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Abstract

Gaussian processes (GPs) are widely recognized for their robustness and
flexibility across various domains, including machine learning, analysis of
time series, spatial statistics, and biomedicine. In addition to their common
usage in regression tasks, GP kernel parameters are frequently interpreted
in various applications. For example, in spatial transcriptomics, estimated
kernel parameters are used to identify spatial variable genes, which exhibit
significant expression patterns across different tissue locations. However,
before these parameters can be meaningfully interpreted, it is essential to
establish their identifiability. Existing studies of GP parameter identifi-
ability have focused primarily on Matérn-type kernels, as their spectral
densities allow for more established mathematical tools. In many real-world
applications, particuarly in time series analysis, other kernels such as the
squared exponential, periodic, and rational quadratic kernels, as well as
their combinations, are also widely used. These kernels share the property
of being holomorphic around zero, and their parameter identifiability re-
mains underexplored. In this paper, we bridge this gap by developing a
novel theoretical framework for determining kernel parameter identifiability
for kernels holomorphic near zero. Our findings enable practitioners to
determine which parameters are identifiable in both existing and newly
constructed kernels, supporting application-specific interpretation of the
identifiable parameters, and highlighting non-identifiable parameters that
require careful interpretation.

1 Introduction

Gaussian Processes (GPs) are powerful and flexible tools extensively used across multiple
fields, such as machine learning (ML), geospatial and spatiotemporal analysis, biomedicine,
finance, and environmental modeling (Rasmussen and Williams, 2006; Banerjee et al., 2014;
Cressie and Wikle, 2015). They serve various purposes: as regression or classification
methods through GP regression or GP classification; as priors over functions in Bayesian
inference (Ghosal and van der Vaart, 2017); for modeling latent distributions via Gaussian
Process Latent Variable Models (GPLVM, Lawrence (2003)); and in demonstrating equiv-
alencies to deep neural networks with infinite width (Lee et al., 2018). The flexibility of
GPs as universal approximators, their inherent interpretability – especially regarding kernel
parameters – and their capability to quantify uncertainty, are among their key advantages.

The kernel function, also known as the covariance function or covariogram, which defines
the covariance structure within a GP, is pivotal to application and effectiveness. Over
recent decades, there has been a proliferation of research into developing specialized kernels
tailored for specific data types including time-series, spatial, imaging, and spatiotemporal
datasets. Popular choices such as the squared exponential (SE, also known as RBF or
Gaussian), rational quadratic (RQ), periodic (Per), and Matérn kernels are frequently
employed, often in innovative combinations that enhance model performance (Wang et al.,
2018). These combinations involve operations such as summation, multiplication, and
spectral mixtures (Duvenaud et al., 2011; 2013; Kronberger and Kommenda, 2013; Wilson
and Adams, 2013; Samo and Roberts, 2015; Remes et al., 2017; Cheng et al., 2019; Verma
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and Engelhardt, 2020), which enable the leveraging of individual kernel strengths to better
capture complex data patterns.

Despite the extensive literature on GP theory and its application to regression or prediction
tasks, less attention has been paid to the parameter inference, particularly the identifiability
and interpretability of kernel parameters. Parameter inference is critical in applications that
use estimated parameters in downstream tasks such as model comparison and problem-specific
parameter interpretation.

One such application is in the study of spatial transcriptomics, which measures gene ex-
pression across different tissue locations to understand cellular and tissue-level biological
processes (Marx, 2021). One important task within this field is identifying spatially vari-
able genes (SVGs), which are genes that show significant changes in expression patterns
across spatial locations, among tens of thousands of genes. Svensson et al. (2018) mod-
els gene expressions as a GP across spatial coordinates using a SE kernel with nuggets:
K(x, x′) = σ2

s exp
(
−∥x−x′∥2

2ℓ2

)
+σ2

e1{x=x′}. The kernel parameter σ2
s was then interpreted as

the magnitude of the spatial effects to identify SVGs, estimated by the Maximum Likelihood
Estimator (MLE). Other applications of GP parameter inference to spatial transcriptomics
include Weber et al. (2023) and Sun et al. (2020).

Another example where kernel parameter estimates are interpreted is the decomposition of
the Mauna Loa CO2 time series data (Tans and Keeling, 2023) into four kernel components
in the impactful book Rasmussen and Williams (2006):

K(x, x′) = K1(x, x
′) +K2(x, x

′) +K3(x, x
′) +K4(x, x

′)

= θ21 exp

(
− (x− x′)2

2θ22

)
+ θ23 exp

(
− (x− x′)2

2θ24
− 2 sin2(π(x− x′))

θ25

)
+ θ26

(
1 +

(x− x′)2

2θ8θ27

)−θ8

+ θ29 exp

(
− (x− x′)2

2θ210

)
+ θ2111{x=x′} (1)

where K1(x, x
′) is a SE kernel that captures the long-term smooth rising trend, K2(x, x

′),
called the damped periodic kernel, is a multiplication of a SE kernel and a periodic kernel
that accounts for seasonal variations, K3(x, x

′) is a rational quadratic kernel that models
medium-term irregularities, and K4(x, x

′) is a sum of a SE and a white noise kernel that
measure correlated and independent noise respectively. This kernel is also used as an example
in the tutorial of the widely used Python package “sklearn.gaussian_process", with detailed
interpretation of all 11 parameters proposed by the authors in Section 3. Although the
interpretation seems reasonable, a theoretical understanding with a rigorous proof is missing.

Although parameter identifiability in a GP model might seem straightforward at first glance,
it is a challenging and nuanced problem. In fact, not all parameters in widely used GP kernels
are identifiable: if a parameter is not identifiable, consistent estimation and subsequent
interpretation are impossible. For example, for the Matérn kernel in dimension p ≤ 3 with
spatial variance σ2, lengthscale ℓ, and known smoothness parameter ν, Zhang (2004) proved
that neither σ2 nor ℓ is identifiable or consistently estimable, no matter how sophisticated
the estimator is. In fact, the only identifiable parameter in the Matérn kernel, termed the
microergodic parameter, is σ2ℓ−2ν . Follow-up studies for a single Matérn kernel include
Anderes (2010); Kaufman and Shaby (2013); Li (2022); Li et al. (2023), and Chen et al.
(2024) for a linear combination of Matérns with different smoothness. Such negative results
raise a natural question: are all parameters used in practice, including those in Equation (1),
identifiable so that their interpretations are justified?

As far as we are aware, identifiability of the parameters in Equation (1) has not been proven
before. More importantly, there is still a gap in the literature for more complicated kernel
combinations like those popularized in ML, especially when the combinations involve periodic
kernels. The lack of theoretical examination is partly due to the failure of traditional methods
used to study GP parameter identifiability, such as the integral test (Stein, 1999), which
requires conditions on the spectral density not met by common kernels like SE, Per, and RQ,
and even more so when these kernels are combined. This necessitates the development of
new analytic tools to better understand kernel parameter identifiability and interpretability.
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Motivated by these observations and challenges, this paper proves a general theorem (Theo-
rem 3.4) that determines all the identifiable functions of the parameters in any family of
stationary kernels holomorphic around 0. The result applies to complex combinations of ker-
nels, particularly those common in the ML community, such as the one used in Equation (1).
We demonstrate that all parameters in this kernel are identifiable under mild constraints,
supporting the interpretation of kernel parameters in Rasmussen and Williams (2006) and
the “sklearn.gaussian_process" Python package tutorial. Additionally, we establish a general
result that is used to determine the identifiable functions of the parameters for a kernel that
is a sum of products of other kernels.

The paper is organized as follows. Section 2 provides a comprehensive background, introduces
the necessary notation and concepts, and reviews the relevant literature. Section 3 presents
our main theoretical contributions. Section 4 contains simulation studies to support our
theories, followed by Section 5 with a discussion of limitations and future work. A brief
discussion of the connection between parameter identifiability and prediction is given in
Appendix C.

2 Background

This section defines key concepts and notations and summarizes existing literature on GP
kernel identifiability and interpretability. We begin with the definition of GPs.

2.1 Gaussian process

Definition 1 (GP). A stochastic process Z is said to follow a GP in domain Ω with a
mean function µ : Ω → R and a positive definite covariance/kernel/covariogram function
K : Ω× Ω → R if for all x1, · · · , xn ∈ Ω,

[Z(x1, ), · · · , Z(xn)] ∼ N(v,Σ), v = [µ(x1), · · · , µ(xn)], Σij = K(xi, xj).

For our study, as well as presentation simplicity, we assume µ = 0, without loss of general-
ity (Stein, 1999). In this situation, since the distribution of Z is completely determined by
K, we sometimes call K a GP, which refers to a GP with covariance kernel K.

Throughout this paper, we focus on the infill domain (also known as fixed domain or
interpolation), i.e., the domain Ω = [0, T ]p does not grow with sample size, a situation
commonly considered in the literature (Stein, 1999). Next, we introduce the commonly
accepted stationarity assumption:
Definition 2 (Stationarity). K is called stationary if K(x, x′) = K(x+h, x′ +h), ∀h ∈ Rp.

For a stationary kernel, we can reformulate the kernel to a function on Rp instead of Rp×Rp

by K0(x) := K(x, 0). Stationarity is a common assumption in GP literature due to its
satisfactory practical performance and simplicity in both implementation and theoretical
analysis. Throughout this paper, we focus only on stationary kernels, and still denote the
simplified kernel K without causing any confusion.

2.2 Kernels

We first note that all kernel functions considered in this paper are continuous functions
unless noted otherwise. Then we introduce the following commonly used kernels in Table 1.

In this table, σ2 is called the spatial variance, or partial sill, which measures point-wise
variance; ℓ is called the length scale that measures the spatial dependency; γ > 0 is the period
parameter; α is called the scale mixture parameter; ν is called the smoothness parameter.
Among them, Per is well-defined only when p = 1, i.e., Ω = [0, T ] is a closed interval, while
others are well-defined on Rp for any p.

Each individual kernel in the above table captures some unique behavior in the process Z.
However, when the process has complicated structure, a common approach is to combine
some of these kernels to create a new one. Such a combination can be simply a sum of
products of these kernels, which is guaranteed to be a positive definite function.
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Table 1: Example kernels, parameters, and domain dimension

Name K(x) Parameters Dimension
SE σ2 exp

(
−∥x∥2

2ℓ2

)
σ2, ℓ > 0 p ≥ 1

Per σ2 exp

(
− 2 sin2(πx

γ )
ℓ2

)
σ2, ℓ, γ > 0 p = 1

RQ σ2
(
1 + ∥x∥2

2αℓ2

)−α

σ2, ℓ, α > 0 p ≥ 1

Matérn σ2 21−ν

Γ(ν)

(√
2ν ∥x∥

ℓ

)ν
Kν

(√
2ν ∥x∥

ℓ

)
σ2, ℓ, ν > 0 p ≥ 1

The following example extends Equation (1) used in Rasmussen and Williams (2006) to
study the Mauna Loa CO2 time series data:

Kθ(x) = θ21 exp

(
− x2

2θ22

)
+ θ23 exp

− x2

2θ24
−

2 sin2
(

πx
γ

)
θ25


+ θ26

(
1 +

x2

2θ8θ27

)−θ8

+ θ29 exp

(
− x2

2θ210

)
+ θ111{x=0}, (2)

where θ = (θ1, · · · , θ11, γ) be the vector of all parameters in the above kernel.

Note that this kernel is more flexible than the one in Equation (1), which assumes the period
γ = 1. We adopt this more challenging modification since the period is sometimes unknown
in practice so practitioners have to estimate it from the data.

2.3 Identifiability

The study of identifiability of GP kernel parameters relies on the notation of equivalence of
measures defined below:
Definition 3 (Equivalence of measures). Two measures P1 and P2 are said to be equivalent
if they are absolutely continuous with respect to each other, denoted by P1 ≡ P2. That is,
P1(A) = 0 ⇐⇒ P2(A) = 0. Two measures are said to be orthogonal, denoted by P1 ⊥ P2 if
there exists a measurable set A such that P1(A) = 0 but P2(A) = 1.

Two GP laws P1 and P2 are either equivalent, or are orthogonal (Feldman, 1958), which
means they assign probability 1 to disjoint sets: P1(A

c) = 1 and P2(A) = 1. We define the
identifiability of GP parameters as follows:
Definition 4 (Microergodicity). Let (Kθ)θ∈Θ be a family of covariance kernels of a GP.
Then a function h = h(θ) of θ is said to be microergodic if Kθ1 ≡ Kθ2 ⇐⇒ h(θ1) = h(θ2).

If h and h̃ are both microergodic, then h(θ1) = h(θ2) ⇐⇒ h̃(θ1) = h̃(θ2), so h and h̃
are related by a bijection. Thus the migroergodic function is unique up to a bijective
transformation, and it makes sense to speak of ‘the’ microergodic function h.
Definition 5 (Identifiability). Let (Kθ)θ∈Θ be a family of covariance kernels of a GP.
A function g = g(θ) of θ is said to be identifiable if Kθ1 ≡ Kθ2 =⇒ g(θ1) = g(θ2), or
equivalently, g is a function of the microergodic function h. We say that the family (Kθ)θ∈Θ

is identifiable if θ is identifiable.

Note that a consistent estimator of g(θ) can exist only when g(θ) is identifiable – when g(θ)
is not identifiable, say Kθ1 ≡ Kθ2 with g(θ1) ̸= g(θ2), it is not possible to find a consistent
estimator of g(θ), since there is no way to distinguish between data generated from Kθ1 and
those from Kθ2 almost surely (see Stein (1999); Zhang (2004) for more detailed discussion).
Thus anything that can be consistently estimated is identifiable. The microergodic function
h(θ) is the maximal identifiable function, so knowing the microergodic function completely
solves the identifiability problem for the family of kernels. However, in some cases, it is
difficult to fully determine the microergodic function h(θ), whereas it is easier to determine
that some specific function g(θ) is identifiable.
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To study the identifiability of GP kernel parameters, it suffices to determine when two GPs
in the same parametric family are equivalent. However, to determine whether two GPs are
equivalent is not an easy task, and the methods for doing so highly depend on the form of
the kernels. There is a rich literature focusing on identifiability for Matérn kernels, where it
has been shown that

Kσ2
1 ,ℓ1,ν1

≡ Kσ2
2 ,ℓ2,ν2

⇐⇒
{(

σ2
1ℓ

−2ν1
1 , ν1

)
=
(
σ2
2ℓ

−2ν2
2 , ν2

)
1 ≤ p ≤ 3,(

σ2
1 , ℓ1, ν1

)
= (σ2, ℓ2, ν2) p ≥ 5.

That is, when the domain dimension is greater than or equal to 5, then h(σ2, ℓ, ν) = (σ2, ℓ, ν),
so all three parameters are identifiable (Anderes, 2010; Bolin and Kirchner, 2023); when
the domain dimension is less than or equal to 3, then h(σ2, ℓ, ν) =

(
σ2ℓ−2ν , ν

)
: ν is

identifiable (Loh et al., 2021), but not σ2 or ℓ (Zhang, 2004). As a result, there is no
consistent estimator of σ2 or ℓ, but instead, a consistent estimator of σ2ℓ−2ν , called the
microergodic parameter, does exist (Kaufman and Shaby, 2013; Loh et al., 2021), namely
the MLE. The microergodic function for p = 4 is an open problem.

Although the identifiability of Matérn has been understood, the study of other kernels
including Per and RQ is much sparser. The key reason is that the tool to study equivalence
between Matérn kernels, known as the integral test (Stein, 1999), requires strong conditions
on the spectral densities of the kernel, which are not often satisfied by other kernels. The
spectral density is defined below:
Definition 6 (Spectral measure). For a stationary kernel K, its spectral measure, denoted
by F , is defined through

K(x) =

∫
eiω

⊤xF (dω).

Bochner’s theorem guarantees the existence and uniqueness of F . The density of F w.r.t.
the Lebesgue measure dω, denoted by f , if it exists, is called the spectral density.

The condition to use the integral test is that f(ω)∥ω∥α ≍ 1 as ω → ∞ for some α > 0.
That is, the spectral density is required to behave like ∥ω∥−α for some positive α > 0. The

spectral density of Matérn is f(ω) = σ2 2pπ−p/2Γ(ν+ p
2 )(2ν)

ν

Γ(ν)ℓ2ν

(
2ν
ℓ2 + ∥ω∥2

)−(ν+ p
2 ) ≍ ∥ω∥−2ν−p

(Rasmussen and Williams, 2006, p. 84) (note that we use a different Fourier transform
convention than (Rasmussen and Williams, 2006).) However, this condition is not met
by RBF, Per, or RQ, as their spectral densities decay very rapidly due to the infinite
differentiability of the kernels.

Due to the popularity of these kernels in ML, we aim to address these challenges and
study the equivalence of GPs with these kernels and their combinations. The next section
provides theoretical support for the success of these kernels in terms of identifiability and
interpretability.

3 Theory

In this section, we present our main theory regarding equivalence of GPs, as outlined in the
previous sections. We first determine the identifiable parameters of the individual kernels
used in Equation (2), i.e., SE, Per, and RQ, with some extensions.
Theorem 3.1. The microergodic functions of 5 individual kernels in Table 1, including
all four components K1,K2,K3,K4 in Equation (2) and an additional kernel, Cosine, are
summarized in Table 2.

Theorem 3.1 supports the identifiability and interpretability of each kernel parameter in SE,
Per and RQ, as discussed in Section 2.2. In addition, we include the cosine kernel, which
will be revisited later in this section.

Then we consider the combination of SE, PER and RQ in Equation (2), an extension of the
kernel used by the impactful book Rasmussen and Williams (2006) and the tutorial of the
widely used Python package “sklearn.gaussian_process".
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Table 2: Microergodic functions of five kernels

Name K(x) Parameters Microergodicity p

SE σ2 exp
(
−∥x∥2

2ℓ2

)
σ2, ℓ > 0 (σ2, ℓ) ≥ 1

Per σ2 exp

(
− 2 sin2(πx

γ )
ℓ2

)
σ2, ℓ, γ > 0 (σ2, ℓ, γ) 1

Damped Per σ2 exp

(
− x2

2ℓ21
− 2 sin2(πx

γ )
ℓ22

)
σ2, ℓ1, ℓ2, γ > 0 (σ2, ℓ1, ℓ2, γ) 1

RQ σ2
(
1 + ∥x∥2

2αℓ2

)−α

σ2, α, ℓ > 0 (σ2, α, ℓ) ≥ 1

Cosine σ2 cos(s⊤x) σ2, s1 > 0, s ∈ Rp s ≥ 1

Theorem 3.2. All parameters in Equation (2) are identifiable provided θ10, the length-scale
of the SE component to model the correlated noise, is less than θ2, the length-scale of the SE
component to model the long-term trend.

Such a constraint is necessary, and not surprising, since otherwise, say, if θ2 = θ10, then we
can merge the two SE components into a single SE: (θ21 + θ29) exp

(
− x2

2θ2
2

)
, making θ21 + θ29

identifiable instead of θ21 and θ29. This distinction of two SE components is also discussed in
Section 5.4.3 in Rasmussen and Williams (2006). Excluding this trivial case, all parameters
are identifiable. As a consequence, these parameters are interpretable, as discussed in the
same section in Rasmussen and Williams (2006). For example, θ1 measures the amplitude and
θ2 measures the characteristic length-scale of the long-term smooth rising trend; within the
seasonal trend, θ3 gives the magnitude, θ4 gives the decay time for the periodic component,
γ gives the period, while θ5 is the smoothness of the periodic component; for the (small)
medium term irregularities, θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the
shape parameter determining diffuseness of the length-scales; θ9 is the magnitude of the
correlated noise component, θ10 is its lengthscale and θ11 is the magnitude of the independent
noise component.

Now we would like to answer the following more challenging question with a broader
implication: Given a new kernel, how do we determine the microergodic function? Specifically,
if we combine a finite number of kernels, such as those in Table 2, by finite multiplication
and addition like Equation (2), what is the microergodic function of the resulting kernel? To
answer these questions, we need to introduce the following notions first.

Lemma 3.3 (Kernel decomposition). For any stationary kernel K, K can be uniquely
decomposed as K = Kc +Kd, where Kc is a kernel with continuous spectral measure and
Kd is another kernel with discrete spectral measure.

A direct consequence is that if K admits a spectral density, then K = Kc; while if K
is periodic, then K = Kd. We call Kc the continuous component and Kd the discrete
component. Note that this notion is different from continuous and discrete functions, and we
do assume all kernels are continuous functions themselves. Here the continuous and discrete
notion is at the spectrum level. For example, the Per kernel, is continuous as a function, but
has a purely discrete spectrum. Moreover, we denote the spectral measure of Kc as F c and
the spectral measure of Kd as F d, where F = F c + F d is the spectral measure of K.

Such a decomposition offers deeper insights to understand different types of kernels. Moreover,
to understand the equivalence of GPs, it suffices to understand the equivalence of its
continuous component and discrete component separately, given by the following key theorem,
which is the main result of the paper:

Theorem 3.4. Given two kernels K1 and K2 with K1 holomorphic on some ball around
0 in Cp, the p-dimensional complex space, then K1 ≡ K2 if and only if the following two
conditions hold:

1. Kc
1(x) = Kc

2(x) for every x ∈ Rp.
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2. There are c, C > 0 such that cF d
1 ({ω}) ≤ F d

2 ({ω}) ≤ CF d
1 ({ω}) for all ω ∈ Rp and∑

ω:Fd
1 ({ω})>0

(
1− Fd

2 ({ω})
Fd

1 ({ω})

)2
< ∞.

Note that K : Rp → R is said to be holomorphic on a ball around 0 in Cp, if it has a
holomorphic extension K̃ to some ball B ⊂ Cp around 0, such that K̃ = K on B ∩ Rp.
While being holomorphic on a ball around 0 is a stronger condition than being infinitely
differentiable, most infinitely differentiable kernels used in practice, including all those in
Table 2, are holomorphic on a ball around 0. Condition 1 means the continuous components
of F1 and F2 are the same, while Condition 2 means the discrete components of F1 and F2

have the same support, and their relative difference, although allowed to be nonzero, should
decay fast enough.

Notably, Theorem 3.4 provides a general pipeline to study the identifiability of kernel
parameters, summarized in the following theorem:
Theorem 3.5. Let (Kθ)θ∈Θ be a family of stationary kernels on Rp, each of which is
holomorphic on some ball around 0 in Cp. We have the following assertions regarding the
microergodic function:

1. If h(θ) is microergodic for the continuous component (Kc
θ)θ∈Θ and g(θ) is microer-

godic for the discrete component (Kd
θ )θ∈Θ, then (h(θ), g(θ)) is microergodic for

(Kθ)θ∈Θ.

2. Moreover,

(a) h(θ) is microergodic for (Kc
θ)θ∈Θ if and only if

Kc
θ1(x) = Kc

θ2(x), ∀x ∈ Rp ⇐⇒ h(θ1) = h(θ2).

(b) g(θ) is microergodic for (Kd
θ )θ∈Θ if and only if

∃c, C > 0, s.t. cF d
1 ({ω}) ≤ F d

2 ({ω}) ≤ CF d
1 ({ω}), ∀ω ∈ Rp∑

ω:Fd
θ1

({ω})>0

(
1− Fd

θ2
({ω})

Fd
θ1

({ω})

)2

< ∞

⇐⇒ g(θ1) = g(θ2)

That is, in order to find the microergodic function of a parametric family of kernels Kθ, it
suffices to find the microergodic function h(θ) of the continuous component, and g(θ) of
the discrete component separately. Moreover, to find h(θ), it suffices to understand when
two continuous components are equal everywhere; to find g(θ), we need to investigate the
conditions 2b about the discrete measure F d.

Having established the foundational aspects of kernel identifiability, we now apply our
results to determine the microergodic function of various combinations of kernels. Our
general strategy is to use Fourier transform identities to compute the spectral measure of
the combined kernel (see, for example, Theorem B.6) and then apply Theorem 3.4. These
combinations not only illustrate the practical applications of our theoretical findings in
Theorem 3.4, but also provide insights into designing new kernels with desired properties. We
start with the squared exponential kernel with automatic relevance determination (ARD).
Theorem 3.6. For the family

Kσ,M (x) = σ2 exp

(
−1

2
xTMx

)
,

where σ2 > 0 and M is a positive-definite matrix, the microergodic function is (σ2,M).

Next, we study the sum of cosine kernels:
Theorem 3.7. For the family

Kσ1,...,σm,s1,...,sm(x) = σ2
1 cos(s1x) + σ2

2 cos(s2x) + · · ·+ σ2
m cos(smx),

where σ2
1 , . . . , σ

2
m > 0 and s1, . . . , sm ∈ R, under the natural constraint 0 ≤ s1 < s2 < · · · <

sm, the microergodic function is (s1, . . . , sm).
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Theorem 3.7 shows that when cosine kernels are combined linearly, their individual frequencies
(or periods) remain identifiable, provided they are distinct. This scenario often arises in
signal processing where different periodic components need to be isolated and identified.
Notably, the last kernel in Table 1 is a special case of the kernel in Theorem 3.7 with m = 1.

Next, we study the product of Cosine kernels:
Theorem 3.8. For the family

Kσ,s1,...,sm(x) = σ2 cos(s1x) cos(s2x) · · · cos(smx),

where σ2 > 0 and s1, . . . , sm ∈ R, under the natural constraint 0 < s1 ≤ s2 ≤ · · · ≤ sm, the
microergodic function is {±s1±s2±· · ·±sm} := {a1s1+a2s2+ · · ·+amsm : a1, a2, . . . , am ∈
{−1, 1}}. If m = 1, 2, 3, then the mircoergodic function simplifies to (s1, . . . , sm).

In Theorem 3.8, when m ≥ 4, we do not have identifiability of (s1, . . . , sm). For example,
for m = 4, when (s1, s2, s3, s4) = (1, 2, 2, 3) and (s̃1, s̃2, s̃3, s̃4) = (1, 1, 3, 3), the values of the
microergodic function coincide, that value being {0,±2,±4,±6,±8}. Theorem 3.8 shows
that for a product of discrete spectrum kernels that are all a function of the same variable x,
the parameters of each individual kernel may not be identifiable.

Finally, we explore the sum of periodic kernels as previously discussed.
Theorem 3.9. Let Kℓ,γ denote the periodic kernel with variance parameter 1, length-scale
ℓ, and period γ. For the family

Kσ1,σ2,γ1,γ2(x) = σ2
1Kℓ1,γ1(x) + σ2

2Kℓ2,γ2(x),

where σ2
1 , σ

2
2 , ℓ1, ℓ2 > 0, γ1 > γ2 > 0, the microergodic function is (σ2

1 , ℓ1, γ1, σ
2
2 , ℓ2, γ2), that

is, all parameters are identifiable.

This result is crucial for scenarios where multiple periodic processes operate at different scales
or periods, as often encountered in geospatial, financial, and environmental data analysis.

4 Simulation

In this section, we provide empirical support to our theoretical results on kernel parameter
identifiability, presented in Section 3, by investigating the behavior of the maximum likelihood
estimators (MLEs) as the sample size n increases.

Before moving to the simulation details, we would like to clarify the broader picture of
parameter inference for GPs, which involves three steps: first, determining which parameters
are identifiable; second, finding a consistent estimator of identifiable parameters, such as
the MLEs or others estimators; and third, developing numerical methods to compute these
estimators. While the second and the third steps are crucial, they fall beyond the scope
of this paper, which focuses solely on the first step–a theoretical framework to find all the
identifiable parameters. In fact, even for simple kernels like the SE and Matérn kernels,
whether the MLE is consistent remains open (Loh and Sun, 2023).

Despite these complexities, we use standard optimization packages commonly applied in the
GP literature to find the MLEs. Our simulations are not intended to solve the open problem
of MLE consistency or introduce new numerical techniques; rather, they serve to illustrate
the theoretical results on identifiability through practical examples.

We start from individual kernels, followed by the combination in Equation (2).

4.1 Individual kernels

We consider the individual kernels: SE, Damped Per (DPer), Per, RQ, and Cosine. For the
cosine kernel, we parameterize in terms of the period γ so that s = 2π

γ . Input samples are
generated by adding a unif(− 1

4n ,
1
4n ) random shift to n evenly spaced points in [ 1

4n , 1−
1
4n ],

where n ∈ {500, 1000, 2000, 5000}. After generating the outcomes by sampling a GP with the
given kernel at the inputs, we added independent Gaussian noise from N(0, ε), ε = 0.01, to
model measurement errors (see Section D of the appendix for the experiments repeated with

8
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ε = 0.1). All kernel parameters were estimated by MLEs, with 100 replicates for each kernel
configuration to assess the convergence of the MLEs. The results are summarized in Figure 1.
These boxplots demonstrate that the MLEs of all parameters except σ2 in the cosine kernel
appear consistent, as conjectured by their identifiability, proved in Theorem 3.1.

Some of the MLE standard deviations appear to plateau for large n. One explanation for
this is numerical limitations – for our squared exponential simulation, where σ2 = 1 and
ℓ = 1/500, the condition numbers of the covariance matrix of the observations are 6.82 · 101,
1.80 · 108, 1.89 · 1019, and 3.37 · 1024 for sample sizes 500, 1000, 2000, and 5000, respectively.

The failure of the MLE of σ2 in the cosine kernel to converge is in agreement with the
microergodicity of γ. In fact, if we treat γ as known and let the noise variance ε decrease to
0, then since the covariance matrix has rank 2 for all n ≥ 2, it can be shown that the MLE
σ̂(ε) converges to σ̂(0) ∼ σ2 χ2

2

2 .

(a) Squared Exponential (SE) (b) Damped Periodic (DPer)

(c) Periodic (Per) (d) Rational Quadratic (RQ)

(e) Cosine

Figure 1: Simulation results for various kernel types. Each subfigure shows the boxplots of
MLEs for the corresponding kernel, with ground truth in horizontal dashed line.

4.2 The combined kernel in Equation (2)

Then, we study the combined kernel, one motivating kernel of this paper, defined in Equa-
tion (2). Since the kernel was proposed for forecasting CO2level on the Mona Loa dataset,
we set the time interval to be [0, 45], presenting the time span of 45 years. Input samples are
generated by adding a unif(− 45

4n ,
45
4n ) random shift to n evenly spaced points in [ 454n , 45−

45
4n ],

where n ∈ {50, 100, 200, 500}. All kernel parameters were estimated by MLEs, with 100
replicates to assess the convergence of the MLEs. Moreover, to further mimic this dataset,

9
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the ground truth parameters and noise variance θ211 are set to be the MLEs learned from
running the “Gaussian process regression" package from the scikit-learn Python package. All
truth parameters to be estimated are given by Table 3.

Figure 2: MLEs of parameters in Equation (2), with ground truth in horizontal dashed line.

In Figure 2, we again observe that the MLEs generally are unbiased, but for some parameters,
their variance does not strictly decrease with sample size. This is likely due to the relatively
large number of parameters (10) compared to the small sample size of 500.

5 Discussion

This paper has introduced a novel analytical framework that advances the theory of iden-
tifiability of kernel parameters in GPs for a large class kernels, those holomorphic around
0. We have demonstrated that all the parameters in certain combinations of kernels, such
as the example employed on the Mauna Loa CO2 time series data, are indeed identifiable.
This establishes a robust theoretical foundation for selecting or constructing GP kernels and
determining the identifiable functions of the parameters in practical applications.

Looking ahead, several avenues of future research present themselves as particularly promising
and interesting. First, while establishing the identifiability of kernel parameters is a critical
step, it does not necessarily guarantee the consistency of the MLE. The analysis of MLEs
is complicated due to the complex nature of the likelihood function involved, which is
often multi-modal and difficult to handle. Second, extending our theoretical framework to
encompass non-stationary kernels could enhance the flexibility of GPs in modeling data
with evolving trends and dynamics. This area is notably challenging due to the current
limitations in mathematical tools available, presenting a largely open problem in the field.
Third, another intriguing direction for research involves extending our findings to infinitely
differentiable kernels that are not holomorphic near 0, though most infinitely differentiable
kernels used in applications are holomorphic near 0.

Reproducibility Statement: All code used to produce the results of this paper are
provided Appendix A. Complete proofs of all lemmas and theorems stated in the paper are
provided in Appendix B.

Ethics Statement: Our paper does not deal with sensitive experiments, data, or any
methods that can be expected to cause harm. We have no conflicts of interest and have no
data privacy concerns.
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Appendices

A Code Availability

All codes can be found and downloaded at https://github.com/Ameer-eng/
iclr2025-simulation.

B Proofs

We begin with the proof of Lemma 3.3, Theorem 3.4, and Theorem 3.5, which are the general
tools we developed to study equivalence of GPs on which the other theorems depend.

B.1 Proofs of Lemma 3.3, Theorem 3.4, and Theorem 3.5

We first define the measure associated to a GP Z.
Definition 7. For a set Ω, covariance kernel K : Ω×Ω → R and mean function m : Ω → R,
define the measure GΩ(m,K) to be the distribution of a Gaussian process (Z(x))x∈Ω with
mean m and covariance K. Thus GΩ(m,K) is a measure on (RΩ,AΩ), where AΩ is the
σ-algebra generated by the coordinate maps Z(x) for x ∈ Ω.

Now we state Bochner’s Theorem, which is the key tool for working with stationary kernels.
Lemma B.1 (Bochner’s Theorem (Stein, 1999)). A continuous complex-valued function
K : Rp → C is the covariance function of a complex valued stationary process on Rp if and
only if there is a positive finite measure F on Rp such that K can be expressed as

K(x) =

∫
eiω

⊤xF (dω).

K is real valued if and only if the distributions of ω and −ω are the same under F .

Now we prove Lemma 3.3.

Proof of Lemma 3.3. Let F be the spectral measure of K. Let Ω = {ω ∈ Rp : F ({ω}) > 0}.
We claim that Ω is at most countable. For contradiction, suppose Ω is uncountable. Then
{ω : F ({ω}) > 1/n} must be uncountable for some n. But then F (Rp) ≥ 1

n |{ω : F ({ω}) >
1/n}| = ∞, contradicting finiteness of F . Let

F d =
∑
ω∈Ω

F ({ω})δω,

F c = F − F d.

Then let Kd be the inverse Fourier transform of F d, i.e. Kd(x) =
∫
eiω

T xF d(dω), and
let Kc be the inverse Fourier transform of F c. By Bochner’s theorem, both Kc and Kd

are complex-valued stationary covariance kernels. Since F is symmetric, so is F d. Hence
F c = F − F d is also symmetric. Thus Kc and Kd are real valued.

Now we prove a condition under which we can recover a process (Z(t))t∈Rp from it’s values
on a box [0, T ]p.
Lemma B.2. Suppose K is a stationary covariance kernel on Rp that is holomorphic on
some ball containing 0. For Ω ⊂ Rp, let

AΩ = σ(Z(t) : t ∈ Ω).

Then for any T > 0,

ARp ⊂ A∗
[0,T ]p ,

where A∗
[0,T ]p denotes the completion of A[0,T ]p by sets of probability 0 with respect to

P = GRp(0,K). In other words, the entire process (Z(t))t∈Rp can be recovered with probability
1 from (Z(t))t∈[0,T ]p .
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Proof. For ease of notation, assume p = 1. The proof for p > 1 is the same. Say K is
holomorphic on D(0, 2δ), δ > 0. By Theorem 2 of Lukacs et al. (1952),

∫
etωF (dω) < ∞ for

|t| < 2δ. For k ∈ N, since δ2kω2k

(2k)! ≤ eδω + e−δω,∫
ω2kF (dω) ≤ (2k)!

δ2k

∫
(eδω + e−δω)F (dω) < ∞.

Thus the process Z is infinitely mean-square differentiable.

For s, t ∈ R,

(Z(s), Z(t))L2(P ) = Cov(Z(s), Z(t)) = K(s− t)

=

∫
eiω(s−t)F (dω) = (eiωs, eiωt)L2(F ).

Hence the map Z(t) 7→ eiωt extends by linearity and continuity to a unitary isomorphism Φ
from H(R) to LR(F ), where H(R) is the closure of span{Z(t) : t ∈ R} in L2(P ), and LR(F )
is the closure of span{eiωt : t ∈ R} in L2(F ).

Let t ∈
[
− δ

2 , 0
]
. We claim that

Z(t) =

∞∑
n=0

Z(n)(0)

n!
tn,

where the sum converges in L2(P ). Using the unitary isomorphism above and differentiating
with respect to t yields

ΦZ(t) = eiωt,

ΦZ ′(t) = iωeiωt,

...

ΦZ(n)(t) = (iω)neiωt.

Thus to show that
∑∞

n=0
Z(n)(0)

n! tn = Z(t) in L2(P ), it is equivalent to show that∑∞
n=0

(iω)n

n! tn = eiωt in L2(F ). We know
∑N

n=0
(iω)n

n! tn → eiωt pointwise as N → ∞,
and ∣∣∣∣∣

N∑
n=0

(iω)n

n!
tn

∣∣∣∣∣ ≤
N∑

n=0

|ω|n

n!
|t|n

≤ e|ω||t| ≤ e
δ
2 |ω| ≤ e−

δ
2ω + e

δ
2ω.

Since, as mentioned earlier, e−
δ
2ω, e

δ
2ω ∈ L2(F ), the dominated convergence theorem yields∑N

n=0
(iω)n

n! tn → eiωt in L2(F ) as N → ∞.

Thus A[− δ
2 ,T ]

⊂ A∗
[0,T ]. Repeating the same argument with the process Y (t) = Z

(
t− δ

2

)
,

which has the same covariance as Z, we obtain A[−δ,T ] ⊂ A∗
[0,T ], and by induction, A[−k δ

2 ,T ]
⊂

A∗
[0,T ] for all k ∈ N. Similarly, A[0,T+k δ

2 ]
⊂ A∗

[0,T ] for all k ∈ N. Hence AR ⊂ A∗
[0,T ].

We immediately conclude the following, which reduces the problem of determining equivalence
of GPs on a bounded interval to determining their equivalence on all of Rp, which is a much
simpler task.

Lemma B.3. Suppose K0 and K1 are continuous stationary covariance kernels on Rp and
that K0 is holomorphic on some ball containing 0. Let T > 0. Then

G[0,T ]p(0,K0) ≡ G[0,T ]p(0,K1) ⇐⇒ GRp(0,K0) ≡ GRp(0,K1).

14
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Proof. Let Pj = GRp(0,Kj), j = 0, 1. Note G[0,T ]p(0,Kj) = Pj |A[0,T ]p
. Suppose

G[0,T ]p(0,K0) ≡ G[0,T ]p(0,K1), that is, P0 and P1 are equivalent on A[0,T ]p . Then P0

and P1 are equivalent on A∗
[0,T ]p , the completion of A[0,T ]p by sets of probability 0 with

respect to P0 (or equivalently, with respect to P1, since P0 ≡ P1 on A[0,T ]p). By Lemma B.2,
ARp ⊂ A∗

[0,T ]p . Consequently, P0 and P1 are equivalent on ARp .

Parts of the following lemma are proved in Ibragimov and Rozanov (1978), but for our
application, we need a precise statement of the result. In what follows, for real valued
functions a and b defined on a set S, we use a(s) ≍ b(s) for s ∈ S to mean that there exist
c, C > 0 such that ca(s) ≤ b(s) ≤ Ca(s) for all s ∈ S.
Lemma B.4. Suppose continuous stationary kernels K0 and K1 on Rp have spectral measures
F0 and F1. Write

Fj = F c
j + F d

j , j = 0, 1,

where F d
j =

∑
ω:Fj({ω})>0 Fj({ω})δω is the discrete part of Fj, and F c

j = Fj − F d
j is the

continuous part of Fj . Let Pj = GRp(0,Kj), j = 0, 1. For j = 0, 1, let Hj(Rp) be the closure
of span{Z(t) : t ∈ Rp} in L2(Pj). The following are equivalent:

(i)

P0 ≡ P1.

(ii)

∥ · ∥L2(P0) ≍ ∥ · ∥L2(P1) on span{Z(t) : t ∈ Rp},
∥I −K1∥2HS(H0(Rp)) < ∞.

(iii)

F c
0 = F c

1 ,

F d
0 ({ω}) ≍ F d

1 ({ω}),∑
ω:Fd

0 ({ω})>0

(
1− F d

1 ({ω})
F d
0 ({ω})

)2

< ∞.

Proof. To clarify (ii), HS(H0(Rp)) is the space of Hilbert-Schmidt operators on H0(Rp). The
continuous bilinear map K1 : H0(Rp)×H0(Rp) → C is identified with the bounded linear
map K1 : H0(Rp) → H0(Rp) by

(K1U, V )H0(Rp) = K1(U, V ), U, V ∈ H0(Rp).

Under this identification, K0 = I.

By Theorem 7 on page 129 of Stein (1999), (i) and (ii) are equivalent.

Suppose (ii) holds. Then H0(Rp) = H1(Rp) and ∥ · ∥L2(P0) ≍ ∥ · ∥L2(P1) on H0(Rp). Hence
by the unitary isomorphism Φ : Hj(Rp) → LRp(Fj), ΦZ(t) = eiω

T t defined in the proof of
Lemma B.2, LRp(F0) = LRp(F1) and ∥ · ∥L2(F0) ≍ ∥ · ∥L2(F1) on LRp(F0).

We claim that LRp(F0) = L2(F0). Let f ∈ C∞
c (Rp). Let R be a rectangle containing the

support of f . By the Fourier inversion theorem, for every x ∈ Rp, f(x) =
∫
R
f̂(ξ)eiξ

T x dξ.
The integral is a pointwise limit of Riemann sums. Each Riemann sum has absolute value
bounded by ∥f∥L∞Vol(R) ∈ L2(F0), so by dominated convergence, the Riemann sums
converge to f in L2(F0). This shows that f ∈ LRp(F0). Since C∞

c (Rp) is dense in L2(F0),
we obtain LRp(F0) = L2(F0).

Then the equivalence ∥ · ∥L2(F0) ≍ ∥ · ∥L2(F1) on LRp(F0) = L2(F0) implies
∫
ϕdF0 ≍

∫
ϕdF1

for all ϕ ≥ 0. Thus F0 ≡ F1, so there is a density f(ω) = F1(dω)
F0(dω) , and

∫
ϕdF0 ≍

∫
ϕdF1 for
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all ϕ ≥ 0 implies f(ω) ≍ 1 for F0 a.e. ω ∈ Rp. If U, V ∈ H0(Rp) and u = ΦU , v = ΦV , then

(K1U, V ) = K1(U, V )

=

∫
u(ω)v(ω)F1(dω)

=

∫
f(ω)u(ω)v(ω)F0(dω)

= (fu, v)L2(P0).

Hence via the isomorphism Φ, K1 is identified with Mf , the operator of multiplication by f .
Thus

∥I −Mf∥2HS(L2(F0))
= ∥I −K1∥2HS(H0(Rp)) < ∞.

Let

Ω = {ω ∈ Rp : F0({ω}) > 0}.

Since F0 = F c
0 + F d

0 and F c
0 ⊥ F d

0 , we have the orthogonal decomposition L2(F0) =
L2(Rp \ Ω, F c

0 )⊕ L2(Ω, F d
0 ). Thus

∥I −Mf∥2HS(L2(F0))
= ∥I −Mf∥2HS(L2(Rp\Ω,F c

0 ))
+ ∥I −Mf∥2HS(L2(Ω,Fd

0 ))
.

Note I −Mf = M1−f . We claim that 1− f(ω) = 0 for F c
0 -a.e. ω ∈ Rp \Ω. For contradiction,

suppose F c
0 ({1−f ̸= 0}∩Rp\Ω) > 0. Then either F c

0 ({1−f > 0}∩Rp\Ω) > 0 or F c
0 ({1−f <

0} ∩ Rp \ Ω) > 0, or both. Say F c
0 ({1− f > 0} ∩ Rp \ Ω) > 0. Then there is ε > 0 such that

F c
0 ({1−f > ε}∩Rp \Ω) > 0. Let A = {1−f > ε}∩Rp \Ω. Define m(t) = F c

0 (A∩ (−∞, t)p).
Then since m(t+ h)−m(t) = F c

0 (A ∩ [t, t+ h)p) ≤ F c
0 ([t, t+ h)p) → F c

0 ({t}p) = 0 as h → 0,
m is continuous. Since m(−∞) = 0 and m(∞) = F c

0 (A), there is t with m(t) = 1
2F

c
0 (A).

Thus A can be divided into two sets of positive F c
0 measure. Inductively, A can be divided

into k sets of positive F c
0 measure for every k. Thus dim(L2(A,F c

0 )) ≥ k for all k, so
dim(L2(A,F c

0 )) = ∞. Since ((1 − f)φ,φ)2L2(A,F c
0 )

=
(∫

A
(1− f)|φ|2F c

0 (dω)
)2 ≥ ε∥φ∥4L2(F c

0 )

for all φ ∈ L2(A,F c
0 ), we obtain

∥I −Mf∥2HS(L2(Rp\Ω,F c
0 ))

≥ ∥I −Mf∥2HS(L2(A,F c
0 ))

≥ εdim(L2(A,F c
0 ))

= ∞.

This is a contradiction. Thus 1−f(ω) = 0 for F c
0 a.e. ω ∈ Rp\Ω. Since F c

1 (dω) = f(ω)F c
0 (dω),

we obtain F c
1 = F c

0 . Thus ∥I −Mf∥2HS(L2(Rp\Ω,F c
0 ))

= 0. To compute ∥I −Mf∥2HS(L2(Ω,Fd
0 ))

,

we note that {F d
0 ({ω})−1/21{ω} : ω ∈ Ω} is an orthonormal basis of L2(Ω, F d

0 ), so

∥I −Mf∥2HS(L2(Ω,Fd
0 )) =

∑
ω∈Ω

((1− f)F d
0 ({ω})−1/21{ω}, F

d
0 ({ω})−1/21{ω})

2
L2(Fd

0 )

=
∑
ω∈Ω

(∫
{ω}

(1− f(ω))F d
0 ({ω})−1F d

0 (dω)

)2

=
∑
ω∈Ω

(1− f(ω))2

=
∑
ω∈Ω

(
1− F d

1 ({ω})
F d
0 ({ω})

)2

.

This proves (iii)
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Now suppose (iii) holds. Then ∥ · ∥L2(F0) ≍ ∥ · ∥L2(F1), so ∥ · ∥L2(P0) ≍ ∥ · ∥L2(P1) on
span{Z(t) : t ∈ Rp}. Then since F c

0 = F c
1 , f(ω) = 1 for F c

0 -a.e. ω ∈ Rp and

∥I −K∥2HS(H0(Rp)) = ∥I −Mf∥2HS(L2(F0))

= ∥I −Mf∥2HS(L2(Rp\Ω,F c
0 ))

+ ∥I −Mf∥2HS(L2(Ω,Fd
0 ))

= ∥I −Mf∥2HS(L2(Ω,Fd
0 ))

=
∑
ω∈Ω

(
1− F d

1 ({ω})
F d
0 ({ω})

)2

< ∞.

This proves (ii).

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. This is a direct consequence of Lemma B.3 and condition (iii) of
Lemma B.4 for the equivalence of measures on Rp.

To obtain Theorem 3.5, we want to apply Theorem 3.4 to the families (Kc)θ∈Θ and (Kd)θ∈Θ,
but since Theorem 3.4 required the kernels to be holomorphic near 0, we need to show that
Kc and Kd are holomorphic near 0 whenever K is.
Lemma B.5. Suppose K is a stationary covariance kernel on Rp that is holomorphic on
the polydisc D = {z ∈ Cp : |zj | < δj ,∀j}, where δ1, . . . , δp > 0. Then both Kc and Kd are
holomorphic on D.

Proof. Note that K is the characteristic function of F . By straightforward generalization of
Theorem 2 of Lukacs et al. (1952) from R to Rp, we have for arbitrary continuous stationary
kernel K̃ that

K̃ is holomorphic on D ⇐⇒
∫

e|ω1||y1|+···+|ωp||yp|F̃ (dω) < ∞ when |yj | < δj for all j.

Thus
∫
e|ω1||y1|+···+|ωp||yp|F (dω) < ∞ for |yj | < δj . Since F c(dω) ≤ F (dω) and F d(dω) ≤

F (dω), it follows that
∫
e|ω1||y1|+···+|ωp||yp|F c(dω) < ∞ and

∫
e|ω1||y1|+···+|ωp||yp|F d(dω) < ∞

for |yj | < δj . Hence Kc and Kd are holomorphic on D.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. 1. Suppose h(θ) is microergodic for (Kc
θ)θ∈Θ and g(θ) is microergodic

for (Kd
θ )θ∈Θ. Let θ1, θ2 ∈ Θ. By using Theorem 3.4 to write down the conditions for

Kθ1 ≡ Kθ2 , Kc
θ1

≡ Kc
θ2

, and Kd
θ1

≡ Kd
θ2

, we obtain

Kθ1 ≡ Kθ2 ⇐⇒ Kc
θ1 ≡ Kc

θ2 and Kd
θ1 ≡ Kd

θ2 .

Then by definition of microergodicity,

Kc
θ1 ≡ Kc

θ2 and Kd
θ1 ≡ Kd

θ2 ⇐⇒ h(θ1) = h(θ2) and g(θ1) = g(θ2)

⇐⇒ (h(θ1), g(θ1)) = (h(θ2), g(θ2)).

Thus Kθ1 ≡ Kθ2 ⇐⇒ (h(θ1), g(θ1)) = (h(θ2), g(θ2)), so (h(θ), g(θ)) is microergodic for
(Kθ)θ∈Θ.

2. Let θ1, θ2 ∈ Θ. By Theorem B.5, both Kc
θ1

and Kc
θ2

are holomorphic on some ball around
0. By Theorem 3.4,

Kc
θ1 ≡ Kc

θ2 ⇐⇒ Kc
θ1(x) = Kc

θ2(x) for all x ∈ Rp.

17
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Similarly, by Theorem B.5, both Kd
θ1

and Kd
θ2

are holomorphic on some ball around 0, and
by Theorem 3.4,

Kd
θ1 ≡ Kd

θ2 ⇐⇒ F d
θ1({ω}) ≍ F d

θ2({ω}) and
∑

ω:Fd
θ1

({ω})>0

(
1−

F d
θ2
({ω})

F d
θ1
({ω})

)2

< ∞.

B.2 Proof of Theorem 3.1

We study the kernels in Table 1 in the order of RBF, Per, Damped Per, RQ and Cosine.

Proof for SE. Let Kσ,ℓ(x) denote the SE kernel with parameters σ2, ℓ > 0. Since the SE
kernel has spectral density, by Theorem 3.4, it suffices to show that Kσ1,ℓ1(x) = Kσ2,ℓ2(x)
for all x implies σ2

1 = σ2
2 and ℓ1 = ℓ2. To show this, it is equivalent to show that σ and ℓ

can be written as functions of Kσ,ℓ. We have

Kσ,ℓ(x) = σ2 exp

(
−∥x∥2

2ℓ2

)
,

logKσ,ℓ(x) = log(σ2)− ∥x∥2

2ℓ2
,

logKσ,ℓ(x)

∥x∥2
= − 1

2ℓ2
+O

(
1

∥x∥2

)
as x → ∞,

− 1

2ℓ2
= lim

∥x∥→∞

logKσ,ℓ(x)

∥x∥2
,

σ2 = Kσ,ℓ(0).

Thus σ and ℓ are functions of Kσ,ℓ.

Proof for Per. To apply Theorem 3.4, we first need to compute the spectral measures Fσ,ℓ,γ .
The period of K is γ. Since K1,ℓ,2π is 2π periodic, it has Fourier series coefficients K̂1,ℓ,2π(j)
satisfying

K1,ℓ,2π(x) =

∞∑
j=−∞

K̂1,ℓ,2π(j)e
ijx,

K̂1,ℓ,2π(j) =
1

2π

∫ π

−π

K1,ℓ,2π(x)e
−ijxdx.

Thus

Kσ,ℓ,γ(x) = σ2K1,ℓ,2π

(
2π

γ
x

)
= σ2

∞∑
j=−∞

K̂1,ℓ,2π(j)e
ij 2π

γ x

= σ2

∫ ∞

−∞

∞∑
j=−∞

K̂1,ℓ,2π(j)δj 2π
γ
(ω)eiωxdω.

Thus

Fσ,ℓ,γ = σ2
∞∑

j=−∞
K̂1,ℓ,2π(j)δj 2π

γ
.

18
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By 9.6.19 on page 128 of Abramowitz and Stegun (1964),

K̂1,ℓ,2π(j) =
1

2π

∫ π

−π

exp

(
−2 sin(x/2)2

ℓ2

)
e−ijxdx

=
1

π

∫ π

0

exp

(
−2 sin(x/2)2

ℓ2

)
cos(jx)dx

=
e−

1
ℓ2

π

∫ π

0

e
cos(x)

ℓ2 cos(jx)dx

= exp

(
− 1

ℓ2

)
Ij

(
1

ℓ2

)
.

By 9.6.10 on page 375 of Abramowitz and Stegun (1964), K̂1,ℓ,2π(j) > 0 for all j ∈ Z. By
9.6.3 on page 127 and 9.3.1 on page 117 of Abramowitz and Stegun (1964),

Ij

(
1

ℓ2

)
= i−jJj

(
i

ℓ2

)

= i−j 1√
2πj

(
e i
ℓ2

2j

)j

(1 +O(j−1)) as j → ∞

=
1√
2πj

(
e

2ℓ2j

)j

(1 +O(j−1)).

Thus

K̂1,ℓ,2π(j) = exp

(
− 1

ℓ2

)
Ij

(
1

ℓ2

)
=

exp
(
− 1

ℓ2

)
√
2πj

(
e

2ℓ2j

)j

(1 +O(j−1))

=
1√
2πj

(
e

2j

)j

exp

(
− 1

ℓ2

)
ℓ−2j(1 +O(j−1)).

Suppose (σ0, ℓ0, γ0) and (σ1, ℓ1, γ1) are two parameter sets with

F d
σ0,ℓ0,γ0

({ω}) ≍ F d
σ1,ℓ1,γ1

({ω}),∑
ω:Fσ0,ℓ0,γ0

({ω})>0

(
1−

F d
σ1,ℓ1,γ1

({ω})
F d
σ0,ℓ0,γ0

({ω})

)2

< ∞.

Due to the formula Fσ,ℓ,γ = σ2
∑∞

j=−∞ K̂1,ℓ,2π(j)δj 2π
γ

and the fact that K̂1,ℓ,2π(j) > 0 for
all j, we must have γ0 = γ1 and

σ2
0K̂1,ℓ0,2π(j) ≍ σ2

1K̂1,ℓ1,2π(j),

∞∑
j=−∞

(
1− σ2

1K̂1,ℓ1,2π(j)

σ2
0K̂1,ℓ0,2π(j)

)2

< ∞.

We have

σ2
1K̂1,ℓ1,2π(j)

σ2
0K̂1,ℓ0,2π(j)

=

σ2
1√
2πj

(
e
2j

)j
exp

(
− 1

ℓ21

)
ℓ−2j
1 (1 +O(j−1))

σ2
0√
2πj

(
e
2j

)j
exp

(
− 1

ℓ20

)
ℓ−2j
0 (1 +O(j−1))

=
σ2
1 exp

(
− 1

ℓ21

)
σ2
0 exp

(
− 1

ℓ20

) (ℓ1
ℓ0

)−2j

(1 +O(j−1)).
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If ℓ0 ̸= ℓ1, then σ2
1K̂1,ℓ1,2π(j)

σ2
0K̂1,ℓ0,2π(j)

→ 0 or ∞ as j → ∞, so we must have ℓ0 = ℓ1. Then

σ2
1K̂1,ℓ1,2π(j)

σ2
0K̂1,ℓ0,2π(j)

=
σ2
1

σ2
0
(1 +O(j−1)) → σ2

1

σ2
0
, and the assumption

∑∞
j=−∞

(
1− σ2

1K̂1,ℓ1,2π(j)

σ2
0K̂1,ℓ0,2π(j)

)2
< ∞

implies σ0 = σ1.

Proof for Damped Per. Let Kσ,ℓ1,ℓ2,γ denote the damped periodic kernel with parameters
σ, ℓ1, ℓ2, γ > 0. Note that the damped periodic kernel is the product of the SE kernel and
periodic kernel, so it’s spectral measure is the convolution of the SE spectral measure and
the periodic kernel spectral measure. If f denotes the spectral density of the SE kernel,
and

∑
j ajδωj

denotes the spectral measure of the periodic kernel, then their convolution
has spectral density g(ω) =

∑
j ajf(ω − ωj). Thus by Theorem 3.4, we need to show that

σ, ℓ1, ℓ2, γ can all be written as functions of Kσ,ℓ1,ℓ2,γ . We have

Kσ,ℓ1,ℓ2,γ(x) = σ2 exp

− x2

2ℓ21
−

2 sin2
(

πx
γ

)
ℓ22

 .

Note that Kσ,ℓ1,ℓ2,γ has a unique holomorphic extension to C as

Kσ,ℓ1,ℓ2,γ(z) = σ2 exp

− z2

2ℓ21
−

2 sin2
(

πz
γ

)
ℓ22

 .

Putting z = iy yields

Kσ,ℓ1,ℓ2,γ(iy) = σ2 exp

 y2

2ℓ21
+

2 sinh2
(

πy
γ

)
ℓ22

 ,

logKσ,ℓ1,ℓ2,γ(iy) = log(σ2) +
y2

2ℓ21
+

2 sinh2
(

πy
γ

)
ℓ22

.

Since sinh(x) = ex+e−x

2 ∼ 1
2e

x,

logKσ,ℓ1,ℓ2,γ(iy) ∼
exp

(
πy
γ

)
2ℓ22

,

log logKσ,ℓ1,ℓ2,γ(iy) =
πy

γ
− log(2ℓ22) + o(1),

π

γ
=

log logKσ,ℓ1,ℓ2,γ(iy)

y
+O(y−1).

Thus γ is a function of Kσ,ℓ1,ℓ2,γ . Then

2ℓ22 ∼
exp

(
πy
γ

)
logKσ,ℓ1,ℓ2,γ(iy)

,

so ℓ2 is a function of Kσ,ℓ1,ℓ2,γ . Note

logKσ,ℓ1,ℓ2,γ(iy)−
2 sinh2

(
πy
γ

)
ℓ22

= log(σ2) +
y2

2ℓ21
,

1

2ℓ21
=

logKσ,ℓ1,ℓ2,γ(iy)−
2 sinh2(πy

γ )
ℓ22

y2
+O(y−2),

σ2 = Kσ,ℓ1,ℓ2,γ(0).

Thus ℓ21 and σ2 are functions of Kσ,ℓ1,ℓ2,γ .
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Proof for RQ. Let Kσ,α,ℓ denote the RQ kernel with parameters σ2, α, ℓ > 0. Since the RQ
kernel has a spectral density, as before, we need to show that σ2, α, ℓ all are functions of
Kσ,α,ℓ. We have σ2 = Kσ,α,ℓ(0), so σ2 is a function of Kσ,α,ℓ. Let

K(t) =
1

σ2
Kσ,α,ℓ(te1)

=

(
1 +

t2

2αℓ2

)−α

.

Then as t → ∞,

K(t) ∼ t−2α

(2αℓ2)−α

=
2αααℓ2α

t2α
,

logK(t) = log(2αααℓ2α)− 2α log(t) + o(1),

logK(t)

log(t)
= −2α+O

(
1

log(t)

)
.

Thus α is a function of Kσ,α,ℓ. Since

ℓ2α ∼ K(t)
t2α

2ααα
,

ℓ is a function of Kσ,α,ℓ.

Proof for Cosine. Let Kσ,s denote the cosine kernel with parameters σ2 > 0, s ∈ Rp. The
spectral measure is

Fσ,s = σ2 1

2
(δ−s + δs).

This is a discrete measure with support {−s, s}. By Theorem 3.4, Kσ1,s1 ≡ Kσ2,s2 if and
only if

Fσ1,s1({ω}) ≍ Fσ2,s2({ω}) and
∑

ω:Fσ1,s1 ({ω})>0

(
1− Fσ2,s2({ω})

Fσ1,s1({ω})

)2

< ∞.

Since the supports of Fσ1,s1 and Fσ2,s2 are finite sets, the condition Fσ1,s1({ω}) ≍ Fσ2,s2({ω})
is equivalent to the condition that the supports are equal, that is, {−s1, s1} = {−s2, s2}.
The second condition always holds because the sum is over a finite set. Thus Kσ1,s1 ≡ Kσ2,s2
if and only if {−s1, s1} = {−s2, s2}. Thus {−s, s} is microergodic.

B.3 Proof of Theorem 3.2

Proof of Theorem 3.2. First of all, Theorem 6 on page 123 of Stein (1999) tells us that for
continuous kernels K1, K2, the kernels K1(x)+τ11{x=0} and K2(x)+τ21{x=0} are equivalent
if and only if τ1 = τ2 and K1 ≡ K2. Thus it suffices to prove identifiability of the parameters
under the assumption that θ11 = 0.

Write

Kθ,γ(x) = K1(x) +K2(x) +K3(x) +K4(x),
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where

K1(x) = θ21 exp

(
− x2

2θ22

)
,

K2(x) = θ23 exp

− x2

2θ24
−

2 sin2
(

πx
γ

)
θ25

 ,

K3(x) = θ26

(
1 +

x2

2θ8θ27

)−θ8

,

K4(x) = θ29 exp

(
− x2

2θ210

)
.

Note that K1,K2,K3,K4 are analytic on the disks of radius ∞,∞, (2θ8θ
2
7)

1/2,∞ respectively.
Thus Kθ,γ is holomorphic on the disk of radius (2θ8θ

2
7)

1/2. Since K1,K2,K3,K4 each have a
spectral density, Kθ,γ has a spectral density, and consequently, Kc

θ,γ = Kθ,γ , Kd
θ,γ = 0. That

is, we focus only on the continuous component.

By Theorem 3.4, we need to show that if (θ, γ) and (θ̃, γ̃) are such that Kθ,γ(x) = Kθ̃,γ(x)

for all x ∈ R, then (θ, γ) = (θ̃, γ̃). Let

Θ = {(θ, γ) : θ1, . . . , θ10, γ > 0, θ10 < θ2},
C = {Kθ,γ : (θ, γ) ∈ Θ}.

Let S be the collection of functions h = h(θ, γ) with domain Θ such that there is a function
φ : C → Θ with h(θ, γ) = φ(Kθ,γ) for all (θ, γ) ∈ Θ. We need to show that (θ, γ) ∈ S. We
have

Kθ,γ(x) ∼ θ26(2θ8θ
2
7)

θ8x−2θ8 ,

log(Kθ,γ(x)) = log(θ26(2θ8θ
2
7)

θ8)− 2θ8 log(x) + o(1),

log(Kθ,γ(x))

log(x)
= −2θ8 + o(log(x)−1).

Thus

θ8 ∈ S,

and from this we deduce

θ26θ
2θ8
7 ∈ S.

Note that the largest r > 0 for which Kθ,γ extends to a holomorphic function on D(0, r) is
(2θ8θ

2
7)

1/2. Thus (2θ8θ
2
7)

1/2 ∈ S, so

θ7 ∈ S.

And from θ26θ
2θ8
7 ∈ S we obtain

θ6 ∈ S.

Set

f(x) = θ21 exp

(
− x2

2θ22

)
+ θ23 exp

− x2

2θ24
−

2 sin2
(

πx
γ

)
θ25

+ θ29 exp

(
− x2

2θ210

)
.

Since θ6, θ7, θ8 ∈ S, f ∈ S. Let f denote the unique holomorphic extension of f to C. For
x ∈ R,

f(−ix) = θ21 exp

(
x2

2θ22

)
+ θ23 exp

 x2

2θ24
+

2 sinh2
(

πx
γ

)
θ25

+ θ29 exp

(
x2

2θ210

)
.
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So as x → ∞,

f(−ix) ∼ θ23 exp

 x2

2θ24
+

2 sinh2
(

πx
γ

)
θ25

 ,

log f(−ix) = log(θ23) +
x2

2θ24
+

2 sinh2
(

πx
γ

)
θ25

+ o(1)

∼
2 sinh2

(
πx
γ

)
θ25

∼ 2

θ25

(
1

2
exp

(
πx

γ

))2

=
1

2θ25
exp

(
2πx

γ

)
,

log log f(−ix) = − log(2θ25) +
2πx

γ
+ o(1),

log log f(−ix)

2πx
=

1

γ
+ o(x−1).

Thus
γ ∈ S.

Then from log f(−ix)

sinh2(πx
γ )

= 2
θ2
5
+ o(1) we get

θ5 ∈ S.

We have

log f(−ix)−
2 sinh2

(
πx
γ

)
θ25

= log(θ23) +
x2

2θ24
+ o(1),

log f(−ix)− 2 sinh2(πx
γ )

θ2
5

x2
=

1

2θ24
+ o(x−1),

θ4 ∈ S,

log f(−ix)−
2 sinh2

(
πx
γ

)
θ25

− x2

2θ24
= log(θ23) + o(1),

θ3 ∈ S.

Let

g(x) = f(−ix)− θ23 exp

 x2

2θ24
+

2 sinh2
(

πx
γ

)
θ25


= θ21 exp

(
x2

2θ22

)
+ θ29 exp

(
x2

2θ210

)
.

Since θ2 < θ10,

g(x) ∼ θ21 exp

(
x2

2θ22

)
,

log(g(x)) = log(θ21) +
x2

2θ22
,

θ2 ∈ S,

θ1 ∈ S.

Then by applying the same argument to g(x)− θ21 exp
(

x2

2θ2
2

)
, we get θ29 exp

(
x2

2θ2
10

)
∈ S.
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B.4 Proof of Theorems 3.6 to 3.9

Proof of Theorem 3.6. Note that Kσ,M = σ2K(M1/2x), where K(x) = exp
(
− 1

2∥x∥
2
)

is the
standard squared exponential kernel. Let f = K̂. Let A = M1/2. Since

K(Ax) =

∫
f(ω)eiω

TAx dω

=

∫
f(A−T y)eiy

T x 1

|detA|
dy,

we obtain

K̂σ,M (ω) = σ2 1

(detM)1/2
f(M−1/2ω).

Thus Kσ,M has a spectral density. Suppose Kσ0,M0 ≡ Kσ1,M1 . By Theorem 3.4,
σ2
0 exp

(
− 1

2x
TM0x

)
= σ2

1 exp
(
− 1

2x
TM1x

)
for all x ∈ Rp. Putting x = 0 yields σ2

0 = σ2
1 , and

then taking logs yields xTM0x = xTM1x for all x ∈ Rp. Since M0 and M1 are symmetric,
the polarization identity yields M0 = M1. Thus (σ2,M) is identifiable, as claimed.

Proof of Theorem 3.7. The spectral measure is

Fσ1,...,σm,s1,...,sm =

m∑
j=1

σ2
j

2
(δ−sj + δsj ).

The support of Fσ1,...,σm,s1,...,sm is {±sj : j = 1, . . . ,m}. As in the proof of for the cosine
kernel, we conclude that {±sj : j = 1, . . . ,m} is microergodic. Since we assumed 0 ≤ s1 <
· · · < sm, the largest m elements of the set {±sj : j = 1, . . . ,m} are sm, sm−1, . . . , s1. Hence
(s1, . . . , sm) is microergodic.

Proof of Theorem 3.8. If K1 and K2 are stationary kernels with K1(0) = K2(0) = 1, then
the spectral measure of K1K2 is the convolution F1 ∗F2, which is defined as the distribution
of X1 +X2 when Xj ∼ Fj and X1 and X2 are independent. Thus the support of Fσ,s1,...,sm
is {±s1 ± s2 ± · · · ± sm}. As in the proof for the cosine kernel, we conclude that {±s1 ± s2 ±
· · · ± sm} is microergodic.

Now suppose m ∈ {1, 2, 3}, say m = 3. Then the 3 largest elements of the set {±s1±s2±s3}
are s1 + s2 + s3, −s1 + s2 + s3, and s1 − s2 + s3. From these we can algebraically solve
for s1, s2, s3. This shows that (s1, s2, s3) is a function of {±s1 ± s2 ± s3}. Conversely,
{±s1 ± s2 ± s3} is also a function of (s1, s2, s3). Thus (s1, s2, s3) is microergodic.

Proof of Theorem 3.9. This proof mimics the proof for the sum of cosine kernels, but is a
bit more elaborate due to the infinite support of the spectral measures. Let K̂ℓ(j), j ∈ Z
denote the Fourier series coefficients of the periodic kernel with σ2 = 1, length-scale ℓ, and
γ = 2π. In the proof for the periodic kernel, we showed that

Fσ,ℓ,γ =

∞∑
j=−∞

σ2K̂ℓ(j)δj 2π
γ
,

K̂ℓ(j) > 0 for all j ∈ Z,

K̂ℓ(j) =
1√
2πj

(
e

2j

)j

exp

(
− 1

ℓ2

)
ℓ−2j(1 +O(j−1)), (3)

σ2
1K̂ℓ1(j)

σ2
0K̂ℓ0(j)

=
σ2
1 exp

(
− 1

ℓ21

)
σ2
0 exp

(
− 1

ℓ20

) (ℓ1
ℓ0

)−2j

(1 +O(j−1)). (4)
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Suppose Kσ1,ℓ1,γ1,σ2,ℓ2,γ2
≡ Kσ̃1,ℓ̃1,γ̃1,σ̃2,ℓ̃2,γ̃2

. Write

s1 =
2π

γ1
,

s2 =
2π

γ2
,

s̃1 =
2π

γ̃1
,

s̃2 =
2π

γ̃2
.

Note that 0 < s1 < s2 and 0 < s̃1 < s̃2. Let F and F̃ denote the spectral measures of
Kσ1,ℓ1,γ1,σ2,ℓ2,γ2

and Kσ̃1,ℓ̃1,γ̃1,σ̃2,ℓ̃2,γ̃2
. We have

F =

∞∑
j=−∞

σ2
1K̂ℓ1(j)δjs1 +

∞∑
j=−∞

σ2
2K̂ℓ2(j)δjs2 ,

F̃ =

∞∑
j=−∞

σ̃2
1K̂ℓ̃1

(j)δjs̃1 +

∞∑
j=−∞

σ̃2
2K̂ℓ̃2

(j)δjs̃2 .

By Theorem 3.4, the supports of F and F̃ are the same, that is,

{js1 : j ∈ Z} ∪ {js2 : j ∈ Z} = {js̃1 : j ∈ Z} ∪ {js̃2 : j ∈ Z}.

Equating the smallest positive element of both sides yields

s1 = s̃1.

Now split the rest of the proof into two cases. Case 1: Suppose s2
s1

/∈ Q. Since s2 ∈ supp(F̃ )

and s2 is not an integer multiple of s1, there is j ∈ Z such that s2 = js̃2. This implies that
s̃2 cannot be an integer multiple of s1, and since s̃2 ∈ supp(F ) there must exist k ∈ Z such
that s̃2 = ks2 = jks̃2. Thus jk = 1, and therefore j = k = 1. Thus s2 = s̃2. Now note that

supp(F ) ∩ (0,∞) = {js1 : j ∈ N} ∪ {js2 : j ∈ N},

and since s2
s1

/∈ Q, the sets {js1 : j ∈ N} and {js2 : j ∈ N} are disjoint. By Theorem 3.4 and
the symmetry K̂ℓ(j) = K̂ℓ(−j),

∞ >
∑

ω:F (ω)>0

(
1− F (ω)

F̃ (ω)

)2

= C + 2

∞∑
j=1

(
1−

σ̃2
1K̂ℓ̃1

(j)

σ2
1K̂ℓ1(j)

)2

+ 2

∞∑
j=1

(
1−

σ̃2
2K̂ℓ̃2

(j)

σ2
2K̂ℓ2(j)

)2

.

In particular,
σ̃2
1K̂ℓ̃1

(j)

σ2
1K̂ℓ1

(j)
→ 1 and

σ̃2
2K̂ℓ̃2

(j)

σ2
2K̂ℓ2

(j)
→ 1 as j → ∞. From (4), we conclude ℓ1 = ℓ̃1,

σ1 = σ̃1, ℓ2 = ℓ̃2, and σ2 = σ̃2.

Case 2: s2
s1

∈ Q. Since s̃2 is an integer multiple of s1 or s2, s̃2
s1

∈ Q. By writing s2 = qs1,
s̃2 = q̃s1 with q, q̃ ∈ Q, it is clear that m = lcm(s1, s2, s̃2) = lcm(s1, qs1, q̃s1) exists. Note
that

F (jm) = σ2
1K̂ℓ1

(
j
m

s1

)
+ σ2

2K̂ℓ2

(
j
m

s2

)
.
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Equation (3) can be written as K̂ℓ(j) = j−1/2j−jC(ℓ)j , where C(ℓ) > 0. Thus when α > 1
is an integer,

K̂ℓ1(αj)

K̂ℓ2(j)
∼ α−1/2j−1/2α−αjj−αjC(ℓ1)

αj

j−1/2j−jC(ℓ2)j

= α−1/2j(1−α)jC(α, ℓ1, ℓ2)
j ,

log
K̂ℓ1(αj)

K̂ℓ2(j)
= (1− α)j log j + j logC(α, ℓ1, ℓ2) +O(1)

→ −∞ as j → ∞,

so

K̂ℓ1(αj)

K̂ℓ2(j)
→ 0. (5)

Therefore, since m
s2

< m
s1

,

F (jm) = σ2
1K̂ℓ1

(
j
m

s1

)
+ σ2

2K̂ℓ2

(
j
m

s2

)
∼ σ2

2K̂ℓ2

(
j
m

s2

)
.

For the same reason,

F̃ (jm) ∼ σ̃2
2K̂ℓ̃2

(
j
m

s̃2

)
.

Since ∞ >
∑∞

j=1

(
1− F̃ (jm)

F (jm)

)2
, we have F̃ (jm)

F (jm) → 1, so
σ̃2
2K̂ℓ̃2

(
j m
s̃2

)
σ2
2K̂ℓ2

(
j m
s2

) → 1. Again by (5), we

conclude that s̃2 = s2, and by (4), we obtain ℓ̃2 = ℓ2 and σ̃2
2 = σ2

2 . Recall m = lcm(s1, s2) ≥
s2 > s1. Thus s1,

(
1 + m

s1

)
s1,
(
1 + 2m

s1

)
s1, . . . are all not integer multiples of s2. Thus

F

((
1 + j

m

s1

)
s1

)
= σ2

1K̂ℓ1

(
1 + j

m

s1

)
,

F̃

((
1 + j

m

s1

)
s1

)
= σ̃2

1K̂ℓ̃1

(
1 + j

m

s1

)
.

Since
F̃
((

1+j m
s1

)
s1

)
F
((

1+j m
s1

)
s1

) → 1, we have 1 = limj→∞
σ̃2
1K̂ℓ̃1

(
1+j m

s1

)
σ2
1K̂ℓ1

(
1+j m

s1

) = limν→∞
σ̃2
1K̂ℓ̃1

(ν)

σ2
1K̂ℓ1

(ν)
. From (4),

we deduce ℓ̃1 = ℓ1 and σ̃2
1 = σ2

1 .

B.5 An additional theorem

In this subsection, we introduce a theorem that is useful in conjunction with Theorem 3.4
for determining the identifiable functions in new kernels constructed from existing ones.

Let C be the set of continuous stationary kernels K on Rp for which K = Kc, and let D be
the set of continuous stationary kernels for which K = Kd. Theorem 3.4 tells us K1 ≡ K2 if
and only if Kc

1 = Kc
2 and Kd

1 ≡ Kd
2 . Thus it can help to know how to decompose K into Kc

and Kd. When K is a sum of products of other fully discrete or fully continuous spectrum
kernels, the decomposition is easily found by inspection:
Theorem B.6. Suppose K0 and K1 are continuous stationary kernels on Rp with spectral
measures K̂0 = F0 and K̂1 = F1. The following hold

(i) ̂K0 +K1 = F0 + F1

(ii) K̂0K1 = F0 ∗ F1.
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Consequently,

(iii) K0 ∈ C,K1 ∈ C =⇒ K0 +K1 ∈ C,

(iv) K0 ∈ C =⇒ K0K1 ∈ C,

(v) K0 ∈ D,K1 ∈ D =⇒ K0 +K1 ∈ D, K0K1 ∈ D.

Proof. (i) and (ii) are standard results for Fourier transforms. (iii) holds since the sum of two
continuous measures is continuous. (iv) holds since the convolution of a continuous measure
with any other measure is continuous. (v) holds since the sum of two discrete measures is
discrete and the convolution of two discrete measures is discrete.

This theorem, together with Theorem 3.4, allows us to study the identifiability of parameters
in new kernels constructed as the multiplication and summation of existing kernels.

C Relation between Prameter Inference and Prediction

While the primary focus of this paper is on parameter identifiability in GPs models, it is
worth briefly discussing its connection to prediction performance, as prediction is one of the
most common applications of GPs.

In the literature, there is a well-established distinction between parameter inference and
prediction accuracy. For example, as shown in Theorem 8 of Chapter 4 in Stein (1999), if
two measures P1 and P0 are equivalent, then assuming P0 is the true measure and using P1

to obtain the best linear predictor e1 at a new observation location x0, the ratio of the MSE
of e1 to the MSE of the best linear predictor e0 under P0 converges to 1 as the sample size
n → ∞.

For the Matérn family with known smoothness parameter ν, Theorem 12 of Chapter 4
in Stein (1999) further shows that the asymptotic ratio of the MSEs under two Matérn
kernels parameterized by (σ2

1 , ℓ1) and (σ2
2 , ℓ2) converges to 1, regardless of the values of the

parameters (Equation 49, c =
σ2
1ℓ

2ν
2

σ2
2ℓ

2ν
1

). As a consequence, we get asymptotically optimal
prediction performance by having P1 be in the correct parametric family, even if P1 ⊥ P0.
This underscores an important point: prediction is, in an informal sense, “simpler” than
parameter inference, as incorrect parameter specification or parameter estimates may still
yield asymptotically optimal predictions.

Beyond Matérn kernels, for the holomorphic kernels studied in this paper, Stein’s Theorem 8
still holds, However, this is beyond the scope of the current paper, which primarily focuses
on parameter inference.

D Additional Figures

In Figure 3, we present the simulations repeated for ε = 0.1 side by side with ε = 0.01. It
appears that the variances of the MLEs are smaller when ε = 0.01.
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(a) SE (ε = 0.1) (b) SE (ε = 0.01)

(c) DPer (ε = 0.1) (d) DPer (ε = 0.01)

(e) Per (ε = 0.1) (f) Per (ε = 0.01)

(g) RQ (ε = 0.1) (h) RQ (ε = 0.01)

(i) Cosine (ε = 0.1) (j) Cosine (ε = 0.01)

Figure 3: Simulation results for various kernel types with ε = 0.1 and ε = 0.01. Each
subfigure shows the boxplots of MLEs for the corresponding kernel, with ground truth in
horizontal dashed line.
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E Additional experimental details

The ground truth parameters used in Section 4.2 are given by the following table:

θ1 θ2 θ3 θ4 θ5 γ θ6 θ7 θ8 θ9 θ10
44.8 51.6 2.64 91.5 1.48 1 0.536 2.89 8.97 0.188 0.122

Table 3: Ground truth parameters for the combined kernel.

All the experiments were run on a Linux-based virtual computer with 6500 conventional
compute cores 472 delivering 13,000 threads. We used 24 CPUs.

Table 4: Runtime and memory usage for each experiment

Experiment Time Memory
Squared Exponential ε = 0.1 8 hours, 53 minutes 32 GB
Damped Periodic ε = 0.1 6 hours, 24 minutes 32 GB
Periodic ε = 0.1 10 hours, 45 minutes 32 GB
Rational Quadratic ε = 0.1 10 hours, 16 minutes 32 GB
Cosine ε = 0.1 7 hours, 49 minutes 32 GB
Squared Exponential ε = 0.01 7 hours, 30 minutes 32 GB
Damped Periodic ε = 0.01 6 hours, 45 minutes 32 GB
Periodic ε = 0.01 10 hours, 12 minutes 32 GB
Rational Quadratic ε = 0.01 9 hours, 42 minutes 32 GB
Cosine ε = 0.01 5 hours, 44 minutes 32 GB
Combined Kernel 1 hour, 21 minutes 32 GB
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