
Appendix

A Method Details

A.1 A Toy example

In this section, we provide a toy example to walk through the tighter local Lipschitz bound calculation
method in a three-layer neural network step by step. Consider a 3-layer neural network with ReLUθ
activation:

x→W 1 → ReLUθ →W 2 → ReLUθ →W 3 → y ,

where input x ∈ R3 and output y ∈ R.

Suppose at a certain training epoch t, weight matrices have the following values,

W 1 =W 2 =

[
3 0 0
0 2 0
0 0 1

]
,W 3 = [1 1 1] , θ = 1.

Consider an input x = [1,−1, 0]> and input perturbation ||x′ − x|| ≤ 0.1. Directly using the global
Lipschitz bound, we have the following result,

Lglob ≤ ||W 3||||W 2||||W 1|| = 9
√
3. (13)

Consider our approach for local Lipschitz bound computation. Given input x =
[1,−1, 0]> and bounded perturbed input ||x′ − x|| ≤ 0.1, the feature map after W1 is
[[2.7, 3.3], [−2.2,−1.8], [−0.1, 0.1]]ᵀ, where we use [LB,UB] to denote the interval bound for every
entry. After ReLUθ , the feature map turns into [1, 0, [0, 0.1]]ᵀ, where the first entry is a constant
because it is clipped by the upper threshold θ, and the second entry is a constant because it is always
less than zero. The third entry varies under perturbation. Using these interval bounds, we can
compute the indicator matrices I1C, I1θ and I1V. After the second weight matrix W2, the feature map is
[3, 0, [0, 0.1]]ᵀ. We can compute the local indicator matrices at this layer accordingly. Specifically,
the local indicator matrices are as follows,

I1C =

[
0 0 0
0 1 0
0 0 0

]
, I1θ =

[
1 0 0
0 0 0
0 0 0

]
, I1V =

[
0 0 0
0 0 0
0 0 1

]
,

I2C =

[
0 0 0
0 1 0
0 0 0

]
, I2θ =

[
1 0 0
0 0 0
0 0 0

]
, I2V =

[
0 0 0
0 0 0
0 0 1

]
,

And the local Lipschitz bound around input x = [1,−1, 0]> follows,

Llocal(x) ≤ ‖W 3I2V‖‖I2VW 2I1V‖‖I1VW 1‖

= ‖ [0 0 1] ‖‖

[
0 0 0
0 0 0
0 0 1

]
‖‖

[
0 0 0
0 0 0
0 0 1

]
‖ = 1 (14)

which is significantly tighter than the global Lipschitz bound obtained in Eq (13).

A.2 Why not consider linear ReLU outputs?

Our approach for tighter local Lipschitz bound separate ReLU outputs to two classes: constant ReLU
outputs and varying ReLU outputs under perturbation. In fact, there is another case of ReLU outputs,
where the outputs of ReLU equal to the inputs. We refer to these outputs as linear ReLU outputs. In
this section, we derive the local Lipschitz bound when considering linear ReLU outputs, and we will
find this bound is not necessarily smaller than the global Lipshitz bound.

For simplicity, let us consider the standard ReLU activation. There are three different types of ReLU
outputs (linear, fixed, varying). We inherit the notations from the main text, and use IL to denote

13

the indicator matrix for linear ReLU outputs. The indicator matrices for the three different types of
ReLU outputs are:

I lL(i, i) =

{
1 if LBli > 0

0 otherwise
, I lC(i, i) =

{
1 if UBli ≤ 0

0 otherwise
, I lV = I − IL − IC , (15)

where I is the identity matrix.

In addition, we use DL and DV to denote the slope of ReLU outputs for the linear and varying
neurons. The elements in DL and DV can either be 0 or 1 due to the piece-wise linear property of
ReLU. We omit the constant ReLU outputs here because they are all zeros.

Dl
L(i, i) =

{
1 if I lL(i, i) = 1

0 if I lL(i, i) = 0
, Dl

V(i, i) =

{
1(ReLU(zli) > 0) if I lV(i, i) = 1

0 if I lV(i, i) = 0
, (16)

where 1 denotes an indicator function.

Let us consider a 3-layer neural network with ReLU activation:

x→W 1 → ReLU→W 2 → ReLU→W 3 → y.

Then, the neural network function (denoted as F (x;W)) can be written as:

F (x;W) = (W 3(D2
L +D2

V)W
2(D1

L +D1
V)W

1)x

= (W 3D2
LW

2D1
LW

1 +W 3D2
LW

2D1
VW

1 +W 3D2
VW

2D1
LW

1 +W 3D2
VW

2DVW
1)x
(17)

Bounding the local Lipschitz constant from Eq (17), we get

L′local = ‖W 3D2
LW

2D1
LW

1 +W 3D2
LW

2D1
VW

1 +W 3D2
VW

2D1
LW

1 +W 3D2
VW

2D1
VW

1‖
≤ ‖W 3D2

LW
2D1

LW
1‖+ ‖W 3D2

LW
2D1

VW
1‖+ ‖W 3D2

VW
2D1

LW
1‖+ ‖W 3D2

VW
2D1

VW
1‖

(18)

≤ ‖W 3D2
LW

2D1
LW

1‖+ ‖W 3D2
LW

2I1V‖‖I1VW 1‖+ ‖W 3I2V‖‖I2VW 2D1
LW

1‖
+ ‖W 3I2V‖‖I2VW 2I1V‖‖I1VW 1‖ , (19)

where Eq (18) uses triangular inequality, and Eq (19) uses Cauchy–Schwarz inequality and the fact
that the Lipschitz constant of ReLU is smaller than 1.

The key observation from this approach is that we can “merge” the weight matrices together for
linear neurons (the first term in Eq (19)). Then we have ‖W 3D2

LW
2D1

LW
1‖ ≤ ‖W 3‖‖W 2‖‖W 1‖.

Furthermore, if the singular vectors for the weight matrices are not aligned, ‖W 3D2
LW

2D1
LW

1‖ will
be much tighter than ‖W 3‖‖W 2‖‖W 1‖.
However, there are three other non-negative terms in Eq (19) from the triangular inequality. Even
though the first term could be smaller than the global Lipschitz bound, the summation can be larger
than the global Lipschitz bound. In comparison, our approach always guarantees tighter Lipschitz
bound as proved in Theorem 1.

B Review of other robust training methods

During training, we combine our method with state-of-the-art certifiable training algorithms that
involves using L2 Lipchitz bound such as BCP [20] and Gloro [4]. In this section, we first introduce
the goal of certifiable robust training and then describe BCP and Gloro in more detail.

Consider a neural network that maps input x to output z = F (x), where z ∈ RN . The ground
truth label is y. The goal of certifiable training is to minimize the the certified error R. However,
computing the exact solution of R is NP-complete [9]. So in practice, many certifiable training
algorithms compute an outer bound of the perturbation sets in logit space ẑ(B(x)), and find the worst
logit z∗ ∈ ẑ(B(x)) to obtain an upper bound of R,

R = E(x,y)∼D[max
z∈F (B2(x,ε))

1(argmax z 6= y)]

≤ E(x,y)∼D[max
z∈ẑ(B(x))

1(argmax z 6= y)]

= E(x,y)∼D[1(argmax z∗ 6= y)] (20)

14

where B2(x, ε) denotes the `2 perturbation set in the input space, B2(x, ε) = {x′ : ‖x′ − x‖2 ≤ ε},
and F (B2(x, ε)) ⊂ ẑ(B(x)). In the subsequent text, we use B(x) in place of B2(x, ε) for short. The
main difference between BCP and Gloro is how they compute ẑ(B(x)) and find the worst logits.

BCP In BCP, the perturbation set in the input space is propagated through all layers except the last
one to get the ball outer bound Bl2 and box outer bound Bl∞ at layer l. Specifically, the l-th layer box
outer bound with midpoint ml and radius rl is Bl∞(ml, rl) = {zl : |zli −ml

i| ≤ rli,∀i}. To compute
the indicator matrix in Equation (3) and (9) for our local Lipschitz bound, we need to bound each
neuron by lbli ≤ zli ≤ ub

l
i, where

ubl = min(ml
∞ + rl∞,m

l
ball + rlball) (21)

lbl = max(ml
∞ − rl∞,ml

ball − rlball) (22)

In the case of linear layers, it follows

ml
∞ =W lml−1 + bl, rl∞ = |W l|rl−1;ml

ball =W lzl−1 + bl, rball
l
i = ‖W l

i,:‖ρl−1 (23)

where ρl−1 = ε
∏l−1
k=1 ‖W k‖,ml−1 = (ubl−1 + lbl−1)/2, and rl−1 = (ubl−1 − lbl−1)/2.

Then an outer bound of the perturbation sets in logit space ẑ(B(x)) is computed via the ball and
box constraints on the second last layer: ẑ(B(x)) =WL(BL−1∞ ∩ BL−12). Finally, the worst logit is
computed as

z∗i = Fy(x)− min
z∈ẑ(B(x))

(zy − zi) (24)

where Fy(x) denotes the y th entry of F (x) that corresponds to the ground truth label.

Gloro Unlike BCP, Gloro does not use the local information from box propagation to compute
ẑ(B(x)) for computation efficiency. In addition, Gloro creates a new class in the logits indicating
non-certifiable prediction. The worst logit is computed as by appending the new entry after original
logits output z̃(x) = [F (x)|maxm6=y z

∗
m], where z∗m is computed by (24) with only ball constraints

ẑ(B(x)) = WL(BL−12). However, when we combine our method with Gloro, we use their way to
construct the new class in the worst logit, but keeps the box constraint when computing ẑ(B(x)).
The loss in certifiable training algorithms is a mixed loss function on a normal logit z = F (x) and
the worst logit z∗(x):

L = E(x,y)∼D[(1− λ)L(z(x), y) + λL(z∗(x), y)] (25)

where L denotes cross entropy loss, and λ is a hyper-parameter.

C Experimental Details

C.1 Training details

Computing Resources We train our MNIST and CIFAR models on 1 NVIDIA V100 GPU with
32 GB memory. We train our Tiny-Imagenet model on 4 NVIDIA V100 GPUs.

Architecture We denote a convolutional layer with output channel c, kernel size k, stride s and
output padding p as C(c, k, s, p) and the fully-connected layer with output channel c as F(c). We
apply ReLUθ activation after every convolutional layer and fully-connected layer except the last
fully-connected layer.

• 4C3F: C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,4,2,1)-F(512)-F(512)-F(10)

• 6C2F: C(32,3,1,1)-C(32,3,1,1)-C(32,4,2,1)-C(64,3,1,1)-C(64,3,1,1)-C(64,4,2,1)-F(512)-F(10)

• 8C2F: C(64,3,1,1)-C(64,3,1,1)-C(64,4,2,0)-C(128,3,1,1)-C(128,3,1,1)-C(128,4,2,0)-C(256,3,1,1)-
C(256,4,2,0)-F(256)-F(200)

15

Dataset MNIST CIFAR Tiny-Imagenet (ReLU) Tiny-Imagenet (MaxMin)

Initial LR 0.001 0.001 2.5e−4 1e−4
End LR 5e−6 1e−6 5e−7 5e−7

Batch Size 256 256 128 128
εtrain 1.58 0.1551 0.16 0.16
λsparse 0.0 0.0 0.01 0.01
λθ 0.0 0.0 0.1 0.1

Warm-up Epochs 0 20 0 0
Total Epochs 300 800 250 250

LR Decay Epoch (m) 150 400 150 150
ε Sched. Epochs (n) 150 400 125 125

Power Iters. 5 2 1 3

Table 3: Hyper-parameters used in certifiable training.

Loss We train with the standard certifiable training loss from Eq (25) and the sparsity loss from Eq
(12) used to encourage constant neurons. The total loss for ReLU networks is:

L = E(x,y)∼D[(1− λ)L(z(x), y) + λL(z∗(x), y)] + λsparsity(max(0,UBli) + λθmax(0, θi − LBli))
(26)

where λ, λsparsity and λθ are hyper-parameters. The total loss for MaxMin networks is defined
similarly with LMaxMin

sparsity from Eq (12).

Hyper-parameters The hyper-parameters that we use during training is listed in Table 3. Power iters.
stands for the number of power iterations that we use during training. Intial threshold for ReLUθ
is the initialization value of the upper threshold in ReLUθ . For all our experiments, we use the
Adam optimizer [34]. For CIFAR experiments, we use the same hyper-parameters for both ReLU
and MaxMin activations.

Learning rate scheduling We train with the initial learning rate form epochs and then start exponential
learning rate decay. Let T be the total number of epochs. Learning rate (LR) for epoch t is:

LR(t) =

{
Initial_LR if t ≤ m
Initial_LR(End_LR

Initial_LR)
t−m
T−m if t > m

(27)

ε scheduling We gradually increase ε during training to a target value εtarget over n epochs. The
target value is set to be slightly larger than the ε that we aim to certify during evaluation time to give
better performance [4]. ε for epoch t is:

ε(t) =

{
t
nεtarget if t ≤ n
εtarget if t > n

(28)

mixture loss scheduling When combined with BCP, we train with the mixed loss of clean cross
entropy loss and robust cross entropy loss. We increase λ in Equation 25 from 0 to 1 linearly over n
epochs. λ for epoch t is:

λ(t) =

{
t
n if t ≤ n
1 if t > n

(29)

C.2 Ablation Studies

Reproducibility We train each model with 3 random seeds and report the average accuracy and
the standard deviation in Table 4. For MNIST, we train with our local Lipscthiz bound and the Gloro
loss. CIFAR and Tiny-Imagenet, we train with our local Lipscthiz bound and the BCP loss. In the
main text (Table 2), we report the best accuracy out of 3 runs.

Comparison to techniques designed to certify a fixed, post-training network We used the state-
of-the-art NN verifier (alpha-beta-CROWN [28, 35, 36]) from the VNN challenge [37] to certify
a fixed, post-training network trained. The trained network is trained by techniques proposed

16

Data ε Model Clean (%) PGD (%) Certified (%)

MNIST 1.58 4C3F 96.29 ± 0.07 78.31 ± 0.08 55.79 ± 0.23
CIFAR-10 36/255 4C3F 69.78 ± 0.30 63.95 ± 0.26 53.40 ± 0.08
CIFAR-10 36/255 6C2F 70.64 ± 0.05 64.81 ± 0.05 53.96 ± 0.60

Tiny-Imagenet 36/255 8C2F 29.78 ± 0.08 27.7 ± 0.13 20.5 ± 0.13

Table 4: Average accuracy and standard deviation over 3 runs. The performance of our method is
consistent across different runs.

by Xiao et al. [33]. Xiao et al. [33] proposed a `∞ norm certified defense by imposing ReLU
stability regularizer with adversarial training, and verifying the network using a mixed integer linear
programming (MILP) verifier. The original approach in Xiao et al. [33] is not directly applicable to
our setting, as they relied on the MILP verifier which cannot scale to the large models evaluated in
our paper, and they focused on `∞ norm robustness. To make a fair comparison to their approach, we
made a few extensions to their paper:

• We use `2 norm adversarial training to replace their `∞ norm adversarial training.
• We use the same large CIFAR network (4C3F with 62464 neurons) as in our other experi-

ments.
• We use the best NN verifier in the very recent VNN COMP 2021 [37], alpha-beta-CROWN

[28, 36], to replace their MILP based verifier.

Additionally, we tried different regularization parameters and reported the best results here. The clean
accuray is 57.39%, PGD accuracy is 52.41% and the verified Accuracy is 51.09%. This approach
produces a reasonably robust model, thanks to the very recent strong NN verifier. However, its clean,
verified and PGD accuracy are worse than ours. Additionally this approach is much less scalable than
ours - the verification takes about 150 GPU hours to finish, while our approach takes only 7 minutes
to verify the entire dataset.

Comparison to adversarial training We compared our method with adversarial training (AT)
[6] and TRADES [38] methods as these are known to regularize the Lipschitz constant of neural
networks and provide robustness. Although AT and TRADES regularize the neural network Lipschitz
compared to a naturally trained neural network, it is still not enough to provide certified robustness.
We train with AT and TRADES on CIFAR-10 with the 6C2F architecture and report their accuracies,
global and local Lipschitz bounds in Table 5. The certified accuracy is calculated using local Lipschitz
bound. As we can see from the table, although the models trained via AT and TRADES have much
smaller Lipschitz bound than naturally trained models (we only use cross entropy loss on clean
images in natural training), the Lipschitz bound is still too large to give certified robustness. We also
used alpha-beta-CROWN to certify the adversarially trained CIFAR-10 4C3F network. The verified
accuracy is still 0%.

Methods Global Lipschitz bound Local Lipschitz bound Clean (%) PGD (%) Certified (%)

Standard 1.52× 109 4.81× 108 87.7 35.9 0.0
AT 2.27× 104 1.85× 104 80.7 70.76 0.0

TRADES 1.82× 104 1.32× 104 80.0 72.3 0.0
BCP 11.35 11.08 65.7 60.8 51.3
Ours 7.89 6.68 70.7 64.8 54.3

Table 5: Comparison to adversarial training methods on CIFAR-10 with the 6C2F architecture.

Influence of sparsity loss on certified robustness To encourage the sparsity of varying ReLU
neurons, we design a hinge loss to regularize the neural network (Eq 26). To study the effectiveness of
this sparsity loss, we vary the coefficient of this loss when training a 8C2F model on Tiny-Imagenet.
In addition, we find that down-weighting the hinge loss on the upper threshold improves performance.
Hence we keep λθ as 0.1 for all the models. We report the clean, PGD and certified accuracy in
Table 6. As we can see, too large coefficients on the sparsity loss tends to over-regularize the neural
network. When λsparse = 0.01, we obtain the best performance.

17

λsparse Clean (%) PGD (%) Certified (%)

0.0 30.6 28.3 19.9
0.01 30.8 28.4 20.7
0.03 29.7 27.3 20.2
0.1 28.9 26.7 19.8

Table 6: Influence of sparsity loss on certified robustness on the TinyImageNet dataset with the 8C2F
model.

Mean=580 Mean=355 Mean=762

Mean=928 Mean=797 Mean=788

Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

Figure 5: Number for power method to converge at each convolutional layer in the 6C2F model.

Time cost in training Since our method needs to evaluate local Lipschitz bound on every data
point during training, we pay additional computational cost than Gloro [4] and BCP [20]. However,
our local Lipschitz bound is still much more computational efficient than convex relaxation methods
such as CAP [22]. We report the computation time (s/epoch) in Table 7.

Computation time (s/epoch)
———————————————–

Data Model CAP Gloro BCP Ours

MNIST 4C3F 689 9.0 17.3 45.5
CIFAR-10 4C3F 645 - 23.5 38.2
CIFAR-10 6C2F 1369 6.5 26.0 69.8

Tiny-Imagenet 8C2F - - 343.5 398.8

Table 7: Comparison of training time per epoch.

Number of power iterations for convergence To analyze the computational cost, we plot the
histogram of number for power method to converge at each convolutional layer in Figure 5. We
used the 6C2F model on CIFAR-10. Let u(t) be the singular vector computed by power iteration at
iteration t, we stop power iteration when ||u(t+ 1)− u(t)|| ≤ 1e−3.

Lipschitz bounds and Sparsity of varying ReLU outputs during training We track the global
and Local Lipschitz bound during training for a standard trained CNN, a CNN trained with BCP
and global Lipschitz bound, and a CNN trained with BCP and our local Lipschitz bound. All the
models are trained with the 6C2F architecture on CIFAR-10. For BCP and our method, we train with
εtrain = 36/255. We used the hyper-parameters found by BCP [20] to train. The total epochs is 200,
and first 10 epochs are used for warm-up. We decay learning rate by half every 10 epochs starting
from the 121-th epoch. The Lipschitz bound change during training is shown in Figure 7. Meanwhile,
we track the proportion of varying ReLU outputs for all the layers during training in Figure 6. We
can see that the models trained for certified robustness have much fewer varying ReLU outputs than
the standard trained model. The sparsity of varying ReLU outputs is desired to tighten our local
Lipschitz bound since we can remove more redundant rows and columns in weight matrices.

18

Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

FC 1

Figure 6: Proportion of varying ReLU outputs for all the layers in 6C2F model during training.

Conv 1 Conv 2 Conv 3

Conv 4 Conv 5 Conv 6

FC 1

Figure 7: Lipschitz bound for all the layers in 6C2F model during training.

19

