
A Further evaluation of the empirical performance of PI-FL541

A.1 Ablatian study of clustering performance with Incentive in PI-FL542

Table 3: Test accuracy of ablation study with Incentive (I) and without incentive (NI)
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
PI-FL (I) 58.62%(0) 67.4%(1) 51.12%(0) 64.06%(1) 66.2%(0) 57.02%(1) 64.54%(0) 56.86%(1)
PI-FL (NI) 49.92%(1) 52.8%(1) 48.9%(0) 44.44%(1) 50.82%(1) 45.92%(1) 57.42%(1) 46.76%(1)

We perform an ablation study with the incentive component of PI-FL on the Synthetic CIFAR10543

dataset for 200 rounds with N = 100 clients, batch size 128, and learning rate η = 0.01. When the544

incentive is disabled clients do not consider maximizing their incentive while sending preference bids.545

Instead, clients send preference bids with random cluster choices to the scheduler as in FedAvg [2].546

Table 3 shows the test accuracies of the cluster-level models. PI-FL(I) indicates that incentives547

are enabled and PI-F(NI) shows the accuracies when incentives are disabled. In general PI-FL(I)548

outperforms PI-FL(NI) in terms of test accuracy for all partitions. The important point to note here is549

that the incentive mechanism in PI-FL directly motivates clients to join clusters in which they can550

have the most contribution. This results in accurate clustering based on client data distributions and551

good-quality personalized models. This is indicated by the performance of PI-FL(NI), i.e without552

incentive, cluster-level models are unable to dominate a single distribution and only perform well for553

a single distribution for all partitions except 30:70. Compared to this, in PI-FL(I) each cluster-level554

model dominates and performs well for their distribution.555

A.2 Advantages of including client preferences in pFL.556

A.2.1 Challenges requiring client autonomy557

Prior personalized FL works generate personalized models from the server’s perspective. We argue558

that the server may not have complete information to produce good-quality models due to a variety559

of challenges [10, 52]. These challenges are as follows: Confidentiality: Some clients may have560

sensitive data that they do not want to share with others for privacy or security reasons. For example,561

a company may have confidential customer data that they do not want to share with a third-party562

vendor, Competitive Advantage: In some industries, companies may want to keep their data private563

to maintain a competitive advantage. For example, a company may not want to share its sales data564

with competitors. Data Governance: Some organizations may have strict data governance policies565

that prohibit the sharing of certain types of data. For example, a healthcare organization may not be566

able to share patient data without proper consent. Resource limitations: Clients with large datasets567

may not have the resources to share all their data for training. In these cases, they may choose to568

share a random sample of their data to keep the training process manageable. Data Anonymization:569

Sometimes, clients may not want to share the raw data, but instead, they may share a subset of570

the data which has been anonymized to protect the privacy of the individuals. Compliance with571

privacy laws: In order to comply with privacy laws (GDPR [58], HIPA [59]) some clients might572

only share anonymized data while keeping Personally Identifiable Information (PII) private. Prior573

clustering-based pFL works also lack support to accurately include new clients into the clusters whose574

data qualities are unknown. By including client preferences, PI-FL performs accurate clustering and575

generation of appealing personalized models for new clients.576

We use the Synthetic datasets to test PI-FL where the aggregator is unaware of the client’s dataset577

distribution and goals.578

A.2.2 Clustering performance with Synthetic CIFAR10 dataset579

Cluster-based pFL methods cluster all heterogeneous clients within different clusters so each cluster580

has homogeneous clients with similar data distribution in it. So first we test the client-preference581

driven clustering design of PI-FL with Synthetic CIFAR10 Data to show the performance of cluster-582

level models. We use the same configurations described in the main paper for the CIFAR10 dataset583

evaluation. We perform training for 500 rounds with both PI-FL and FedSoft. Table 4 shows the584

cluster-level model test accuracies for PI-FL with Synthetic CIFAR10 data.585
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Table 4: Test accuracy for PI-FL on Synthetic CIFAR10 Dataset
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 62.78% 2.56% 53.28% 34.32% 61.66% 12.08% 66.9% 19.48%
θ1 1.5% 70.96% 30.38% 61.94% 30.94% 59.44% 19.12% 58.42%

Table 5: Test accuracy for PI-FL and FedSoft on Synthetic CIFAR10 Dataset

10:90 30:70 linear random
c0 c1 c0 c1 c0 c1 c0 c1

PI-FL 62.68%(0) 70.96%(1) 53.28%(0) 61.94%(1) 61.66%(0) 59.44%(1) 66.90%(0) 58.42%(1)
FedSoft 32.50%(0) 38.62%(1) 20.28%(0) 23.58%(0) 34.42%(1) 49.62%(1) 21.62%(1) 33.12%(1)

PI-FL accurately differentiates between clients of different distributions. This is visible by the586

accuracy difference of each cluster-level model on different distributions. For example on the 10:90587

partition c1 model has a 70.96% accuracy on the θ1 distribution and has 2.56% accuracy on θ0 which588

indicates that cluster-level model c1 trains with clients that have the majority of their training data589

from θ1. Similarly, c0 trains with clients that have their majority of training data from θ0 and has an590

accuracy of 62.68%.591

Table 5 shows the cluster-level model accuracy comparison of PI-FL and FedSoft. The number592

inside the parenthesis along with accuracy shows the distribution for which the cluster-level model593

performs best. For example, for the linear partition, PI-FL c0 cluster-level model has an accuracy594

of 61.66% for distribution θ0 and 59.44% accuracy for distribution θ1. For the linear partition with595

FedSoft, both c0 and c1 perform best on only one distribution θ1 with accuracy 34.42% and 49.62%.596

Pi-FL outperforms FedSoft in terms of accuracy for each partition and is able to distinguish between597

different distributions accurately.598

Table 6: Test accuracy for FedSoft on Synthetic CIFAR10 Dataset
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 32.5% 13.6% 20.28% 23.58% 8.48% 2.82% 16.18% 0.28%
θ1 11.76% 38.62% 0.18% 0.08% 34.42% 49.62% 21.62% 33.12%

Table 6 represents the result of FedSoft [25] tested with the Synthetic CIFAR10 dataset. The599

experimental setup is explained in more detail in the main paper. We can observe that except for600

the 10:90 partition, FedSoft is unable to cluster clients under individual tiers in a way that each601

tier-level model could dominate one distribution. Both tier-level models perform well on only one602

distribution and the other is ignored leading to low test accuracy of both tier-level models for the603

ignored distribution.604

A.2.3 Clustering performance with Synthetic EMNIST dataset605

Synthetic EMNIST dataset. This image dataset has images of dimension 28 x 28 and 52 output606

classes where 26 classes are lower case letters and 26 classes are upper case letters. We test the607

dataset on different partitions of 10:90, 30:70, linear, and random created in the same way as the608

Synthetic CIFAR10 data. The only difference is that DA contains 26 lowercase letters and DB has609

26 uppercase letters.610

Since Ditto is not a clustering-based algorithm, we only compare the test accuracy of personalized611

models on the EMNIST dataset for PI-FL and Ditto in Figure 5. PI-FL outperforms Ditto significantly,612

especially for highly heterogeneous data partitions such as 10:90 and linear. The reason for this613

performance improvement is that, unlike Ditto, PI-FL provides autonomy to clients to personalize614

according to their own goals. With Ditto, the goal of each client which consists of their private data is615

hidden from the aggregator server which affects the quality of personalized models.616
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Figure 5: CDF of clients’ personalized model test accuracy for PI-FL and Ditto on EMNIST Dataset
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Figure 6: CDF of clients’ personalized model test accuracy for PI-FL and Ditto on 4 and more
distributions with EMNIST Dataset

A.2.4 Multiple distribution Results617

PI-FL outperforms other FL personalization algorithms in heterogeneous cases when the clients and618

dataset are divided between 2 distributions (DA & DB). To analyze the reliability of PI-FL it is also619

evaluated in highly heterogeneous conditions with 4 different distributions (DA, DB, DC, and DD)620

on the EMNIST dataset. EMNIST dataset has a total of 56 classes, thus each of the 4 distributions621

gets 25% of total available classes. DA has the first 13 classes, DB has the next 13, and so on. Figure622

6 shows the CDF of test accuracy for all personalized models at clients. PI-FL outperforms Ditto for623

all partition types. For the linear partition less than 10% clients have lower than 80% accuracy and624

we attribute this as an outlier due to the partition type where dividing the data linearly some clients625

get very few data samples. This trend can also be seen with Ditto for the linear partition.626

A.2.5 Insights from the analysis with Synthetic datasets627

We use the synthetic datasets to present a scenario of dynamic data at client or induction of new628

clients in pFL whose data distributions are unknown. This presents new challenges of accurate629

clustering and the generation of personalized models for less familiar clients. We observe through630

empirical evaluation with Synthetic datasets that this can lead to 100% opt-outs from these clients if631

we use conventional server-driven pFL methods. However, we observe that by the induction of client632

preferences in clustering, PI-FL is able to do accurate clustering and generate appealing models for633

new clients and changing data distribution at clients.634
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Table 7: PMA and opt-outs with the 4 classes per client EMNIST dataset
pFL Method FedAvg Ditto FedProx FedALA PerfFedAvg FedFomo PI-FL

Personalized Accuracy 82.8±4.2 90.78±2.1 61.23±2.86 62.17±3.9 59.99±1.87 86.57±1.59 98.59±1.2
Optouts - 0 0.64 0.31 0.68 0 0
Average PMA - 24.48±4.2 0.57±5.14 1.5±4.74 -0.6±1.5 25.9±3.6 37.93±3.43
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Figure 7: CDF of clients’ PMA for PI-FL and pFL algorithms on CIFAR10 Dataset
A.3 Opt-out results for 4 classes per client with EMNIST dataset635

Table 7 shows the complete opt-out, test accuracy, and PMA results for the test conducted with the636

EMNIST dataset with 4 classes per client. Some pFL algorithms such as FedFomo and Ditto have637

similar performance compared to PI-FL in terms of opt-outs. However, PI-FL outperforms all of638

them in terms of PMA and test accuracy.639

A.4 Opt-out results for 2 classes per client with CIFAR10 dataset640

We also test highly heterogeneous data conditions where each client has only 2 classes per client. We641

use the learning rate = 0.01, batch size = 128, and global epochs = 150 with the CIFAR10 dataset642

and the same CNN model mentioned in the main paper. Figure 7 shows the PMA for different pFL643

algorithms. PI-FL outperforms all other pFL algorithms by approximately 50% and FedFomo by644

30%. This goes to show that PI-FL performs even better in highly heterogeneous conditions where645

personalization is used to tackle data heterogeneity.646

B Shapley value approximation for client contribution647

Here we present the Shapley Value approximation derivation we use for calculating the client648

contributions.649

Algorithm 3 Estimated Shapley value of any client in an FL

Input: Test data (xi, yi), i = 1, . . . , ntest, clients’ local model parameters and aggregation weights, Wm, λm.
server’s aggregated model parameter WM =

∑M
m=1 λmWm.

1: Calculate γM
∆
= n−1

test
∑ntest

i=1 ∇W ℓ(xi, yi;WM )
2: for k = 1, . . . ,M do
3: Calculate SHAP(i → [M ]) using

−
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

λiWi (16)

for unnormalized aggregation, or

−
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

λi(Wi −WM ) (17)

for normalized aggregation.
4: end for

Output: Obtains all clients’ Shapley values
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Notation: Let [M ] denote the set {1, . . . ,M}, and A−B the set of elements in A but not in B. In650

this section, [M ] denotes all the agents that participate in the coalition. We will consider those not651

participating in the near future.652

We aim to look for a reasonable way to quantify the amount of each client’s contribution in a round.653

Suppose at any particular round, the server obtains an aggregated model with parameter654

W[M ]
∆
=

∑
m∈[M ]

λmWm, (18)

where λm is the weight (usually nm/n where nm and n are sample sizes of client m and all clients,655

respectively), and Wm is the locally updated model of client m.656

The prediction loss of the model with parameter W , denoted by L(W ), is approximated by657

L(W ) ≈ 1

ntest

ntest∑
i=1

ℓ(xi, yi;W ), (19)

where (xi, yi), i = 1, . . . , ntest, is a set of test data. At round t, we define the value function of a set658

of agents C based on how much their contributed model, denoted by WC , has decreased the loss of659

the earlier model, denoted by Wt−1, namely660

vt(C)
∆
= L(Wt−1)− L(WC), (20)

so that the larger the better. When there is no ambiguity, we simply write vt as v. It is worth noting661

that v is a function of the set while L is a function of the parameter. Once C is realized, WC will662

become Wt for the next round.663

Recall that the original Shapley value [60] of agent m given a set of agents A and a value function v664

is defined by665

∑
S∈A−{m}

|S|!(|A| − 1− |S|)!
|A|!

(v({S ∪ {m}})− v(S)), (21)

whose sum over all agents is equal to v(A)− v(∅). Here, ∅ represents the baseline coalition scenario,666

from which the contribution of each agent is quantified. To highlight the dependency on baseline, we667

use B to denote the baseline and rewrite (21) as668

SHAP(m→ A | B) (22)

∆
=

∑
S∈A−{m}

|S|!(|A| − 1− |S|)!
|A|!

(v({S ∪ {m}} | B)− v(S | B)), (23)

where v(S | B) means the value of S conditional on the baseline B. In our scenario, B means the set669

of agents that are already in coalition and thus670

v(S | B)
∆
= v(S ∪B). (24)

Let us consider the baseline as B ∆
= [M ]− {i, j}. The corresponding baseline model will be671

unnormalized version: W[M ]−{i,j}
∆
=

∑
m∈[M ]−{i,j}

λmWm, (25)

normalized version: W ∗
[M ]−{i,j}

∆
=

1∑
m∈[M ]−{i,j} λm

∑
m∈[M ]−{i,j}

λmWm. (26)
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We consider an unnormalized version for brevity. The additional value by introducing i, j is672

v({i, j} | [M ]− {i, j})− v(∅ | [M ]− {i, j}) (27)
use(24) = v([M ])− v([M ]− {i, j}) (28)
use(20) and recall (18)and(25) = L(W[M ]−{i,j})− L(WM ) (29)

=
1

ntest

ntest∑
i=1

{ℓ(xi, yi;WM )− ℓ(xi, yi;W[M ]−{i,j})} (30)

≈ 1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )T(W[M ]−{i,j} −WM ) (31)

= −
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

(λiWi + λjWj). (32)

Next, we calculate how much agent i should be attributed to the above gain that is achieved by673

i, j jointly. To that end, we calculate the Shapley value of agent i conditional on that agents in674

[M ]− {i, j} already participate, namely675

SHAP(i→ {i, j} | [M ]− {i, j}) (33)

recall (23) =
∑

S∈{j}

|S|!(1− |S|)!
2!

(
v

(
S ∪ {i} ∪ ([M ]− {i, j})

)

− v
(
S ∪ ([M ]− {i, j})

))
(34)

=
1

2

(
v([M ])− v([M ]− {j}) + v([M ]− {i})− v([M ]− {i, j})

)
(35)

=
1

2

(
−L(WM ) + L(WM,−i)− L(WM,−j) + L(WM,−ij)

)
(36)

=
1

2

(
−L(WM ) + L(WM,−i) + L(WM )− L(WM,−j) + L(WM,−ij)− L(WM )

)
(37)

use (29)−(32) and alike ≈ −1

2

(
1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

(λiWi − λjWj + λiWi + λjWj)

= −
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

λiWi (38)

which, interestingly, does not depend on j. As such, we use this to calculate the Shapley value of676

client i, denoted by677

SHAP(i→ [M ])
∆
= −

(
1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

λiWi. (39)

From Equalities (32) and (38), we can verify that678

v({i, j} | [M ]− {i, j})− v(∅ | [M ]− {i, j}) = SHAP(i→ [M ]) + SHAP(j → [M ])

Remark B.1 (Intuitions). Intuitively, our derived Shapley value of client i in (38) can be regarded679

as the model’s marginal reduction of the test loss by introducing client i. To see that, consider the680

following approximation based on first-order Taylor expansion:681

1

ntest

ntest∑
i=1

ℓ(xi, yi;WM −∆)− 1

ntest

ntest∑
i=1

ℓ(xi, yi;WMW ) (40)

≈ −
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

∆W, (41)

which becomes the term in (38) when ∆W
∆
= λiWi. The above quantity approximates the amount682

of client i’s contribution to decreasing the test loss of the server’s aggregated model, the larger the683

better.684
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Remark B.2 (Normalized counterpart). Suppose we use the normalized version introduced in (26)685

when considering the baseline without clients i, j. Thus,686

W ∗
[M ]−{i,j} =

WM − λiWi − λjWj∑
m∈[M ]−{i,j} λm

(42)

=WM +
(λi + λj)WM − λiWi − λjWj∑

m∈[M ]−{i,j} λm
(43)

=WM −
λi(Wi −WM ) + λj(Wj −WM )

1− (λi + λj)
. (44)

Similarly, we have687

W ∗
[M ]−{i} =WM −

λi(Wi −WM )

1− λi
. (45)

Bringing the above formula into (37), we have688

SHAP(i→ {i, j} | [M ]− {i, j}) (46)

=
1

2

(
−L(WM ) + L(WM,−i) + L(WM )− L(WM,−j) + L(WM,−ij)− L(WM )

)
(47)

≈ −
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

∆W ∗ where (48)

2∆W ∗ ∆
=
λi(Wi −WM )

1− λi
− λj(Wj −WM )

1− λj
+
λi(Wi −WM ) + λj(Wj −WM )

1− (λi + λj)
. (49)

≈ 2λi(Wi −WM ) (50)

assuming small λi and λj . Therefore, under normalization we have689

SHAP(i→ {i, j} | [M ]− {i, j}) ≈ −
(

1

ntest

ntest∑
i=1

∇W ℓ(xi, yi;WM )

)T

λi(Wi −WM ). (51)

The intuition is the same as Remark B.1 except that the server model with client i satisfies690

unnormalized version : W[M ]−{i} =WM − λiWi. (52)

normalized version : W[M ]−{i} ≈WM − λi(Wi −WM ). (53)

C Definitions for PI-FL691

In this section, we provide definitions for Pi-FL.692

Definition 1: A provider payoff rik ∈ R is individually rational if each provider can693

obtain a benefit no less than that by acting alone, i.e., rik ≥ ri | ∀i ∈ N, ∀k ∈ K694

Definition 2: On the basis of definition 1, we extend this definition to group
rationality. Providers will join tiers with greater similarity indexes compared to
other tiers if their incentive is directly correlated with similarity and performance,
i.e.,

δ(i, k1) ≤ δ(i, k2)
, then

rik1 ≥ rik2 | ∀i ∈ N, ∀(k1, k2) ∈ K
where i ∈ N and N represents all clients, k ∈ K, K represents all tiers. rik695

represents the reward for client i in tier k.696

Definition 3: As the tier-level model converges, the personalized model generated697

from tier-level models will have a similar performance compared to the tier-level698

model performance on the local dataset of client i | ∀i ∈ N as it is a weighted699

mixture of the tier-level models700

We have made the code available as part of the supplementary material.701
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