
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A OTHER RELEATED WORKS

Beyond Worst-Case Analyses of Binary Trees. Binary trees are among the most ubiquitous pointer-based data
structures. While schemes without re-balancing do obtain O(log2 n) time bounds in the average case, their behav-
ior degenerates to ⌦(n) on natural access sequences such as 1, 2, 3, . . . , n. To remedy this, many tree balancing
schemes with O(log2 n) time worst-case guarantees have been proposed (Adelson-Velskii & Landis, 1963; Guibas &
Sedgewick, 1978; Cormen et al., 2009).

Creating binary trees optimal for their inputs has been studied since the 1970s. Given access frequencies, the static
tree of optimal cost can be computed using dynamic programs or clever greedies (Hu & Tucker, 1970; Mehlhorn,
1975b; Yao, 1982; Karpinski et al., 1996). However, the cost of such computations often exceeds the cost of invoking
the tree. Therefore, a common goal is to obtain a tree whose cost is within a constant factor of the entropy of the
data, multiple schemes do achieve this either on worst-case data (Mehlhorn, 1975b), or when the input follows certain
distributions (Allen & Munro, 1978).

A major disadvantage of static trees is that their cost on any permutation needs to be ⌦(n log2 n). On the other hand,
for the access sequence 1, 2, 3, . . . , n, repeatedly bringing the next accessed element to the root gives a lower cost
O(n). This prompted Allen and Munro to propose the notion of self-organizing binary search trees. This scheme
was extended to splay trees by Sleator & Tarjan (1985). Splay trees have been shown to obtain many improved
cost bounds based on temporal and spatial locality (Sleator & Tarjan, 1985; Cole et al., 2000; Cole, 2000; Iacono,
2005). In fact, they have been conjectured to have access costs with a constant factor of optimal on any access
sequence (Iacono, 2013). Much progress has been made towards showing this over the past two decades (Demaine
et al., 2009; Derryberry & Sleator, 2009; Chalermsook et al., 2019; Bose et al., 2020)

From the perspective of designing learning-augmented data structures, the dynamic optimality conjecture almost goes
contrary to the idea of incorporating predictors. It can be viewed as saying that learned advice do not offer gains
beyond constant factors, at least in the binary search tree setting. Nonetheless, the notion of access sequence, as well
as access-sequence-dependent bounds, provides useful starting points for developing prediction-dependent search trees
in online settings. In this paper, we choose to focus on bounds based on temporal locality, specifically, the working-set
bound. This is for two reasons: the spatial locality of an element’s next access is significantly harder to describe
compared to the time until the next access; and the current literature on spatial locality-based bounds, such as dynamic
finger tends to be much more involved (Cole et al., 2000; Cole, 2000). We believe an interesting direction for extending
our composite scores is to obtain analogs of the unified bound (Iacono, 2001; Bădoiu et al., 2007) for B-Trees.

B-Trees and External Memory Model. Parameterized B-Trees (Brodal & Fagerberg, 2003) have been studied to
balance the runtime of read versus write operations, and several bounds have been shown with regard to the blocks of
memory needed to be used during an operation. The optimality is discussed in both static and dynamic settings. Rosen-
berg and Snyder (Rosenberg & Snyder, 1981) compared the B-Tree with the minimum number of nodes (denoted as
compact) with non-compact B-Trees and with time-optimal B-Trees. Bender et al. (Bender et al., 2016) considers keys
have different sizes and gives a cache-oblivious static atomic-key B-Tree achieving the same asymptotic performance
as the static B-Tree. When it comes to the dynamic setting, the trade-off between the cost of updates and accesses is
widely studied (O’Neil et al., 1996; Jagadish et al., 1997; Jermaine et al., 1999; Buchsbaum et al., 2000; Yi, 2012).
(Bose et al., 2008) studied the dynamic optimality of B-Trees and presented a self-adjusting B-Tree data structure that
is optimal up to a constant factor when B is constant.

B-Treap were introduced by Golovin (2008; 2009) as a way to give an efficient history-independent search tree in the
external memory model. These studies revolved around obtaining O(logB n) worst-case costs that naturally generalize
Treaps. Specifically, for sufficiently small B (as compared to n), Golovin showed a worst-case depth of O(1

↵ logB n)

with high probability, where B = ⌦(ln1/(1�↵) n). The running time of this structure has recently been improved
by Safavi & Seybold (2023) via a two-layer design.

The large node sizes of B-Trees interact naturally with the external memory model, where memory is accessed in
blocks of size B (Brodal & Fagerberg, 2003; Vitter, 2001). The external memory model itself is widely used in
data storage and retrieval Margaritis & Anastasiadis (2013), and has also been studied in conjunction with learned in-
dices (Ferragina et al., 2020). Several previous results discuss the trade-off between update time and storage utilization
(Brown, 2014; 2017; Fagerberg et al., 2019).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B LEARNING-AUGMENTED B-TREES

We now extend the ideas above, specifically the composite priority notions, to B-Trees in the External Memory Model.
We show that the learning-augmented B-Treaps (Appendix B.1) obtain static optimality (Appendix B.2) and is robust
to the noisy predicted scores (Appendix B.3). This model is also the basis of our analyses in online settings in
Appendix C.

B.1 LEARNING-AUGMENTED B-TREAPS

We first formalize this extension by incorporating our composite priorities with the B-Treap data structure from
Golovin (2009) and introducing offsets in priorities.
Lemma B.1 (B-Treap, Golovin (2009)). Given the unique binary Treap (T, priorityx) over the set of items [n] with
their associated priorities, and a target branching factor B = ⌦(ln1/(1�↵) n) for some ↵ > 0. Assuming priorityx are
drawn uniformly from (0, 1), we can maintain a B-Tree TB , called the B-Treap, uniquely defined by T . This allows
operations such as Lookup, Insert, and Delete of an item to touch O(1

↵ logB n) nodes in TB in expectation.

In particular, if B = O(n1/2��) for some � > 0, all above performance guarantees hold with high probability.

The main technical theorem is the following:
Theorem B.2 (Learning-Augmented B-Treap via Composite Priorities). Denote w = (w1, · · · , wn) 2 (0, 1)n as a
score associated with each element of [n] such that kwk1 = O(1) and a branching factor B = ⌦(ln1/(1�↵) n), there
is a randomized data structure that maintains a B-Tree TB over U such that

1. Each item x has expected depth O(1
↵ logB(1/wx)).

2. Insertion or deletion of item x into/from T touches O(1
↵ logB(1/wx)) nodes in TB in expectation.

3. Updating the weight of item x from w to w0 touches O(1
↵ | logB(w

0/w)|) nodes in TB in expectation.

We consider the following priority assignment scheme: For any x and its corresponding score wx, we always maintain:

priorityx := �blog2 logB
1

wx
c+ �, � ⇠ U(0, 1).

In addition, if B = O(n1/2��) for some � > 0, all above performance guarantees hold with high probability 1� �.

The learning-augmented B-Treap is created by applying Lemma B.1 to a partition of the binary Treap T . Each item x
has a priority in the binary Treap T , defined as:

priorityx = �
�
log2 logB

1

wx

⌫
+ �x, �x ⇠ U(0, 1), for all x 2 U. (5)

We then partition the binary Treap T based on each item’s tier. The tier of an item is defined as the absolute value of
the integral part of its priority, i.e., ⌧x

def
= blog2 logB(1/wx)c.

Proof of Theorem B.2. To formally construct and maintain TB , we follow these steps:

1. Start with a binary Treap (T, priorityx) with priorities defined using equation equation 5.

2. Decompose T into sub-trees based on each item’s tier, resulting in a set of maximal sub-trees with items
sharing the same tier.

3. For each Ti, apply Lemma B.1 to maintain a B-Treap TB
i .

4. Combine all the B-Treaps into a single B-Tree, such that the parent of root(TB
i) is the B-Tree node containing

the parent of root(Ti).

Now, let’s analyze the depth of each item x. Keep in mind that any item y in the same B-Tree node shares the same
tier. Therefore, we can define the tier of each B-Tree node as the tier of its items.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Suppose x1, x2, . . . are the B-Tree nodes we encounter until we reach x. The tiers of these nodes are in non-increasing
order, that is, ⌧xi � ⌧xi+1 for any i. We’ll define Ct as the number of items of tier t for any t. As per the definition
(refer to equation equation 5), we have:

Ct = O(B2t), for all t

Using Lemma B.1 and the fact that B = O(C1/2
t), t � 1, we find that the number of nodes among xi of tier t is

O(1
↵ logB Ct) = O(2t/↵) with high probability. As a result, the number of nodes touched until reaching x is, with

high probability:

⌧xX

t=0

O(2t/↵) = O(2⌧x/↵) = O

✓
1

↵
logB

1

wx

◆

This analysis is also applicable when performing Lookup, Insert, and Delete operations on item x.

The number of nodes touched when updating an item’s weight can be derived from first deleting and then inserting the
item.

B.2 STATIC OPTIMALITY

In this section, we show that with our priority assignment, the learning-augmented B-Treaps are statically optimal. Let
x(1), x(2), . . . , x(m) represent an access sequence of length m. We define the relative frequency of each item x as
px

def
= |{i2[m] | x(i)=x}|

m . A static B-Tree is statically optimal if the depth of item x is:

depth(x) = O

✓
logB

1

px

◆
, for all x 2 [n]

As a corollary of Theorem B.2, we show that if we are given the relative frequency px, the learning-augmented B-
Treaps with our priority assignment achieves Static Optimality with weights wx

def
= px.

Corollary B.3 (Static Optimality for B-Treaps). Given the relative frequency px of each item x 2 [n], and a branching
factor B = ⌦(ln1.1 n), there exists a randomized data structure that maintains a B-Tree TB over [n] such that each
item x has an expected depth of O(logB 1/px). That is, TB achieves Static Optimality, meaning the total number of
nodes touched is O(OPT static

B) in expectation, where:

OPT static
B

def
= m ·

X

x2[n]

px logB
1

px
(6)

Furthermore, if B = O(n1/2��) for some � > 0, all above performance guarantees hold with high probability.

B.3 ROBUSTNESS GUARANTEES

In practice, we would not have access to the relative frequency px. Instead, we will have an inaccurate prediction qx.
Let p and q be the probability distribution over [n] such that p(x) = px, q(x) = qx. In this section, we will show that
B-Treap performance is robust to the error. Specifically, we analyze the performance under various notions of error in
the prediction. The notions listed here are the ones used for learning discrete distributions (refer to Canonne (2020)
for a comprehensive discussion).
Corollary B.4 (Kullback—Leibler (KL) Divergence). If we are given a density prediction q such that dKL(p; q) =P

x px ln(px/qx)  ✏, the total number of touched nodes is

O
⇣
OPT static

B +
✏m

lnB

⌘

Proof. Given the inaccurate prediction q, the total number of touched nodes in TB is

O

X

x

m · px logB
1

qx

!
= O

X

x

m · px logB
1

px
+m ·

X

x

px logB
px
qx

!
= O(OPT static

B +m
dKL(p; q)

lnB
)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Corollary B.5 (�2). If we are given a density prediction q such that �2(p; q) =
P

x(px � qx)2/qx  ✏, the total
number of touched nodes is

O
⇣
OPT static

B +
✏m

lnB

⌘

Proof. The corollary follows from Corollary B.5 and the fact dKL(p; q)  �2(p; q)  ✏.

Corollary B.6 (L1 Distance). If we are given a density prediction q such that kp � qk1  ✏, the total number of
touched nodes is

O
�
OPT static

B +m logB(1 + ✏n)
�

Proof. For item x with its marginal probability smaller than 1/1000n, its expected depth in the B-Treap is O(logB n)
using either px or qx as its score. If item x’s marginal probability is at least 1/1000n, the L1 distance implies that

px
epx

= 1 +
px � epx
epx

 1 +
✏

1/(1000n)
= 1 + 1000(1 + ✏n)

Therefore, item x’s expected depth in the B-Treap with score q is roughly

O

✓
logB

1

px
+ logB

px
qx

◆
 O

✓
logB

1

px
+ logB(1 + ✏n)

◆

The corollary follows.

Corollary B.7 (L2 Distance). If we are given a density prediction q such that kp � qk  ✏, the total number of
touched nodes is

O
�
OPT static

B +m logB(1 + ✏n)
�

Proof. This claim follows from Corollary B.6 and the fact kp� qk1  kp� qk2  ✏.

Corollary B.8 (Total Variation). If we are given a density prediction q such that dTV (p, q) = 0.5kp � qk1  ✏, the
total number of touched nodes is

O
�
OPT static

B +m logB(1 + ✏n)
�

Proof. This claim follows from Corollary B.6 and the fact kp� qk1  kp� qk1  2✏.

Corollary B.9 (Hellinger Distance). If we are given a density prediction q such that dH(p, q) = 0.5kpp�p
qk2  ✏,

the total number of touched nodes is

O
�
OPT static

B +m logB(1 + ✏n)
�

Proof. This claim follows from Corollary B.6 and the fact kp� qk1  2
p
2dH(p, q)  2

p
2✏.

C DYNAMIC LEARNING-AUGMENTED SEARCH TREES

In this section, we investigate the properties of dynamic B-trees that permit modifications concurrent with sequence
access. Prioritizing items that are anticipated to be accessed in the near future to reside at lower depths within the tree
can significantly reduce access times. Nonetheless, updating the B-trees introduces additional costs. The overarching
goal is to minimize the composite cost, which includes both the access operations across the entire sequence and
the modifications to the B-trees. We specifically concentrate on the study of locally dynamic B-trees, which are
characterized by the restriction that tree modifications are limited solely to the adjustment of priorities for the items
being accessed.

In Appendix C.1, we give the total cost guarantees for any locally dynamic B-trees. In Appendix C.2, we establish
the robustness guarantees in the context of imprecise priority scores, which may be given from a learning oracle. In
Appendix C.3, we demonstrate that the dynamic learning-augmented B-trees with a specific priority based on the
working set size — the number of distinct items requested between two consecutive accesses — achieves the working
set property. Full details are included in the appendix. Finally, in Appendix C.4, we analyze the general dynamic
B-trees with general time-varying priorities.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.1 LOCALLY DYNAMIC B-TREES

Our objective is to maintain a data structure that minimizes the total cost of accessing the sequence S given the time-
varying score w(i) 2 (0, 1)n, i 2 [m] associated to each item. Here, we focus on the dynamic B-trees that update the
priorities of only the items being accessed at any given moment, leaving the priorities of all other items unchanged.
We refer to these as locally dynamic B-trees.

Given n items, denoted as [n] = {1, · · · , n}, and a sequence of access sequence X = (x(1), . . . , x(m)), where
x(i) 2 [n]. At time i 2 [m], there exists some time-dependent score wij associated with each item j 2 [n]. Let
w(i) = (wi,1, · · · , wi,n) 2 (0, 1]n be the time-varying score vector. The score w(i) is defined to be locally changed
if it only differs from the previous score vector at the index of the item being accessed. In other words, at each time
i 2 {1, 2, · · · , n}, we have wi,j = wi�1,j for any j 6= x(i). The locally dynamic B-Treap is then defined as a B-Treap
whose priorities are updated according to the locally changed score. For any vector w, we write logw as the vector
taking the element-wise log on w. We give the guarantees in Theorem C.1.

Theorem C.1 (Locally-Dynamic B-Treap with Given Priorities). Given the locally changed scores w(i) 2 (0, 1)n, i 2
[m] satisfying kw(i)k1 = O(1) and a branching factor B = ⌦(ln1.1 n), there is a randomized data structure that
maintains a B-Tree TB over [n] such that when accessing the item x(i) at time i, the expected depth of item x(i) is
O(logB

1
wi,x(i)

). The expected total cost for processing the whole access sequence X is

cost(X,w) = O

n logB n+

mX

i=1

logB
1

wi,x(i)

!
.

Moreover, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

The proof is an application of Theorem B.2, where the priority function dynamically changes as time goes on, rather
than the Static Optimality case where the priority is fixed beforehand.

Proof of Theorem C.1. Initially, we set the priority for all items to be 1, and insert all items into the Treap. For any
time i 2 [n], for j 2 [n] such that wi�1,j 6= wi,j , we set

priority(i)j := �blog4 logB
1

wi,j
c+ �ij , �ij ⇠ U(0, 1).

Since kw(i)k1 = O(1), i 2 [m], by Theorem B.2, the expected depth of item s(i) is O(logB
1

wi,x(i)
). The total cost

for processing the sequence consists of both accessing x(i) and updating the priorities. The expected total cost for all
the accesses is

O

mX

i=1

logB
1

wi,x(i)

!
.

Then we will calculate the cost to update the Treap. Since the priority of an item only changes when it is accessed.
Updating the priority of x(i) from wi�1,x(i) to wi,x(i) has cost

O

✓����logB
wi�1,x(i)

wi,x(i))

����

◆
.

Hence we can bound the expected total cost for maintaining the Treap by

O

n logB n+

mX

i=2

����logB
wi�1,x(i)

wi,x(i)

����

!
= O

n logB n+ 2

mX

i=1

logB
1

wi,x(i)

!
.

Together the expected total cost is

O

n logB n+

mX

i=1

logB
1

wi,x(i)

!
.

The high probability bound follows similarly as Theorem B.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 ROBUSTNESS GUARANTEES

We have shown that given time-varying scores associated with each item w(i), there exists a B-Tree that gives us the
total cost in terms of the scores. In this section, we address scenarios in which precise score w(i) are not accessible.
Utilizing a learning oracle that predicts the logarithm of the score, we demonstrate that the total cost incorporates an
additive term corresponding to the mean absolute error (MAE) of the logarithm of the scores

Pm
i=1 | logB wi,x(i) �

logB ewi,x(i)|. We predict the logarithm of the score instead of itself to better capture the scale of it.

Theorem C.2 (Locally Dynamic B-Treap with Predicted Scores). Given the predicted locally changed scores ew(i) 2
(0, 1)n satisfying k ew(i)k1 = O(1), ewi,j � 1/poly(n) and a branching factor B = ⌦(ln1.1 n) , there is a randomized
data structure that maintains a B-Tree over the n keys such that the expected total cost for processing the whole access
sequence X is

cost(X, ew) = cost(X,w) +O

mX

i=1

��logB wi,x(i) � logB ewi,x(i)

��
!
.

Moreover, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

Proof. We apply Theorem C.1 with the predicted score ew(i), and get the expected total loss is

cost(X, ew) =O

n logB n+

mX

i=1

logB
1

ewi,x(i)

!

cost(X,w) +O

mX

i=1

����logB
1

ewi,x(i)
� logB

1

wi,x(i)

����

!

=cost(X,w) +O

mX

i=1

��logB wi,x(i) � logB ewi,x(i)

��
!
.

C.3 WORKING SET PROPERTY

In data structures, the working set is the collection of data that a program uses frequently over a given period. This
concept is important because it helps us understand how a program interacts with memory and thus enables us to
design more efficient data structures and algorithms. For example, if a program is sorting a list, the working set might
be the elements of the list it is comparing and swapping right now. The size of the working set can affect how fast the
program runs. A smaller working set can make the program run faster because it means the program doesn’t need to
reach out to slower parts of memory as often. In other word, if we know which parts of a data structure are used most,
we can organize the data or even the memory in a way that makes accessing these parts faster, which can speed up the
entire program.

In this section, we construct dynamic learning-augmented B-treaps that achieve the working set property. We define
the working-set size as the number of distinct items accessed between two consecutive accesses. Correspondingly,
we design a time-varying score, working-set score, as the reciprocal of the square of one plus working-set size. We
will show that the working-set score is locally changed and there exists a data structure that achieves the working-set
property, which states that the time to access an element is a logarithm of its working-set size. The formal definition
of the working-set size and the main theorems in this section are presented as follows.
Definition C.3 (Previous and Next Access prev(i, x) and next(i, x)). Let prev(i, x) be the previous access of item x
at or before time i, i.e, prev(i, x) := max {i0  i | x(i0) = x} . Let next(i, x) to be the next access of item x after time
i, i.e, next(i, x) := min {i0 > i | x(i0) = x} .
Definition C.4 (Working-set Size work(i, x)). Define the working-set Size work(i, x) to be the number of distinct
items accessed between the previous access of item x at or before time i and the next access of item x after time i.
That is,

work(i, x)
def
= |{x(prev(i, x) + 1), · · · , x(next(i, x))}|.

If x does not appear after time i, we define work(i, x) := n.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Theorem C.5 (Dynamic B-Treaps with Working-set Priority). With the working-set size work(i, x) known and the
branching factor B = ⌦(ln1.1 n), there is a randomized data structure that maintains a B-Tree TB over [n] with the
priorities assigned as

priority(i, x) = �blog2 logB(1 + work(i, x))2c+ U(0, 1).

Upon accessing the item x at time i, the expected depth of item x is O(logB(1 + work(i, x)). The expected total cost
for processing the whole access sequence X is

cost(X, priority) = O

n logB n+

mX

i=1

logB(1 + work(i, x))

!
.

In particular, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

Remark. Consider two sequences with length m, X1 = (1, 2, · · · , n, 1, 2, · · · , n, · · · , 1, 2, · · · , n), X2 =
(1, 1, · · · , 1, 2, 2, · · · , 2, · · · , n, n, · · · , n). Two sequences have the same total cost if we have a fixed score. However,
X2 should have less cost because of its repeated pattern. Given the frequency freq as a time-invariant priority, by
Corollary B.3, the optimal static costs are

cost(X1, freq) = cost(X2, freq) = O(m logB n).

But for the dynamic B-Trees, with the working-set score, we calculate both costs from Theorem C.5 as

cost(X1,!) = O(m logB(n+ 1)), cost(X2,!) = O(n logB n+m logB 3).

This means that our proposed priority can better capture the timing pattern of the sequence and thus can even do better
than the optimal static setting.

The main idea to prove Theorem C.5 is to show that (1) the working-set size is locally changed and (2) the correspond-
ing priority satisfies the regularity conditions in Theorem C.1. To complete the proof, we introduce the interval-set
size interval(i, x). See Figure 11 as an illustration.
Definition C.6 (Interval-set Size interval(i, x)). Define the Interval-set Size interval(i, x) to be the number of distinct
items accessed between time i and the next access of item x after time i. That is,

interval(i, x) := |{x(i+ 1), · · · , x(next(i, x))}| .

If x does not appear after time i, we define interval(i, x) := n.

Furthermore, we define the working-set score as follows.
Definition C.7 (Working-set Score !(i, x)). Define the time-varying priority as the reciprocal of the square of one
plus working-set size. That is,

!(i, x) =
1

(1 + work(i, x))2

Next, we will show that the interval set priority is O(1) for any time i 2 [m] in Lemma C.8. The proof has three steps.
Firstly, the interval-set size at time i is always a permutation of [n]. Secondly, for any i 2 [m], x 2 [n], the working-set
size is always no less than the interval-set size. Therefore, for any i 2 [m],the l1 norm of working-set score vector
!(i)

def
= (!(i, 1), · · · ,!(i, n)) can be upper bounded by

Pn
j=1 1/(1 + j)2 = O(1).

Lemma C.8 (Norm Bound for Working-set Score). Fix any timestamp i 2 [m],
nX

j=1

!(i, j) = O(1).

Proof. We first show that at any time i 2 [m], the interval-set size is a permutation of [n]. By definition, interval(i, x)
is the number of items y such that next(i, y)  next(i, x). Let ⇡1, · · · ,⇡n be a permutation of all items [n] in the
order of increasing next(i, x). Then for any item x, interval(i, x) is the index of x in ⇡. So the sum of the reciprocal
of squared interval(i, x) is upper bounded by

nX

j=1

1

(1 + interval(i, j))2
=

nX

j=1

1

(1 + j)2
= ⇥(1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3 1 2 31 2 3!(#)

% 1 42 53 86 97

1
2
3

1
2
3

interval %, + = +(% + /),⋯ , +(next(%, +))
3 1 33 32 1
1 2 21 13 2
2 3 12 21 3

3 1 33 33 3
3 3 23 23 3
3 3 33 23 3

work %, + = + prev %, + + / , ,⋯ , + next %, +

! !

! next(!, ()prev(!, ()

interval !, (: # of distinct elements

work !, (: # of distinct elements

Figure 11: An example of n = 3,X = (1, 2, 3, 1, 1, 2, 3, · · ·). For any i, x, work(i) is a permutation of [n];
interval(i, x) � work(i, x); interval(i, x) changes only when x(i) = x (highlighted in orange).

Secondly, recall that prev(i, x)  i, and hence for any i 2 [m], x 2 [n], work(i, x) � interval(i, x). So we have the
upper bound for working-set score as follows.

nX

j=1

!(i, j) =
nX

j=1

1

(1 + work(i, x))2


nX

j=1

1

(1 + interval(i, j))2
= O(1).

Since we have shown the working-set score has constant l1 norm and in each timestamp, we only update one item’s
priority. We are ready to prove and show the efficiency of the corresponding B-Treap.

Proof of Theorem C.5. By Lemma C.8, we know k!(i)k = O(1), for all i 2 [m]. Also by definition of work(i, x),
for any x 2 [n], work(i � 1, x) 6= work(i, x) only when x(i) = x. So for each time i, at most one item (i.e., x(i))
changes its priority. So we apply Theorem C.1 with wi,j = !(i, x), i 2 [m], x 2 [n], and get the total cost

cost(X,!) = O

n logB n+

mX

i=1

logB(1 + work(i, x(i)))

!

Furthermore, we use the following theorem to show the robustness of the results when the scores are inaccurate. This
is a direct corollary of Theorem C.2.
Theorem C.9 (Locally-Dynamic B-Treaps with Predictions). Given the predicted locally changed working-set score
e!(i) 2 (0, 1)n satisfying ke!(i)k1 = O(1), e!i,j � 1/poly(n) and the branching factor B = ⌦(ln1.1 n), there is a
randomized data structure that maintains a B-Tree over the n keys such that the expected total cost for processing the
whole access sequence X is

cost(X, e!) = cost(X,!) +O

mX

i=1

��logB !i,x(i) � logB e!i,x(i)

��
!
.

In particular, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

C.4 GENERAL RESULTS FOR DYNAMIC B-TREES

In this section, we give the results for general dynamic B-trees. We first construct the dynamic B-Treaps and give
the guarantees when we have access to the real-time priorities for each item in Appendix C.4.1. Then we analyze
the dynamic B-trees given the estimation the time-varying priorities in Appendix C.4.2. We use the same notation in
Appendix C.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.4.1 DYNAMIC B-TREAP WITH GIVEN PRIORITIES

Theorem C.10 (Dynamic B-Treap with Given Priorities). Given the time-varying scores w(i) 2 (0, 1)n, i 2 [m] sat-
isfying kw(i)k1 = O(1) and a branching factor B = ⌦(ln1.1 n), there is a randomized data structure that maintains a
B-Tree TB over [n] such that when accessing the item x(i) at time i, the expected depth of item x(i) is O(logB

1
wi,x(i)

).

The expected total cost for processing the whole access sequence X is

cost(X,w) = O

0

@n logB n+
mX

i=1

logB
1

wi,x(i)
+

mX

i=2

nX

j=1

����logB
1

wi,j
� logB

1

wi�1,j

����

1

A .

In particular, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

Proof. Initially, we set the priority for all items to be 1, and insert all items into the Treap. For any time i 2 [n], for
j 2 [n] such that wi�1,j 6= wi,j , we set

priority(i)j := �blog4 logB
1

wi,j
c+ �ij , �ij ⇠ U(0, 1).

Since kw(i)k1 = O(1), i 2 [m], by Theorem B.2, the expected depth of item s(i) is O(logB
1

wi,x(i)
). The total cost

for processing the sequence consists of both accessing x(i) and updating the priorities. The expected total cost for all
the accesses is

O

mX

i=1

logB
1

wi,x(i)

!
.

Then we will calculate the cost to update the Treap. Updating the priority of j from wi�1,j to wi,j has cost
O(| logB(wi�1,j/wi,j)|). Hence we can bound the expected total cost for maintaining the Treap by

O

0

@n logB n+
mX

i=2

nX

j=1

����logB
wi�1,j

wi,j

����

1

A .

Together the expected total cost is

O

0

@n logB n+
mX

i=1

logB
1

wi,x(i)
+

mX

i=2

nX

j=1

����logB
1

wi,j
� logB

1

wi�1,j

����

1

A .

The high probability bound follows similarly as Theorem B.2.

Remark. The total cost for processing the access sequence has three terms. The first two terms are the same as in the
static optimality bound, while the third term is incurred from updating the scores. Hence, here is a trade-off between
the costs of updating items and the benefits from the time-varying scores. Moreover, the locally-dynamic B-trees can
avoid the high cost of keeping updating the scores because only one score is changed per time.

C.4.2 DYNAMIC B-TREAP WITH PREDICTED PRIORITIES

In this section, we give the guarantees for the dynamic B-Treaps with predicted priorities learned by a machine learning
oracle. Similar as in Appendix C.4.2, we here predict logB

1
wi,j

to better capture the scale of the scores. And we will
find that the total cost using the B-Trees using the predicted scores is equal to the cost using the accurate priorities plus
an additive error that is linear in the mean absolute error of our prediction scores:

mX

i=1

nX

j=1

����logB
1

wi,j
� logB

1

ewi,j

���� .

Theorem C.11 (Dynamic B-Treap with Predicted Scores). Given the predicted time-varying scores ew(i) 2 (0, 1)n

satisfying k ew(i)k1 = O(1), ewi,j � 1/poly(n) and a branching factor B = ⌦(ln1.1 n) , there is a randomized data
structure that maintains a B-Tree over the n keys such that the expected total cost for processing the whole access
sequence X is

cost(X, ew) = cost(X,w) +O

0

@
mX

i=1

nX

j=1

����logB
1

wi,j
� logB

1

ewi,j

����

1

A

In particular, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. We apply Theorem C.10 with score ew, and get the expected depth of x(i) is

O

✓
logB

1

ewi,j

◆
.

The expected total cost is

cost(X, ew) =O

0

@n logB n+
mX

i=1

logB
1

ewi,x(i)
+

mX

i=2

nX

j=1

����logB
1

wi,j
� logB

1

ewi�1,j)

����

1

A

=cost(X,w) +O

mX

i=1

����logB
1

wi,x(i)
� logB

1

ewi,x(i)

����

!

+O

0

@
mX

i=2

nX

j=1

����logB
1

wi,j
� logB

1

ewi,j

����+
m�1X

i=1

nX

j=1

����logB
1

wi,j
� logB

1

ewi,j

����

1

A

=cost(X,w) +O

0

@
mX

i=1

nX

j=1

����logB
1

wi,j
� logB

1

ewi,j

����

1

A

23

	Introduction
	Overview
	Related Work

	Learning-Augmented Binary Search Trees
	Learning-Augmented Treaps
	Static Optimality
	Robustness Guarantees
	Analysis of Other Priority Assignments

	Learning-Augmented B-Trees
	Dynamic Learning-Augmented Search Trees
	Experiments
	Perfect Prediction Oracle on Frequency
	Inaccurate Prediction Oracle on Frequency

	Other Releated Works
	Learning-Augmented B-Trees
	Learning-Augmented B-Treaps
	Static Optimality
	Robustness Guarantees

	Dynamic Learning-Augmented Search Trees
	Locally Dynamic B-trees
	Robustness Guarantees
	Working Set Property
	General Results for Dynamic B-Trees
	Dynamic B-Treap with Given Priorities
	Dynamic B-Treap with Predicted Priorities

