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Multimodal LLM Enhanced Cross-lingual Cross-modal Retrieval
Anonymous Author(s)

ABSTRACT
Cross-lingual cross-modal retrieval aims to retrieve visually rel-
evant content based on non-English queries, without relying on
human-labeled cross-modal data pairs during training. One popu-
lar approach involves utilizing machine translation (MT) to create
pseudo-parallel data pairs, establishing correspondence between
visual and non-English textual data. However, aligning their rep-
resentations poses challenges due to the significant semantic gap
between vision and text, as well as the lower quality of non-English
representations caused by pre-trained encoders and data noise. To
overcome these challenges, we propose LECCR, a novel solution
that incorporates the multi-modal large language model (MLLM)
to improve the alignment between visual and non-English repre-
sentations. Specifically, we first employ MLLM to generate detailed
visual content descriptions and aggregate them into multi-view
semantic slots that encapsulate different semantics. Then, we take
these semantic slots as internal features and leverage them to inter-
act with the visual features. By doing so, we enhance the semantic
information within the visual features, narrowing the semantic gap
between modalities and generating local visual semantics for sub-
sequent multi-level matching. Additionally, to further enhance the
alignment between visual and non-English features, we introduce
softened matching under English guidance. This approach provides
more comprehensive and reliable inter-modal correspondences be-
tween visual and non-English features. Extensive experiments on
two cross-lingual image-text retrieval benchmarks, Multi30K and
MSCOCO, as well as two cross-lingual video-text retrieval bench-
marks, VATEX and MSR-VTT-CN, demonstrate the effectiveness of
our proposed method.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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Image

Image

Description: The image shows a plate of
food on a table with two glasses of beer.
The plate has a sandwich on it, and there
are vegetables and a tomato on the
sandwich. The table is set up in a
restaurant, and there is a napkin on the
table as well.

English Caption : A sandwich and 
vegetables are on a plate .

Non-English caption: Un sandwich 
et des légumes dans l’assiette.

Translate

English Caption : A sandwich and vegetables are on a plate .

Non-English caption: Un sandwich et des légumes dans l’assiette.
Translate

Enhancement

Guidance

MLLM

Query:  Table à dîner
avec différents fruits,
tartes et pains.

（a） （c）

Image gallery

Retrieve

（b）

Figure 1: The comparison between previous methods and our
proposed method for CCR. (a) Previous methods typically
trained on a collection consisting of images/videos paired
with English captions and their corresponding non-English
translations. (b) Our approach leverages MLLM to generate
detailed visual descriptions and uses them as internal repre-
sentations to enhance visual representations. Additionally,
we utilize English features as guidance to improve alignment
between visual and non-English features. (c) During infer-
ence, a non-English query is given to retrieve relevant visual
content.

1 INTRODUCTION
Cross-lingual cross-modal retrieval (CCR) aims to develop mod-
els that can retrieve relevant visual context based on non-English
queries, without relying on human-labeled non-English cross-modal
data pairs. Compared to traditional cross-modal retrieval, CCR goes
beyond the limitations of English and can transfer to other lan-
guages. Currently, most research [23, 34–36, 47, 50] in this field
resorts MT to generate pseudo-parallel data pairs, as depicted in
Figure 1 (a). These studies have achieved remarkable performance
by establishing direct correspondences between visual and non-
English data.

However, the representation quality of non-English captions
tends to exhibit inferior performance compared to English data,
which can be attributed to the limitations of pre-trained text en-
coders when handling non-English languages and the quality of
translations. Consequently, aligning visual featureswith non-English
features poses a significant challenge. To overcome this challenge,
some methods [23, 27, 47, 50] adopt a single-stream structure (as
shown in Figure 2 (a)), utilizing cross-modal fusion modules to
capture fine-grained interactions between the modalities. While
these methods have demonstrated significant performance improve-
ments, they suffer from increased computational cost and inference
time. This is because all possible query-candidate pairs need to be
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(d) Proposed CL2CM method 
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𝐹"
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Interaction Interaction
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Figure 2: Comparison of CCR methods. Among them, “𝐹𝑣”, “𝐹𝑐”, “𝐹𝑠”, and “𝐹𝑡 ” represent the visual encoder, description encoder,
English encoder, and non-English encoder, respectively. Our method follows the two-stream structure and incorporates MLLM
to enhance the semantics within visual features, helping bridge the gap between modalities. Additionally, to improve the
alignment between visual and non-English features, we propose employing English representations as guidance. This can
provide more comprehensive and reliable inter-modal correspondence for visual and non-English features.

processed by the fusion modules to calculate similarity scores. In
contrast, alternative approaches [34–36] employ a more efficient
dual-stream structure (as shown in Figure 2 (b)), where similarity
is calculated using the dot product of their global features. They
improve the cross-lingual cross-modal alignment by introducing
noise-robust designs. However, these methods extract visual and
linguistic features independently without any information fusion,
leading to a persistent semantic gap between modalities. Addition-
ally, the image (or video) often conveys richer content than text, as
the saying goes, "a picture is worth a thousand words." The captions
in existing datasets are typically brief and may only capture par-
tial visual information (see Figure 1 (a)). Therefore, relying solely
on global features extracted independently may not fully achieve
semantic alignment between visual and non-English features.

Considering the exceptional capabilities demonstrated byMLLMs
such as GPT4 [1] and videochat2 [19] in multimodal understand-
ing, we argue that we can generate complementary contextual
descriptions using MLLM to enhance the semantics within visual
features (as depicted in Figure 1 (b) and Figure 2 (c)). This approach
enables us to bridge the semantic gap between modalities more
effectively. Similarly, other works [25, 38, 40, 41, 44, 45] have also
incorporated MLLMs to enhance existing vision-language mod-
els. However, these works simply utilize the [CLS] token or all
descriptions to interact with visual features, potentially resulting
in incomplete context information or high computational costs.
Therefore, it is crucial to further investigate how to effectively utilize
these visual descriptions to enhance visual representations, thereby
improving the alignment between visual and non-English features.

To address the aforementioned challenges, we propose LECCR
(Multimodal LLM Enhanced Cross-lingual Cross-modal Retrieval),
a novel two-stream solution. Specifically, given the descriptions
generated by MLLM, we first aggregate these descriptions into the
multi-view semantic slots, and incorporate the regularization loss
to force these semantic slots to focus on the different semantics
present in descriptions (e.g., different objects in the image). Sub-
sequently, we introduce a multi-view visual-semantic interaction
module to interact these semantic slots with the visual features. This
module not only enhances the semantics within visual features but
also generates local visual context semantics, enabling multi-level
cross-lingual cross-modal matching and effectively narrowing the
semantic gap between modalities. Finally, we use English features

as guidance to establish a more comprehensive correspondence
between visual and non-English features.

The proposed method, LECCR, is evaluated and compared with
previous work on two text-image retrieval benchmarks, Multi30K
and MSCOCO, as well as two text-video retrieval benchmarks,
VATEX and MSR-VTT-CN. Our method consistently outperforms
previous approaches in the majority of evaluation settings, high-
lighting its effectiveness in CCR task. Our contributions can be
summarized as follows: (1) We propose a new two-stream CCR
solution, LECCR, which incorporates MLLM to improve the align-
ment between visual and non-English features. (2) To bridge the
semantic gap between modalities, we utilize detailed visual de-
scriptions generated by MLLM and aggregate them into multi-view
semantic slots to enhance visual features. We then introduce multi-
level matching and softened matching under English guidance to
improve the alignment between visual and non-English features. (3)
We conduct extensive experiments on four image-text and video-
text cross-modal retrieval benchmarks across different languages,
demonstrating the effectiveness and potential of our method.

2 RELATEDWORK
2.1 Cross-lingual Cross-modal Retrieval (CCR)
CCR has been attracting growing interest among researchers. Com-
pared with the traditional cross-modal retrieval [3, 7, 11, 14, 16–
18, 20, 24, 37, 49], this approach offers a highly efficient and cost-
effective solution for non-English-based retrieval, reducing the
reliance on human-labeled data. Existing methods can be grouped
into two categories in terms of the model architecture. The first
approach [23, 27, 47, 50] adopts a single-stream structure that incor-
porates cross-lingual cross-modal fusion modules to model both im-
age regions and multilingual text word representations in a unified
semantic space, capturing the fine-grained relationship between
them. For instance, Ni et al. [27] use a code-switch strategy and
masked modeling loss to model the interaction between vision and
multiple languages. However, this approach includes an extra cross-
modal fusion module, which may lead to computation overhead
and slower inference speeds. Therefore, it may not be practical for
large-scale CCR tasks in real-world settings.

The second approach [13, 15, 34–36] involves a two-stream struc-
ture, where each stream is dedicated to modeling either the vision

2
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or language inputs. For instance, Jain et al. [15] use scalable dual
encoder models trained with contrastive losses to learn encoders
for both language and images, combining image-text matching and
text-text matching tasks. This approach maps the global features of
different modalities into a common semantic space to learn cross-
modal alignment. However, despite its efficiency, this approach still
encounters challenges due to the absence of explicit cross-modal
interaction. Additionally, existing dataset captions are typically
brief and may only capture partial visual information. The informa-
tion imbalance between two modalities further exacerbating the
difficulty in aligning their features. In this paper, we adopt the two-
stream structure and incorporate the MLLM to provide additional
contextual semantics for visual features. This can help narrow the
semantic gap between modalities and further improve alignment
between visual and non-English features.

2.2 LLM-enhanced Vision-Language Models
With exceptional language understanding capabilities, LLMs [2, 30,
31, 31] have exhibited remarkable capabilities in a variety of tasks,
such as image captioning, and visual question answering. Recently,
a new line of work has emerged [25, 28, 38, 40, 41, 44, 45] that
incorporates them to enhance the vision-language models (VLMs).
For example, in the classification task, menon et al., [25] and pratt
et al., [28] leverage the LLMs to generate the textual descriptors for
each category, comparing images to these descriptors rather than
estimating the similarity of images directly with category names.
Similarly, Yang et al., [41] use GPT-3 along with text descriptions
of images for the Visual Question Answering (VQA) task. In this
work, we extend the descriptive LLMs to generate visual context
descriptions in a CCR task. Another relevant work in cross-modal re-
trieval, Wu et al. [38], employs LLMs to generate auxiliary captions
to enhance text-video matching. However, their approach primarily
utilizes auxiliary captions for data augmentation and simply inter-
acts with visual features using [CLS] embeddings. In contrast, our
objective is to leverage rich descriptions to offer semantic context
for visual features. Moreover, we introduce multi-view semantic
slots to comprehensively represent the description content, thereby
providing contextual semantic information for visual features.

3 METHODS
Figure 3 shows an overview of our approach. In what follows, we
will briefly describe the CCR definitions and our Baselinemethod (in
Section 3.1). Then, we present our method LECCR, including multi-
view semantic slots generation (in Section 3.2), multi-view visual-
semantic interaction (in Section 3.3), multi-level matching (in Sec-
tion 3.4), and softened matching under English guidance (in Sec-
tion 3.5), respectively.

3.1 Preliminary
The objective of the CCR task is to retrieve the relevant visual
content (i.e., image or video ) using the non-English query (see
Figure 1 (c)), while solely relying on annotated paired visual-English
sample pairs during training. Following previous studies [34, 36, 47],
we employ the MT to generate the translated captions based on the
English captions. This enables us to construct a dataset consisting
of triplet sample pairs D = (𝑉 , 𝑆,𝑇 ), where 𝑉 , 𝑆 , and 𝑇 represent

the visual items (e.g., images or videos), English captions, and non-
English captions, respectively. Then, we take them as the input, and
use the vision encoder F𝑣 , English encoder F𝑠 , and non-English
encoder F𝑡 to extract the corresponding sequential representations
Z𝑣 ∈ R𝑁𝑣×𝑑𝑣 ,Z𝑠 ∈ R𝑁𝑠×𝑑𝑠 , and Z𝑡 ∈ R𝑁𝑡×𝑑𝑡 , where 𝑁𝑥∈{𝑣,𝑠,𝑡 }
denotes the length of each sequence, and 𝑑𝑥∈{𝑣,𝑠,𝑡 } denotes the
channel dimension. Finally, we project them into a multi-lingual
multi-modal common space. This process can be represented as:

Z𝑣 = F𝑣 (𝑉 ),Z𝑠 = F𝑠 (𝑆),Z𝑡 = F𝑡 (𝑇 ), (1)

h𝑣 = 𝜙𝑣 (Z𝑐𝑙𝑠𝑠 ), h𝑠 = 𝜙𝑠 (Z𝑐𝑙𝑠𝑠 ), h𝑡 = 𝜙𝑡 (Z𝑐𝑙𝑠𝑡 ) (2)

where 𝜙 (·) denotes the linear projection function used to project
the features into a common space, Z𝑐𝑙𝑠𝑥 is the [CLS] features, and
h𝑥 ∈ R𝑑 denotes the corresponding latent features in the common
space, where 𝑥 ∈ {𝑣, 𝑠, 𝑡}.

Following this, we introduce the contrastive loss to pull the
paired samples closer to each other and push the non-paired samples
away from each other. It can be defined as:

L𝑣𝑠 = L𝑐𝑡𝑟𝑎 (h𝑣, h𝑠 ),L𝑡𝑠 = L𝑐𝑡𝑟𝑎 (h𝑡 , h𝑠 ),L𝑣𝑡 = L𝑐𝑡𝑟𝑎 (h𝑣, h𝑡 )
(3)

Among them, the contrastive loss L𝑐𝑡𝑟𝑎 can be formulated as:

L𝑐𝑡𝑟𝑎 (a, b) = − 1
2 × 1

𝐵

∑𝐵
𝑖=1 [𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑆𝑔 (a𝑖 ,b𝑖 )/𝜏 )∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝑆𝑔 (a𝑖 ,b𝑗 )/𝜏 )

+𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑆𝑔 (a𝑖 ,b𝑖 )/𝜏 )∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝑆𝑔 (a𝑗 ,b𝑖 )/𝜏 )

]
(4)

where 𝐵 represents the mini-batch size, 𝜏 represents the temper-
ature coefficient, and 𝑆𝑔 (a𝑖 , b𝑗 ) = a𝑖𝑇 b𝑗

| |a𝑖 | | · | |b𝑗 | | represents the simi-
larity function to calculate the similarity between the 𝑖-th feature
vector a and the 𝑗-th feature vector b. The final objective can be
calculated as: L𝑏𝑎𝑠𝑒 = L𝑣𝑠 + L𝑡𝑠 + L𝑣𝑡 .

During the inference, we calculate the similarities 𝑆𝑔 (h𝑣, h𝑡 )
between the visual features h𝑣 and the non-English features h𝑡
to perform retrieval. Note that we take the above process as our
Baseline method.

3.2 Multi-view Semantic Slots Generation
In this section, we aim to aggregate visual descriptions generated
by MLLM into the multi-view semantic slots, enabling us to capture
diverse semantics within them. This is substantially different from
existing methods that only utilize the [CLS] token or all represen-
tations, which may not fully leverage the contextual information
in the descriptions. Specifically, given the images (or videos), we
feed them into the MLLM with the prompt, such as "### Please
describe the contents of this image in detail." to generate the rich
visual descriptions 𝐶 ( as illustrated in Figure 4). It is worth not-
ing that our visual descriptions are generated in English, and no
additional translations are introduced, avoiding any extra loss in
quality. Then, we extract description embeddings Z𝑐 ∈ R𝑁𝑐×𝑑𝑐

using the description encoder F𝑐 and employ the 𝑁𝑞 learnable
queries that are randomly initialized to aggregate them. This ag-
gregation process enables us to generate multi-view semantic slots

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

KL-Divergence

Visual-Semantic Interaction

LearnedQueriesQ

𝑚𝑎𝑥q k vv q

Interaction

Non-English caption

Generation𝐹$

Interaction

𝑍! "𝑍!

#𝑀

𝑀

Image

Description

𝐹&

The image shows a 
plate of food on a
table with two

… ℎ"

ℎ#
English caption

A sandwich and
vegetables are 
on a plate.

Un sandwich
et des légumes 
dans l’assiette.

𝐹'M
atching

Interaction

𝑚𝑎𝑥

𝑚𝑎𝑥

Multi-level Matching English Guidance

k

(𝑍!

𝑍!𝑀

*𝑀
+ℎ! ℎ" *𝑀

*𝑀 *𝑀

𝐹-

MLLM

+ℎ! ℎ#

ℎ"

ℎ# ℎ#

ℎ"

+ℎ! +ℎ!

Figure 3: Overview of the proposed LECCR framework. We utilize the multi-modal large language model (MLLM) to generate
detailed visual descriptions, which are then employed as internal features to enhance the visual representations. Additionally,
we introduce multi-level matching and softened matching under English guidance to improve the alignment between visual
and non-English representations.

### Input:

The video depicts a news report on a restaurant event, 
with the news anchor discussing the event. Delicious 
food is displayed on the table. The chef is seen cutting 
the food and the news anchor is seen eating the food. 

### Prompt: Please describe the contents of this video in detail.

### Output:

### Input:

### Prompt: Please describe the contents of this image in detail.
### Output: The image shows a large body of water with a boat in 

the foreground. The boat is docked at a pier, and there 
are several birds flying overhead. The sky is cloudy, and 
there are several buildings in the background. The 
overall atmosphere of the image is peaceful and serene. 

Figure 4: The example of the visual description generated
using MLLM.

M ∈ R𝑁𝑞×𝑑 , where each view encapsulates distinct semantics of
input descriptions. Mathematically, this can be represented as:

Z𝑐 = 𝜙𝑐 (F𝑐 (𝐶)) (5)

Q̄ = 𝑀𝐻𝐶𝐴(Q,Z𝑐 ,Z𝑐 ) (6)

M = 𝐿𝑁 (𝜙𝑞 (Q̄)) + Q̄ (7)

where𝑀𝐻𝐶𝐴(, , ) represents themulti-head cross-attentionmodule,
𝜙𝑐 (·) and 𝜙𝑞 (·) represent the linear projection functions, and 𝐿𝑁 (·)
represents the layer norm.

Additionally, to prevent the generated multi-view semantic slots
from overly focusing on the same semantic features, we introduce
a multi-view regularization loss to encourage diversity among the
slots. This objective can be formulated as:

L𝑟𝑒𝑔 = − 1
𝐵
× 1
𝑁𝑞

𝐵∑︁
𝑖=1

𝑁𝑞∑︁
𝑗=1

𝑙𝑜𝑔𝑃𝑖, 𝑗 (8)

where 𝑝𝑖 𝑗 = 𝑒𝑥𝑝 (m𝑖 𝑗𝑇m𝑖 𝑗 )∑𝑁𝑞

𝑘=1 𝑒𝑥𝑝 (m𝑖 𝑗𝑇m𝑖𝑘 )
represents the similarity distribu-

tion between views, and m𝑖 𝑗 denotes the 𝑗-view semantic slot of
the 𝑖 − 𝑡ℎ sample.

3.3 Multi-view Visual-Semantic Interaction
We propose a vision-semantic interaction module that uses the
above multi-view semantic slots as the internal representation to
bridge the semantic gap between modalities. This module serves
two primary purposes: (1) semantic slots to vision (C2V), which
provides additional contextual semantic information to enhance
the semantics within visual features; (2) vision to semantic slots
(V2C), enabling the multi-view semantic slots to capture their cor-
responding visual information and generate local contextual visual
semantics. Specifically, we take the visual representations Z𝑣 and
the multi-view semantic slots 𝑀 as inputs to the dual attention
block. This module enables us to generate two outputs: semantic-
enhanced visual features Ẑ𝑣 and local contextual visual semantics
M̂. Here, we present two alternative options for the interaction as
below:

(1) Dual cross-attention: we utilize two cross-attention blocks,
where the visual features Z𝑣 and multi-view semantic slotsM are

4
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used as queries, respectively. These blocks then aggregate infor-
mation from the features of each other. It can be formally defined
as:

Z̄𝑣 = 𝑀𝐻𝐶𝐴(Z𝑣,M,M), M̄ = 𝑀𝐻𝐶𝐴(M, 𝑍𝑣, 𝑍𝑣) (9)

Ẑ𝑣 = 𝐿𝑁 (𝜙𝑧 (Z̄𝑣)) + Z̄𝑣, M̂ = 𝐿𝑁 (𝜙𝑚 (M̄)) + M̄ (10)

where 𝜙𝑧 (·) and 𝜙𝑚 (·) represent the linear projection functions.
(2) Co-attention: we concatenate the visual features Z𝑣 and se-

mantic slots M together and process them through a self-attention
block:

Z̄𝑣, M̄ = 𝑀𝐻𝑆𝐴( [Z𝑣 ;M], [Z𝑣 ;M], [Z𝑣 ;M]) (11)

Ẑ𝑣 = 𝐿𝑁 (𝜙𝑧 (Z̄𝑣)) + Z̄𝑣, M̂ = 𝐿𝑁 (𝜙𝑚 (M̄)) + M̄ (12)

where𝑀𝐻𝑆𝐴(, , ) represents the multi-head self-attention, and [; ]
represents the concatenate operation along the length dimension
of the sequence.

3.4 Multi-level Matching
After the vision-semantic interaction, the multi-view semantic slots
aggregate the corresponding local contextual visual features, which
can be considered as the local features. Next, we introduce multi-
level matching, including caption-slots matching (local level) and
caption-vision matching (global level), to facilitate cross-lingual
cross-modal alignment.

Caption-slots matching. Considering that semantic slots from
each view may be associated with different aspects of the visual
content, there could be significant semantic disparities between the
different views. Hence, we align the caption with the slot whose
semantics are most closely related, instead of imposing strict align-
ment constraints on all view semantic slots. To achieve this, the
similarity scores between the caption and the semantic slots are
computed as follows:

𝑆𝑙 (h𝑖𝑥 , m̂𝑗 ) = max
0≤𝑘≤𝑁𝑞

(m̂𝑗𝑘 )𝑇 h𝑖𝑥
| |m̂𝑗𝑘 | | · | |h𝑖𝑥 | |

, 𝑥 ∈ {𝑠, 𝑡} (13)

where S𝑙 (h𝑖𝑥 , m̂𝑗 ) represents the similarity score between the 𝑖-th
caption and the 𝑗-th multi-view semantic slots. Then, the caption-
slots matching objective L𝑐 can be formulated as:

L𝑠𝑐 = − 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑆𝑙 (h𝑖𝑠 , m̂𝑖 )/𝜏)∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝑆𝑙 (h𝑖𝑠 , m̂𝑗 )/𝜏)

(14)

L𝑡𝑐 = − 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (S𝑙 (h𝑖𝑡 , m̂𝑖 )/𝜏)∑𝐵
𝑗=1 𝑒𝑥𝑝 (S𝑙 (h𝑖𝑡 , m̂𝑗 )/𝜏)

(15)

L𝑐 =
1
2
(L𝑠𝑐 + L𝑡𝑐 ) (16)

Caption-vision matching. Similar to Equation 3, in this case,
we utilize the semantic-enhanced visual features Ẑ𝑣 to align with
the caption features, represented as:

L𝑣𝑠 = L𝑐𝑡𝑟𝑎 (ĥ𝑣, h𝑠 ), L𝑣𝑡 = L𝑐𝑡𝑟𝑎 (ĥ𝑣, h𝑡 ) (17)

L𝑣 =
1
2
(L𝑣𝑠 + L𝑣𝑡 ) (18)

where ĥ𝑣 = 𝜙𝑣 (Ẑ𝑐𝑙𝑠𝑣 ) represents the global visual features.

3.5 Softened matching under English Guidance
The ground-truth labels used in Equation 3 are hard one-hot labels,
which assume no correlation between unpaired samples. This ap-
proach assigns equal weights to all negative samples, disregarding
the potentially valuable inter-modal relationships. This makes align-
ing visual and non-English features more challenging. To address
this issue, we propose utilizing English features as guidance for
non-English ones. Our goal is to use the visual-English similarity
as a softened target to guide the alignment between visual and non-
English features. This softened target helps establish comprehen-
sive relationships between modalities. To capture the relationships
between modalities more effectively, we calculate vision-English
similarity at multiple levels, including both local and global levels.
We then integrate these similarities to generate softened targets that
direct the non-English features. This process can be represented
mathematically as follows:

𝑆𝑠𝑜 𝑓 𝑡 (h𝑖𝑠 , ĥ
𝑗
𝑣,m

𝑗 ) = 𝛼 · 𝑆𝑔 (h𝑖𝑠 , ĥ
𝑗
𝑣) + (1 − 𝛼) · 𝑆𝑙 (h𝑖𝑠 ,m𝑗 ) (19)

𝑦𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑠𝑜 𝑓 𝑡 (h𝑖𝑠 , ĥ
𝑗
𝑣,m

𝑗 )/𝜏) (20)

where 𝑌 ∈ R𝐵×𝐵 represents the softened targets, and 𝛼 represents
the weight parameter. Following, we use the KL-Divergence to
supervise the visual-non-English correspondence:

𝑦𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑔 (h𝑖𝑡 , ĥ
𝑗
𝑣)/𝜏) (21)

L𝑟𝑘𝑡 =
1
𝐵

𝐵∑︁
𝑖=1

𝐾𝐿(𝑦𝑖 | | 𝑦𝑖 ) (22)

Finally, the matching between visual and non-English features
in Equation 17 can be modified as:

L̂𝑣𝑡 = 𝜆 · L𝑣𝑡 + (1 − 𝜆) · L𝑟𝑘𝑡 (23)

where 𝜆 represents the weight parameter.

3.6 Training and Inference
Training. The final training objective can be formulated as:

L = L𝑡𝑠 + L𝑣 + 𝜇1L𝑐 + 𝜇2L𝑟𝑒𝑔 (24)

where 𝜇1 and 𝜇2 represent the loss weights. In the experiments, we
set them to 0.1 and 0.01, respectively.

Inference. After training the model, given a sentence query in
non-English, we sort candidate videos/images in descending order
based on their similarity scores with the query. Specifically, we
first compute the similarity between visual features ℎ̂𝑣 and query
features ℎ𝑡 , as well as between semantic slots �̂� and query features
ℎ𝑡 . Then, we combine the two scores to obtain the final similarity
score. This can be formulated as:

𝑆𝑓 𝑖𝑛𝑎𝑙 = 𝛽 · 𝑆𝑔 (h𝑡 , ĥ𝑣) + (1 − 𝛽) · 𝑆𝑙 (h𝑡 , M̂) (25)

where 𝛽 denotes the weight parameter, which we set to 0.8 in our
experiments.
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4 EXPERIMENT
4.1 Experimental Settings
Datasets. We conduct experiments on two public multilingual
image-text retrieval datasets (Multi30K [10]) and MSCOCO[6]), as
well as two video-text retrieval datasets, VATEX [32] and MSR-
VTT-CN [34]. Notably, we only use the annotated vision-English
data pair in the training process, while using the non-English query
(human labeled) to evaluate. Following previous work [34], the MT
we adopt the Google translator.

• Multi30K [10]: This dataset consists of 31,000 images and is a
multi-lingual version of Flickr30K [43]. It involves four languages,
i.e., English(en), German(de), French(fr), and Czech(cs). For the
dataset partition, we split the data into train/dev/test sets in a
29000/1000/1000, similar to [43].

• MSCOCO [6]: This dataset consists of 123,287 images, and each
image has 5 captions. We translate the training set from English
into Chinese(zh) and Japanese(ja) by resorting to MT, and using
the test sets from the [21] and [42], respectively. We follow the
data split as in [50].

• VATEX [32]: VATEX is an extensive video-text retrieval dataset
that provides bilingual captions for over 41,250 videos. Each video
is paired with 10 English sentences and 10 Chinese sentences
that describe its contents in detail. Similar to the approach taken
in [5, 9], we train our models on 25,991 video clips, while we
reserve 1,500 clips each for validation and testing.

• MSR-VTT-CN [34]: MSR-VTT-CN is the multilingual version
of the MSR-VTT, which covers English and Chinese. We follow
the partition of [46] containing 9,000 and 1,000 for the training
and testing, respectively.

Evaluation metrics. For video-text retrieval, we follow the
previous works [22, 33], and use rank-based metrics, namely 𝑅@𝐾

(𝐾 = 1, 5, 10), and the sum of all Recalls (SumR) to evaluate the
performance. 𝑅@𝐾 is the fraction of queries that correctly retrieve
desired items in the top 𝐾 of ranking list. Higher 𝑅@𝐾 and mAP
mean better performance. For image-text retrieval, we only report
the SumR.

Implementation details Following [34], we use the CLIP [29]
to extract the image representations, and use mBERT [8] to extract
the text representations. For video features, on MSR-VTT-CN, we
use the frame-level features ResNet-152 [12] and concatenate frame-
level features ResNeXt-101 [39][26] to obtain a combined 4,096-
dimensional feature. On VATEX, we adopt the I3D [4] video feature
which is officially provided. For all experiments, we train the modal
for 40 epochs with a cosine decay scheduler and an initial learning
rate of 1 × 10−5. We use the videochat2 to generate the visual
descriptions for images and videos. Besides, all text encoders are
parameters shared.

4.2 Evaluation on Cross-lingual Image-Text
Retrieval

We conducted a comprehensive evaluation of our LECCR method
compared to state-of-the-art approaches on two widely used image-
text datasets, Multi30K and MSCOCO. It is worth noting that M3P,
UC2, UMVLP, CCLM, MURAL, and MLA were pre-trained on large-
scale vision-language datasets, while NRCCR, DCOT, CL2CM, and

Table 1: Cross-lingual image-text retrieval results on
Multi30K and MSCOCO. Following previous work, we use
the sumR as the metric. *: Models pre-trained on large-scale
datasets, e.g., CC3M and its MT version. †: Model uses the
same initialization parameters with CCLM. “XLMR-L/-B” de-
note the XLMR-Large/-Base. The single-stream method is
usually a one-to-one matching Siamese architecture, so its
inference efficiency is lower than that of the two-stream
method. During inference, LECCR† is about 10x faster than
CCLM.

Method Backbone Multi30K MSCOCO
en2de en2fr en2cs en2zh en2ja

Single-Stream:
M3P [27]* XLMR-L 351.0 276.0 220.8 332.8 336.0
UC2 [50]* XLMR-B 449.4 444.0 407.4 492.0 430.2
UMVLP [23]* XLMR-L 506.4 516.6 463.2 499.8 438.6
CCLM [47]* XLMR-L 540.0 545.4 536.4 546.0 532.8
Two-Stream:
MURAL [15]* XLMR-L 456.0 454.2 409.2 - 435.0
MLA [48]* CLIP 495.6 510.0 457.2 - 482.4
NRCCR [34] mBERT 480.6 482.1 467.1 512.4 507.0
DCOT [36] mBERT 494.9 495.3 481.8 521.5 515.3
CL2CM [35] mBERT 498.0 498.6 485.3 522.0 515.9
CL2CM [35]† XLMR-L 530.4 534.1 526.3 544.3 546.2
LECCR mBERT 505.2 507.8 494.3 535.7 532.8
LECCR† XLMR-L 535.6 537.0 529.8 548.1 547.7

Table 2: Cross-lingual video-text retrieval results on VATEX
(en2zh). *: Model pre-trained on a large-scale dataset Multi-
HowTo100M[13].

Method
T2V V2T

SumR
R@1 R@5 R@10 R@1 R@5 R@10

MMP w/o pre-train[13] 23.9 55.1 67.8 - - - -
MMP [13]* 29.7 63.2 75.5 - - - -
NRCCR [34] 30.4 65.0 75.1 40.6 72.7 80.9 364.8
DCOT [36] 31.4 66.3 76.8 46.0 76.3 84.8 381.8
CL2CM [35] 32.1 66.7 77.3 48.2 77.1 85.5 386.9
LECCR 32.7 67.9 78.8 49.0 78.8 87.2 394.4

our method do not require additional pre-training data. In Table 1,
we can observe that our LECCR achieves better performance than all
two-stream methods. Specifically, compared to the baseline method
CL2CM, our approach demonstrates improvements of 1.4%, 1.8%,
1.9%, 2.6%, and 3.4% on all languages in terms of sumR. Unlike the
single-stream models that incorporate cross-modal fusion modules
to capture detailed interactions between image regions and text
words, our LECCR incorporates LLM to provide additional semantic
context information for visual features. This can narrow the gap
between modalities and improve the alignment between visual and
non-English representations. Note that our method is xx faster than
CCLM in inference times. Moreover, when equipped with a stronger
backbone pre-trained on large-scale datasets, our LECCR† achieves
comparable performance to the single-stream method CCLM.
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Table 3: Cross-lingual video-text retrieval results on MSR-
VTT-CN (en2zh).

Method
T2V V2T

SumR
R@1 R@5 R@10 R@1 R@5 R@10

NRCCR [34] 29.6 55.8 67.4 31.3 56.0 67.2 307.3
LECCR 29.8 56.5 69.1 29.5 59.1 69.1 312.5

Table 4: Ablation study of our proposed component. “MVSS",
“MM", and “SMEG" represent the multi-view semantic slots
generation and visual-semantic interaction, multi-level
matching, and softened matching under English guidance,
respectively. The “+" symbol indicates that the module is
gradually added based on the line above it.

Method en2de en2fr en2cs
Baseline 484.6 491.4 482.1
+ MVSS 498.0 499.2 487.9
+ MM 501.1 503.4 490.2
+ SMEG 505.2 507.8 494.3

Table 5: Ablation study of multi-view visual-semantic inter-
action.

Method en2de en2fr en2cs
Interaction manner:
Co-attention 504.4 505.1 494.0
Dual cross-attention 505.2 507.8 494.3
Interaction direction:
Single interaction V2C 501.4 502.4 489.7
Single interaction C2V 503.4 505.0 491.9
Dual interaction 505.2 507.8 494.3

4.3 Evaluation on Cross-lingual Video-Text
Retrieval

The experimental results on the VATEX and MSR-VTT-CN datasets
are reported in Table 2 and Table 3. We can see that our method
LECCR outperforms all baseline methods using a two-stream struc-
ture. This further demonstrates the effectiveness of our approach
in incorporating LLM to provide additional contextual semantic in-
formation. Additionally, even when compared to the MMP trained
on large-scale multi-lingual multi-modal datasets, our method still
achieves superior results.

4.4 Ablation Studies
In this section, we provided detailed ablation studies on Multi30K
to verify the effectiveness of each part of our design.

Analysis of each component. To validate the effectiveness of
the components within ourmodel, we conduct ablation experiments
on them. As shown in Table 4, we observed consistent improve-
ments in performance as the components were incrementally added.

Table 6: Ablation study of the soft matching under English
guidance.

Method en2de en2fr en2cs
Baseline 484.6 491.4 482.1
w/o guidance 501.1 503.4 490.2
Guidance with 𝑆𝑔 503.2 504.7 492.0
Guidance with 𝑆𝑙 503.5 505.2 492.1
Guidance with 𝑆𝑔 and 𝑆𝑙 505.2 507.8 494.3

Specifically, the introduction of multi-view semantic slots and their
corresponding interaction resulted in performance increases of
2.8%, 1.6%, and 1.2%, respectively. This clearly demonstrates that
the complementary context information provided by MLLM helps
bridge the gap between modalities. Furthermore, when we incor-
porated multi-level matching and English guidance, we observed a
significant performance gain.

Analysis of multi-view visual-semantic interaction. In Ta-
ble 5, we investigate various interaction modules mentioned in Sec-
tion 3.3. Both modules employ a transformer structure and utilize
the multi-head self-attention mechanism to fuse visual and seman-
tic information. The results indicate that the dual cross-attention
module achieves superior performance, and we use it in the fol-
lowing experiments. Furthermore, we also conduct the experiment
to analyze the interaction direction. The results reveal that dual
interaction leads to significant performance improvements. This is
because dual interaction not only enhances the semantic informa-
tion within visual features, but also generates local visual semantics
that can be utilized for multi-level matching. In summary, the re-
sults demonstrate that the multi-view visual-interaction module
can lead to better visual representations and improved alignment
between visual and non-English features.

Analysis of soft matching under English guidance. In Ta-
ble 6, we conduct the experiment to investigate the effectiveness of
soft matching and analyze the impact of the source of the softened
targets. Notably, we observed a substantial performance drop when
soft matching was removed. This suggests that the rich relations
between samples are important to improve the alignment between
visual and non-English features. Moreover, the semantic slots after
interaction integrate local visual contextual semantics, enabling
the capture of more detailed local visual information and helping
to provide the better guidance. The results demonstrate that the
combination of 𝑆𝑚 with 𝑆𝑔 further improves the performance.

Analysis of the description representation. We conducted a
comparison between our proposed multi-view semantic slots and
other methods for extracting description representations, namely
CLS, Mean, and All. As shown in Table 7, our method consistently
outperforms the others. Using the [CLS] token and mean pooling
methods both extract global information from descriptions, but this
may lead to a loss of rich contextual semantics. Consequently, it
becomes challenging to provide comprehensive semantic informa-
tion for visual features. On the other hand, directly employing all
description representations may result in information redundancy
and make it difficult to extract useful and diverse key information.
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Table 7: Ablation study of the extraction of MLLM-generated
descriptions. “CLS" denotes using the [CLS] token of descrip-
tion representations; “mean" denotes using the mean pool-
ing applied to the description representations; “All" denotes
using the all description representations; and “Multi-view"
denotes our proposed multi-view semantic slots.

Method en2de en2fr en2cs
CLS 501.1 502.3 488.8
Mean 501.8 503.0 489.0
All 502.7 504.9 491.3
Multi-view 505.2 507.8 494.3

Table 8: Ablation study on the encoding manner of MLLM-
generated descriptions. “Share" denotes the encoder that is a
parameter shared with the caption encoder.

Method en2de en2fr en2cs
Frozen 492.1 495.0 484.9
Finetune 501.5 503.1 489.9
Share 505.2 507.8 494.3

1 2 3 4 5 6 7
# View

500

502

504

506

508

510

Su
m

R

(a) de

1 2 3 4 5 6 7
# View

502

504

506

508

510

512

514

Su
m

R

(b) fr

Figure 5: The performance of different numbers (#view) of
semantic slots.

In contrast, our proposed multi-view semantic slots effectively ag-
gregate diverse semantics within descriptions. This enables us to
capture rich contextual semantics of visual representations in the
subsequent interaction module.

Analysis of the description encoding. In Table 8, we perform
an ablation study to investigate different approaches to encoding
the description representation. The results indicate that utilizing a
frozen text encoder to extract the description representation leads
to inferior results. In contrast, we find that the best performance is
achieved when using shared parameters with the caption encoder.
We hypothesize that this is due to the significant distributional
differences between description and caption features when using a
frozen text encoder. Therefore, we adopt the shared text encoder
for description representation encoding, and it does not incur any
additional computational costs.

Analysis of the number of semantic slots. In Figure 5, we
investigate the impact of the number of semantic slots on perfor-
mance. As shown, performance is best when 4 views are used.When

Image Attention Map

Figure 6: The visualization of multi-view semantic slots in
multi-view semantic interaction module (#view = 4). Each
semantic slot can distinctly focus on local semantics within
the images.

more views are added, performance slightly drops. We hypothe-
size that this is because too many views may lead to information
redundancy.

4.5 Visualization of Multi-view Semantic Slots.
In Figure 6, attention maps from the last attention layer in the
multi-view visual-semantic interaction module (V2C) are visual-
ized. These attentions are designed to capture visual information
corresponding to the semantic slots. Through this interaction mod-
ule, we obtain diverse local visual semantics that specifically focus
on different objects or contexts. These semantics are then utilized
in subsequent multi-level alignment objectives to improve the align-
ment between visual and non-English features. As shown, each slot
focuses on distinct objects in the images, showcasing the diverse
semantics captured by the multi-view semantic slots. For instance,
in the third line, the semantic slots highlight the "cat", "oranges",
and "cake" respectively in the image. The visualization results pro-
vide further evidence of the effectiveness of the interaction module
in capturing and integrating related visual information.

5 SUMMARY AND CONCLUSIONS
In this paper, we present LECCR, a novel two-stream solution for the
CCR task. Our approach aims to bridge the gap between modalities
by incorporating the multi-modal large language model (MLLM) to
generate detailed visual descriptions. These descriptions serve to
provide additional contextual semantics for the visual representa-
tions. Additionally, considering the lower quality of non-English
representations, we utilize English representations as guidance to
improve the alignment between visual and non-English features
by providing comprehensive inter-modal relationships. Extensive
experiments demonstrate that LECCR significantly improves the
alignment quality between vision and non-English features on var-
ious benchmarks.
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