0 cl c0 cl c0 cl c0 cl
PLFL ()  58.62%(0) 67.4%(1) 51.12%(0) 64.06%(1) 66.2%(0) 57.02%(1) 64.54%(0) 56.86%(1)
PLFL (NI) 49.92%(1) 52.8%(1) 48.9%(0) 44.44%(1) 50.82%(1) 45.92%(1) 57.42%(1) 46.76%(1)

We perform an ablation study with the incentive component of PI-FL on the Synthetic CIFAR10
dataset for 200 rounds with N = 100 clients, batch size 128, and learning rate = 0.01. When the
incentive is disabled clients do not consider maximizing their incentive while sending preference bids.
Instead, clients send preference bids with random cluster choices to the scheduler as in FedAvg [2].

Table 3 shows the test accuracies of the cluster-level models. PI-FL(I) indicates that incentives
are enabled and PI-F(NI) shows the accuracies when incentives are disabled. In general PI-FL(I)
outperforms PI-FL(NI) in terms of test accuracy for all partitions. The important point to note here is
that the incentive mechanism in PI-FL directly motivates clients to join clusters in which they can
have the most contribution. This results in accurate clustering based on client data distributions and
good-quality personalized models. This is indicated by the performance of PI-FL(NI), i.e without
incentive, cluster-level models are unable to dominate a single distribution and only perform well for
a single distribution for all partitions except 30:70. Compared to this, in PI-FL(I) each cluster-level
model dominates and performs well for their distribution.

A.2 Advantages of including client preferences in pFL.
A.2.1 Challenges requiring client autonomy

Prior personalized FL works generate personalized models from the server’s perspective. We argue
that the server may not have complete information to produce good-quality models due to a variety
of challenges [10,52]. These challenges are as follows: Confidentiality: Some clients may have
sensitive data that they do not want to share with others for privacy or security reasons. For example,
a company may have confidential customer data that they do not want to share with a third-party
vendor, Competitive Advantage: In some industries, companies may want to keep their data private
to maintain a competitive advantage. For example, a company may not want to share its sales data
with competitors. Data Governance: Some organizations may have strict data governance policies
that prohibit the sharing of certain types of data. For example, a healthcare organization may not be
able to share patient data without proper consent. Resource limitations: Clients with large datasets
may not have the resources to share all their data for training. In these cases, they may choose to
share a random sample of their data to keep the training process manageable. Data Anonymization:
Sometimes, clients may not want to share the raw data, but instead, they may share a subset of
the data which has been anonymized to protect the privacy of the individuals. Compliance with
privacy laws: In order to comply with privacy laws (GDPR [58], HIPA [59]) some clients might
only share anonymized data while keeping Personally Identifiable Information (PII) private. Prior
clustering-based pFL works also lack support to accurately include new clients into the clusters whose
data qualities are unknown. By including client preferences, PI-FL performs accurate clustering and
generation of appealing personalized models for new clients.

We use the Synthetic datasets to test PI-FL where the aggregator is unaware of the client’s dataset
distribution and goals.

A.2.2 Clustering performance with Synthetic CIFAR10 dataset

Cluster-based pFL methods cluster all heterogeneous clients within different clusters so each cluster
has homogeneous clients with similar data distribution in it. So first we test the client-preference
driven clustering design of PI-FL with Synthetic CIFAR10 Data to show the performance of cluster-
level models. We use the same configurations described in the main paper for the CIFAR10 dataset
evaluation. We perform training for 500 rounds with both PI-FL and FedSoft. Table 4 shows the
cluster-level model test accuracies for PI-FL with Synthetic CIFAR10 data.
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Table 4: Test accuracy for PI-FL on Synthetic CIFAR10 Dataset

10:90 30:70 linear random
c0 cl c0 cl c0 cl c0 cl

0y 62.78%  2.56% 53.28% 34.32% 61.66% 12.08% 66.9% 19.48%
0 1.5%  70.96% 3038% 61.94% 30.94% 59.44% 19.12% 58.42%

Table 5: Test accuracy for PI-FL and FedSoft on Synthetic CIFAR10 Dataset

10:90 30:70 linear random
c0 cl c0 cl c0 cl c0 cl

PI-FL  62.68%(0) 70.96%(1) 53.28%(0) 61.94%(1) 61.66%(0) 59.44%(1) 66.90%(0) 58.42%(1)
FedSoft 32.50%(0) 38.62%(1) 20.28%(0) 23.58%(0) 34.42%(1) 49.62%(1) 21.62%(1) 33.12%(1)
PI-FL accurately differentiates between clients of different distributions. This is visible by the
accuracy difference of each cluster-level model on different distributions. For example on the 10:90
partition c1 model has a 70.96% accuracy on the #; distribution and has 2.56% accuracy on 6y which
indicates that cluster-level model c1 trains with clients that have the majority of their training data
from 6#;. Similarly, c0 trains with clients that have their majority of training data from 6, and has an
accuracy of 62.68%.

Table 5 shows the cluster-level model accuracy comparison of PI-FL and FedSoft. The number
inside the parenthesis along with accuracy shows the distribution for which the cluster-level model
performs best. For example, for the linear partition, PI-FL c0 cluster-level model has an accuracy
of 61.66% for distribution 6y and 59.44% accuracy for distribution 6;. For the linear partition with
FedSoft, both c0 and c1 perform best on only one distribution ¢, with accuracy 34.42% and 49.62%.
Pi-FL outperforms FedSoft in terms of accuracy for each partition and is able to distinguish between
different distributions accurately.

Table 6: Test accuracy for FedSoft on Synthetic CIFAR10 Dataset

10:90 30:70 linear random
c0 cl c0 cl c0 cl c0 cl

0o 32.5% 13.6% 20.28% 23.58%  8.48% 2.82%  16.18%  0.28%
01 11.76% 38.62%  0.18% 0.08% 3442% 49.62% 21.62% 33.12%

Table 6 represents the result of FedSoft [25] tested with the Synthetic CIFAR10 dataset. The
experimental setup is explained in more detail in the main paper. We can observe that except for
the 10:90 partition, FedSoft is unable to cluster clients under individual tiers in a way that each
tier-level model could dominate one distribution. Both tier-level models perform well on only one
distribution and the other is ignored leading to low test accuracy of both tier-level models for the
ignored distribution.

A.2.3 Clustering performance with Synthetic EMNIST dataset

Synthetic EMNIST dataset. This image dataset has images of dimension 28 x 28 and 52 output
classes where 26 classes are lower case letters and 26 classes are upper case letters. We test the
dataset on different partitions of 10:90, 30:70, linear, and random created in the same way as the
Synthetic CIFAR10 data. The only difference is that D 4 contains 26 lowercase letters and Dp has
26 uppercase letters.

Since Ditto is not a clustering-based algorithm, we only compare the test accuracy of personalized
models on the EMNIST dataset for PI-FL and Ditto in Figure 5. PI-FL outperforms Ditto significantly,
especially for highly heterogeneous data partitions such as 10:90 and linear. The reason for this
performance improvement is that, unlike Ditto, PI-FL provides autonomy to clients to personalize
according to their own goals. With Ditto, the goal of each client which consists of their private data is
hidden from the aggregator server which affects the quality of personalized models.
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Figure 5: CDF of clients’ personalized model test accuracy for PI-FL and Ditto on EMNIST Dataset

—&— PI-FL (10:90) —— PI-FL (linear)

Ditto (10:90) Ditto (linear)
—&— PI-FL (30:70) —>— PI-FL (random)

Ditto (30:70) Ditto (random)

1.0

80.8

< 0.6

_dg 0.4

£0.2

Z 0.0l a—%——%——

0 20 40 60 80
Accuracy (%)

Figure 6: CDF of clients’ personalized model test accuracy for PI-FL and Ditto on 4 and more
distributions with EMNIST Dataset

A.2.4 Multiple distribution Results

PI-FL outperforms other FL personalization algorithms in heterogeneous cases when the clients and
dataset are divided between 2 distributions (DA & DB). To analyze the reliability of PI-FL it is also
evaluated in highly heterogeneous conditions with 4 different distributions (DA, DB, DC, and DD)
on the EMNIST dataset. EMNIST dataset has a total of 56 classes, thus each of the 4 distributions
gets 25% of total available classes. DA has the first 13 classes, DB has the next 13, and so on. Figure
6 shows the CDF of test accuracy for all personalized models at clients. PI-FL outperforms Ditto for
all partition types. For the linear partition less than 10% clients have lower than 80% accuracy and
we attribute this as an outlier due to the partition type where dividing the data linearly some clients
get very few data samples. This trend can also be seen with Ditto for the linear partition.

A.2.5 Insights from the analysis with Synthetic datasets

We use the synthetic datasets to present a scenario of dynamic data at client or induction of new
clients in pFL whose data distributions are unknown. This presents new challenges of accurate
clustering and the generation of personalized models for less familiar clients. We observe through
empirical evaluation with Synthetic datasets that this can lead to 100% opt-outs from these clients if
we use conventional server-driven pFL methods. However, we observe that by the induction of client
preferences in clustering, PI-FL is able to do accurate clustering and generate appealing models for
new clients and changing data distribution at clients.
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Table 7: PMA and opt-outs with the 4 classes per client EMNIST dataset

pFL Method FedAvg Ditto FedProx FedALA  PerfFedAvg  FedFomo PI-FL
Personalized Accuracy 82.8+44.2 90.78+2.1 61.23£2.86 62.174£3.9 59.99+1.87 86.57+1.59  98.59+1.2
Optouts - 0 0.64 0.31 0.68 0 0
Average PMA - 2448442  0.57+5.14  1.5+4.74 -0.6x1.5 259+3.6  37.93+3.43
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Figure 7: CDF of clients’ PMA for PI-FL and pFL algorithms on CIFAR10 Dataset
A.3 Opt-out results for 4 classes per client with EMNIST dataset

Table 7 shows the complete opt-out, test accuracy, and PMA results for the test conducted with the
EMNIST dataset with 4 classes per client. Some pFL algorithms such as FedFomo and Ditto have
similar performance compared to PI-FL in terms of opt-outs. However, PI-FL outperforms all of
them in terms of PMA and test accuracy.

A.4 Opt-out results for 2 classes per client with CIFAR10 dataset

We also test highly heterogeneous data conditions where each client has only 2 classes per client. We
use the learning rate = 0.01, batch size = 128, and global epochs = 150 with the CIFAR10 dataset
and the same CNN model mentioned in the main paper. Figure 7 shows the PMA for different pFL
algorithms. PI-FL outperforms all other pFL algorithms by approximately 50% and FedFomo by
30%. This goes to show that PI-FL performs even better in highly heterogeneous conditions where
personalization is used to tackle data heterogeneity.

B Shapley value approximation for client contribution

Here we present the Shapley Value approximation derivation we use for calculating the client
contributions
Algorithm 3 Estimated Shapley value of any client in an FL

Input: Test data (zi, yi), i =1,..., nes, clients’ local model parameters and aggregation weights, Wi, , A,,.
server’s aggregated model parameter Wy, = nyle A W
1: Calculate YMm é n;j ?ﬁi‘ ng(x“ Yis W]\/[)
2: fork=1,...,M do
3:  Calculate SHAP(: — [M]) using

1 Test T
— V [ Ti, Yis W )\»;Wi 16
(n ; wl(ws, y M)> (16)
for unnormalized aggregation, or
1 Test T
_<n vaf(wi,yi;WM)> Xi(Wi — War) a7
test i—1

for normalized aggregation.
4: end for
Output: Obtains all clients” Shapley values
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Notation: Let [M] denote the set {1,..., M}, and A — B the set of elements in A but not in B. In
this section, [M] denotes all the agents that participate in the coalition. We will consider those not
participating in the near future.

We aim to look for a reasonable way to quantify the amount of each client’s contribution in a round.
Suppose at any particular round, the server obtains an aggregated model with parameter

Wi 2 " AW, (18)
me[M]

where )\, is the weight (usually n,,, /n where n,,, and n are sample sizes of client m and all clients,
respectively), and W,,, is the locally updated model of client m.

The prediction loss of the model with parameter W, denoted by £(W), is approximated by

1 Thest

LOW) ~ —> (i, y5 W), (19)
Thest im1
where (z;,9;), 1 = 1,. .., nes, is a set of test data. At round ¢, we define the value function of a set

of agents C' based on how much their contributed model, denoted by W, has decreased the loss of
the earlier model, denoted by W;_;, namely

w(C) 2 L(Wy_q) — L(We), (20)

so that the larger the better. When there is no ambiguity, we simply write v; as v. It is worth noting
that v is a function of the set while £ is a function of the parameter. Once C is realized, W will
become W, for the next round.

Recall that the original Shapley value [60] of agent m given a set of agents A and a value function v
is defined by

> S|!<|A||;|} —I5D s U my) - u(s)), @D

SeA—{m}

whose sum over all agents is equal to v(A) — v((). Here, () represents the baseline coalition scenario,
from which the contribution of each agent is quantified. To highlight the dependency on baseline, we
use B to denote the baseline and rewrite (21) as

SHAP(m — A | B) (22)
2 5 A= s 0 gm)  5) - vis | B @)
SeA—{m}

where v(S' | B) means the value of S conditional on the baseline B. In our scenario, B means the set
of agents that are already in coalition and thus

v(S | B) 2 v(SUB). (24)
Let us consider the baseline as B 2 [M] — {4, j}. The corresponding baseline model will be

unnormalized version: W[M]—{z’,j} E Z AW, (25)
me[M]—{i,5}

: : " A 1
normalized version: Wy, v =

A Win. (26)
2omelM~{i.} A e i iy
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We consider an unnormalized version for brevity. The additional value by introducing i, j is

o({i, 3} | [M] = {i, 3}) —v(@ | [M] = {i,5}) @7)
use(24) = ’U([M]) — U([M] — {Z,j}) (28)
use(20) and recall (18)and(25) = E(W[M]f{l,j}) — L(W]\/[) (29)
1 Ttest
= Z{g(%,yz‘; Whar) — (s, yi; Wing—i.53) } (30)
test 7
1 Thest
~ Vwl(xi, yis W) " Wi —1ijy — W) 31
test 7
1 Tgest T
= - (n > Vwl(xi, yi; WM)> (AW + X W5). (32)
test 57

Next, we calculate how much agent ¢ should be attributed to the above gain that is achieved by
i, 7 jointly. To that end, we calculate the Shapley value of agent ¢ conditional on that agents in
[M] — {4, j} already participate, namely

SHAP(i - {Zv.]} | [M] - {Z’j}) (33)
= 37 P50 ( (Su fiy U (M) - {i,m)
Se{j}

—U(SU (IM] - {i,j}))) (34)

= 5 (oM — oM~ (33) + o(01)  33) — o] - G5 &5)
-1 (—L(WM) + L(Wag,—i) = L(War,—5) + c(WMyij)> G6)
= % (_E(WM) + L(Wht,—i) + LOWar) = LWt ) + LW, —i5) = L‘(WM)) (37)

1 1 Thtest T
use (29)—(32) and alike % —— ( Z Vwé(xi, Yis WM)> W, — Wi 4+ W + /\jo)

Thest i=1
1 TMest T
= —< > Vwl(wi,yi; WM)) AW (38)
Ttest =1

which, interestingly, does not depend on j. As such, we use this to calculate the Shapley value of
client ¢, denoted by

1 Thest T
SHAP(i — [M]) é — (nt ) Z VWé(l‘i,yi; WM)> )\ZVVz (39)
st =1

From Equalities (32) and (38), we can verify that
v({i, g} | [M] = {i,5}) —v(0 | [M] — {i,5}) = sHAP(i — [M]) + SHAP(j — [M])
Remark B.1 (Intuitions). Intuitively, our derived Shapley value of client 7 in (38) can be regarded

as the model’s marginal reduction of the test loss by introducing client . To see that, consider the
following approximation based on first-order Taylor expansion:

1 Test Test

—— > Uiy War = 8) = — > (i, yi; Wu W) (40)
test i=1 test =1
1 Test T
~ — Vwl(x;,yi; W, AW, (41)
(ntest ; wl(zi,y M)>

which becomes the term in (38) when AW 2 A;W;. The above quantity approximates the amount
of client i’s contribution to decreasing the test loss of the server’s aggregated model, the larger the
better.
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Remark B.2 (Normalized counterpart). Suppose we use the normalized version introduced in (26)

when considering the baseline without clients 7, j. Thus,
2melM]—{ij} Am
()\7; + )\j)WM -\ W; — /\jo
Eme[lv[]f{i,j} Am
Ai(Wi = War) + A, (W — W)

Wi —(igy =

=Wy +

o L= (Ai+ )
Similarly, we have
. Ai(W; — W)
Wiy =W = —5——

Bringing the above formula into (37), we have

SHAP(i — {i,j} | [M] — {i,j})
1

-1 (c(WM) +LWar—) + LOWar) — L(Wat—s) + L(War—ij) — L(WM))

Q

Thtest i=1

ATV A ANi(Wi — Way) B AW —=Wa) - (W — W) + X (W — W)
1-X\ 1 1=+ A) .
20 (W, — W)

assuming small A\; and A;. Therefore, under normalization we have

1 Thest T
- < Z Vwﬁ(x“ Yis WM)> AW* where

Ttest

SHAP( = (0,7} | [M] — {i.j}) ~ —( !

Thtest P
The intuition is the same as Remark B.1 except that the server model with client ¢ satisfies
unnormalized version : ~ Wiy = Wiy — AW,

normalized version :  Wiay—giy & War — Ai(W; — Way).

C Definitions for PI-FL

In this section, we provide definitions for Pi-FL.

Definition 1: A provider payoffrik € R is individually rational if each provider can
obtain a benefit no less than that by acting alone, i.e., 1, > 1; | Vi € N,Vk € K

Definition 2: On the basis of definition 1, we extend this definition to group
rationality. Providers will join tiers with greater similarity indexes compared to
other tiers if their incentive is directly correlated with similarity and performance,
ie.,
0(i k1) < 0(i,ka)

, then

Tiky > Tiko ‘ Vi € N7V(1€1,]{72) eK
where i € N and N represents all clients, k € K, K represents all tiers. 1
represents the reward for client 1 in tier k.

Definition 3: As the tier-level model converges, the personalized model generated
from tier-level models will have a similar performance compared to the tier-level
model performance on the local dataset of client i | Vi € N as it is a weighted
mixture of the tier-level models

We have made the code available as part of the supplementary material.
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