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A Designing total variation priors

To develop a probabilistic DIP, we describe first how to design a tractable TV prior. We reinterpret the TV
regulariser eq. (2) as a prior over images, favouring those with low ¸

1 norm gradients

p(x) = Z
≠1
⁄ exp(≠⁄TV(x)), (23)

where Z⁄ =
s

exp(≠⁄TV(x)) dx. This prior is intractable because Z⁄ does not admit a closed form; thus
approximations are necessary. We now explore alternatives without this limitation.

A.1 Further discussion on the TV regulariser as a prior

It is tempting to think that we do not need the PredCP machinery in section 5.3 to translate the TV
regulariser into the parameter space. Indeed, the Laplace method simply involves a quadratic approximation
around a mode of the log posterior, without placing any requirements on the prior used to induce said
posterior. Hence, we can decompose the Hessian of the log posterior log p(◊|y) into the contributions from
the likelihood and the prior as

ˆ

ˆ◊2 (log p(y|Ax(◊)) + log p(x(◊))) |◊=◊̂

and realise that the log of the anisotropic TV prior p(x) Ã exp(≠⁄TV(x)) as in eq. (23) is only once
di�erentiable. Ignoring the origin (where the absolute value function is non-di�erentiable), we obtain:

ˆ

ˆ◊2 log p(x(◊))|◊=◊̂ Ã ≠
ˆ

ˆ◊2 TV(x(◊))|◊=◊̂ = 0.

Thus, a naive application of the Laplace approximation would eliminate the e�ect of the prior, leaving the
posterior ill defined. In practice, one may smooth the non-smooth region around the origin, but the amount
of smoothing can significantly influence the behaviour of the Hessian approximation.

A.2 Further discussion on inducing TV-smoothness with Gaussian priors

A standard alternative to enforce local smoothness in an image is to adopt a Gaussian prior p(x) = N (x; µ, �xx)
with covariance �xx œ Rdx◊dx given by

[�xx]ij,iÕjÕ = ‡
2 exp

3
≠d(i ≠ i

Õ
, j ≠ j

Õ)
¸

4
, (24)

where i, j index the spatial locations of pixels of x, as in eq. (2), and d(a, b) =
Ô

a2 + b2 denotes the Euclidean
vector norm. Equation (24) is also known as the Matern-1/2 kernel and matches the covariance of Brownian
motion (Guttorp & Gneiting, 2005). The hyperparameter ‡

2
œ R+ informs the pixel amplitude while the

lengthscale parameter ¸ œ R+ determines the correlation strength between nearby pixels. The TV in eq. (2)
only depends on pixel pairs separated by one pixel (d = 1), allowing analytical computation of the expected
TV associated with the Gaussian prior

Ÿ := Ex≥N (µ,�xx)[TV(x)] = c


‡2(1 ≠ fl), (25)

with the correlation coe�cient fl = exp(≠¸
≠1) œ (0, 1) and c = 4

Ô
dx(

Ô
dx≠1)/Ô

fi for square images. See
appendix A.3 for derivations. Increasing ¸ (for a fixed ‡

2) favours x with low TV on average, resulting in
smoother images. The prior N (x; µ, �xx) is conjugate to the likelihood implied by the least-square fidelity
N (y; Ax, ‡

2
yI), leading to a closed form posterior predictive distribution and marginal likelihood objective

with costs O(d3
y) and O(d2

ydx), respectively.

A.3 Derivation of the identity eq. (9)

The identity follows from the following result (appendix, (McGraw & Wong, 1994)). The short proof is
recalled for the convenience of the reader.
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Lemma A.1. Let X and Y be normal random variables with mean µ, variance ‡
2 and correlation coe�cient

fl. Let Z = |X ≠ Y |. Then
E[Z] = 2

Ô
fi


‡2(1 ≠ fl).

Proof. Clearly, X ≠ Y follows a Gaussian distribution with mean 0 and variance 2‡
2(1 ≠ fl). Then the random

variable
W = Z

2

2‡2(1 ≠ fl) =
1

X ≠ Y
2‡2(1 ≠ fl)

22

follows ‰
2
1 distribution. Then

E[
Ô

W ] =
⁄ Œ

0
W

1
2

1
�( 1

2 )
Ô

2
W

1
2 ≠1

e
≠ W

2 dW =
Ô

2
�( 1

2 )
=

Ô
2

Ô
fi

,

where �(z) denotes the Euler’s Gamma function, with �( 1
2 ) =

Ô
fi. Then it follows that

E[Z] =


2‡2(1 ≠ fl)E[
Ô

W ] = 2
Ô

fi


‡2(1 ≠ fl).

This shows the assertion in the lemma.

Now by the marginalisation property of multivariate Gaussians, any two neighbouring pixels of x for
x ≥ N (µ, �xx) satisfy the conditions of Lemma A.1, with fl = exp(≠¸

≠1) œ (0, 1). Thus Lemma A.1 and the
trivial fact dx = h ◊ w imply

Ÿd = EN (x;µ,�xx)[TV(x)] = 2[2hw ≠ h ≠ w]
Ô

fi


‡2(1 ≠ fl).

In particular, for a square image, h = w =
Ô

dx, we obtain the desired identity in eq. (9).

B Derivation of the linearised deep image prior

B.1 Posterior predictive covariance

We provide an alternative derivation of the posterior predictive covariance of the linearised DIP by reasoning
in the parameter space. First we have linearised the neural network x(◊), turning it into a Bayesian basis
function linear model (Khan et al., 2019). The probabilistic model in eq. (12) is thus:

y|◊ ≥ N (Ah(◊), ‡
2
yI), ◊|¸ ≥ N (0, �◊◊) ,

and the linearised Laplace approximate posterior distribution over weights is given by Immer et al. (2021b)

p(◊|y) ¥ N (◊; ◊̂, �◊|y) with �◊|y =
1

‡
≠2
y J

€A€AJ + �≠1
◊◊

2≠1
. (26)

In this work we exploit the equivalence between basis function linear models and Gaussian Processes (GP),
and perform inference using the dual GP formulation. This is advantageous due to its lower computational
cost when d◊ >> dy, which is common in tomographic reconstruction.

We switch to the dual formulation using the SMW matrix inversion identity, we have

�◊|y =
1

‡
≠2
y J

€A€AJ + �≠1
◊◊

2≠1
= �◊◊ ≠ �◊◊J

€A€(‡2
yI + AJ�◊◊J

€A€)≠1AJ�◊◊ (27)

The predictive distribution over images can be built by marginalising the NN parameters in the conditional
likelihood p(x|y) =

s
p(x|◊)p(◊|y) d◊. Since h(·) is a deterministic function, we have p(x|◊) = ”(x ≠ h(◊)) and

⁄
p(x|◊)p(◊|y) d◊ =

⁄
”(x ≠ h(◊))N (◊; ◊̂, �◊|y) d◊ = N (x; x̂, J�◊|yJ

€).
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Note that this assumes ◊̂ to be a mode of the DIP training loss eq. (5). In practise, this will not be satisfied
and thus the posterior mean of the linear model ◊̂h, which is given as the minima of the linear model’s loss
introduced in section 5.4, will not match that of the NN, that is, ◊̂. Using the linear model’s exact mode
is only necessary for the purpose of constructing the marginal likelihood objective (Antorán et al., 2022;
Antorán et al., 2022) (see also appendix B.2). However, for the purpose of making predictions, assuming ◊̂ to
be the mode allows us to keep the DIP reconstruction x̂ as the predictive mean.

B.2 Laplace marginal likelihood and Type-II MAP in eq. (17)

For the purpose of uncertainty estimation, we tune the hyperparameters of our linear model using the marginal
likelihood of the conditional-on-¸ Gaussian-linear model introduced in eq. (6). The posterior mode of the
TV-regularised linearised model is given by ◊̂h = argmin◊h

‡
≠2
y ÎAh(◊h) ≠ yÎ + ⁄TV(h(◊h)). However, we

substitute the TV with a multivariate Gaussian surrogate p(◊|¸). Now we derive the marginal log-likelihood
(MLL) for the linearised model conditional on ¸ following Antorán et al. (2022). In Bayes rule

log p(◊|y, ¸; ‡
2
y, ‡

2) = log p(y|◊; ‡
2
y) + log p(◊|¸; ‡

2) ≠ log p(y|¸; ‡
2
y, ‡

2),

we isolate the MLL log p(y|¸; ‡
2
y, ‡

2), evaluate at the linear model’s posterior mode ◊ = ◊̂h and obtain

log p(y|¸; ‡
2
y, ‡

2) = log p(y|◊=◊̂h; ‡
2
y) + log p(◊=◊̂h|¸; ‡

2) ≠ log p(◊=◊̂h|y, ¸; ‡
2
y, ‡

2). (28)

The log-density log p(y|◊ = ◊̂h; ‡
2
y) quantifies the quality of the model’s fit to the data y, and is given by

log p(y|◊ = ◊̂h; ‡
2
y) = ≠

dy

2 log(2fi) ≠
1
2 log |‡

2
yI| ≠

1
2‡2

y

Îy ≠ Ah(◊̂h)Î2
2.

However, since our predictive mode is given by the DIP reconstruction and not the linear model’s reconstruction,
we depart from the exact expression for the linear model’s MLL and use ≠

dy

2 log(2fi) ≠
1
2 log |‡

2
yI| ≠

1
2‡2

y
Îy ≠

Ax(◊̂)Î2
2 as the data fit term instead. The weight-mode log prior density log p(◊=◊̂h|¸, ‡

2) is given by

log p(◊=◊̂h|¸, ‡
2) = ≠

d◊

2 log(2fi) ≠
1
2 log |�◊◊| ≠

1
2 ◊̂

€
h �≠1

◊◊ ◊̂h.

Evaluating the Gaussian posterior log density over ◊ at its mode ◊̂h cancels the exponent of the Gaussian and
leaves us with just the normalising constant

log p(◊=◊̂h|y, ¸; ‡
2
y, ‡

2) = ≠
1
2 log |�◊|y| ≠

d◊

2 log(2fi)

By the matrix determinant lemma, the determinant |�◊|y| is given by

|�◊|y| = |‡
≠2
y J

€A€AJ + �≠1
◊◊ |

≠1 = |AJ�◊◊J
€A€ + ‡

2
yI|≠1

|�◊◊||‡
2
yI|. (29)

Thus, the linearised Laplace marginal likelihood is given by

log p(y|¸; ‡
2
y, ‡

2) = ≠
1
2 log |‡

2
yI| ≠

1
2‡2

y

Îy ≠ Ax(◊̂)Î2
2 ≠

1
2 log |�◊◊| ≠

1
2 ◊̂

€
h �≠1

◊◊ ◊̂h

≠
1
2 log |AJ�◊◊J

€A€ + ‡
2
yI| + 1

2 log |�◊◊| + 1
2 log |‡

2
yI| + C

= ≠
1

2‡2
y

||y ≠ Ax(◊̂)||22 ≠
1
2 ◊̂

€
h �≠1

◊◊ ◊̂h ≠
1
2 log |AJ�◊◊J

€A€ + ‡
2
yI| + C (30)

where C captures all terms constant in (‡2
y, ¸, ‡

2). Recall that �yy = AJ�◊◊J
€A€ + ‡

2
yI. Next we turn to

the TV-PredCP prior over ¸

log p(¸; ‡
2) = ≠

Dÿ

d=1
Ÿd + log

----
ˆŸd

ˆ¸d

---- , with Ÿd := EN (◊̂d,�◊d◊d
)
rD

i=1,i”=d
”(◊i≠◊̂i) [⁄TV(h(◊))] .
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Hence we obtain the following Type-II maximum a posteriori (MAP)-style objective:

log p(y, ¸; ‡
2
y, ‡

2) ¥ log N (y; 0, �yy) + log p(¸; ‡
2)

=1
2

1
≠‡

≠2
y ||y ≠ Ax(◊̂)||22 ≠ ◊̂

€
h �≠1

◊◊ ◊̂h ≠ log |�yy|

2
≠

Dÿ

d=1
Ÿd + log

----
ˆŸd

ˆ¸d

---- + C.

C Additional details on our TV-PredCP

C.1 Correspondence to the formulation of Nalisnick et al. (2021)

The original formulation of the TV-PredCP (Nalisnick et al., 2021) defines a base model q(x) = p(x|a = a0)
and an extended model p(x) = p(x|a = ·). The (hyper)parameter · determines how much the predictions
of the two models vary. A divergence D(p(x|a = a0)||p(x|a = ·)) is placed between the two distributions
and a prior placed over the divergence. This divergence is mapped back to the parameter · using the
change of variables formula. To see how our approach eq. (10) falls within this setup, take p(x|a = ·)
to be p(x) = N (x; µ, �xx(‡2

, ¸)), where the lengthscale ¸ takes the place of · . The base model sets the
lengthscale to be infinite, or equivalently the correlation coe�cient fl to be 1, q(x) = N (x; µ, �xx(‡2

x, Œ)).
As a divergence, we choose D(p, q) = Ep[TV(x)] ≠ Eq[TV(x)]. We have defined our base model to be one in
which all pixels are perfectly correlated and thus have the same value. This results in the expected TV for
this distribution taking a value of 0. We end up with our divergence simply matching the expected TV under
the extended model EN (µ,�xx)[TV(x)]. Even when an expected TV of 0 is not attainable for any value of ¸,
as is the case when using the DIP eq. (15), there still exists a base model which will be constant with respect
to our parameters of interest and can be safely ignored.

C.2 An upper bound on the expected TV

To ensure dimensionality preservation, we define our prior over ¸ in eq. (15) as a product of TV-PredCP
priors, one defined for every convolutional block in the CNN, indexed by d,

p(¸) = p(¸1)p(¸2) ... p(¸D) =
DŸ

d=1
fi(Ÿd)

----
ˆŸd

ˆ¸d

---- , with Ÿd := EN (◊̂d,�◊d◊d
)
rD

i=1,i”=d
”(◊i≠◊̂i) [TV(h(◊))] .

This formula di�ers from the expected TV in eq. (9), which doesn’t discriminate by blocks Ÿ :=
EN (◊̂,�◊◊) [TV(h(◊))]. By the triangle inequality,

q
d Ÿd upper bounds the expectation under N (◊̂, �◊◊):

EN (◊̂,�◊◊) [TV(h(◊))] =
ÿ

(i,j)œS

EN (◊̂,�◊◊) [|(Ji◊ ≠ Jj◊)|] =
ÿ

(i,j)œS

EN (◊̂,�◊◊)

C
|

ÿ

d

(Jid ≠ Jjd)◊d)|
D

Æ

ÿ

(i,j)œS

ÿ

d

EN (◊̂d,�◊d◊d
) [|(Jid ≠ Jjd)◊d|] =

ÿ

d

EN (◊̂d,�◊d◊d
)
rD

c=1,c ”=d
”(◊c≠◊̂c)

S

U
ÿ

(i,j)œS

|(Ji ≠ Jj)◊|

T

V =
ÿ

d

Ÿd,

where S is the set of all adjacent pixel pairs. Thus, the separable form of the TV prior as a regulariser for
MAP ensures that the expectated TV under the joint distribution of parameters is also regularised.

C.3 Discussing monotonicity of the TV in the prior lengthscales

In order to apply the change of variables formula in eq. (15), we require bijectivity between ¸d and Ÿd. In
the simplest setting, both variables are one-dimensional, making this constraint easier to satisfy. In fact, it
su�ces to show monotonicity between the two.

In practice, we use the linearised model in eq. (6) for inference. In fig. 8, we show very compelling numerical
evidence for the monotonicity. We observe that Ÿ increases in ¸ since large values for ¸ lead to an increased
marginal variance ‡

2 over images. After fixing the marginal variance to 1, the lengthscales have a monotonically
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Figure 8: Experimental evidence of monotonicity computed over 50 KMNIST test images for the linearised
network used in the KMNIST experiments. Horizontal axis represents lengthscale ¸ œ [0.01, 100]. Ÿ is
estimated with 10k Monte Carlo samples. In the bottom row we fix the marginal variances of J�yyJ

€ in
image space to be 1. This allows us to observe the smoothing e�ect from ¸. We use the first and last value to
normalise over di�erent KMNIST sample. The monotonicity implies the desired invertibility of the mappings
¸ and Ÿ. We draw 500 samples to estimate k.

decreasing relationship with the expected TV. However, analytically studying the monotonicity is delicate.
We investigate the issue in the linear setting to she insights (which also matches our experimental setup):

Ÿd = EN (◊̂,�◊◊)
rD

j=1,j ”=d
”(◊j≠◊̂j)[TV(h(◊))] = EN (◊̂,�◊◊)

rD

j=1,j ”=d
”(◊j≠◊̂j)

Ë ÿ

i

|h(◊)i ≠ h(◊)i+1|

È
, (31)

assuming that the output is a 1D signal so there is only one derivative to simplify the discussion. First we
derive the distribution of h(◊)i ≠ h(◊)i+1. Note that h(◊) can be written as h(◊) = h0 + J(◊ ≠ ◊̂), by slightly
abusing the notation h0 to denote the vectors constant with respect to ¸d and i indices an entry of the vector
(J◊) œ Rdx . Note that the constant vector h0 depends on the choice of the based point ◊ = 0 (or equally
plausible ◊ = ◊̂), but it does not play a role in TV(h(◊)), since it cancels out from the definition of TV(h(◊)).
Then, we can rewrite it as an inner product between two vectors

h(◊)i ≠ h(◊)i+1 = (J◊)i ≠ (J◊)i+1 = (Ji ≠ Ji+1)◊d = vi◊d,

where Ji œ R1◊d◊d denotes our NN’s Jacobian for a single output pixel i (i.e. the ith row of the Jacobian
matrix J , corresponding to the block parameters ◊d œ R1◊d◊d ) and vi = Ji ≠ Ji+1 œ R1◊d◊d , i = 1, . . . , dx ≠ 1.
Now, the block parameters ◊d is distributed as ◊d ≥ N (0, �◊d◊d), in the expectation in eq. (31), whereas
the remaining parameters are fixed at the mode ◊̂j , j ”= d, i.e.

rD
j=1,j ”=d ”(◊j ≠ ◊̂j). Let Vd œ R(dx≠1)◊d◊d

correspond to the stacking of the vectors vi œ R1◊d◊d , i.e. the Jacobian of the network output with respect
to the weights in convolutional group d. Since the a�ne transformation of a Gaussian distribution remains
Gaussian, Vd◊d is distributed according to Vd◊d ≥ N (0, Vd�◊d◊dV

€
d ). Note that the matrix Vd�◊d◊dV

€
d is

not necessarily invertible, and if not, as usual, the inverse covariance should be interpreted in the sense of
pseudo-inverse. Let a =: Vd◊d œ Rdx≠1. Then

Ÿd = Ea≥N (0,Vd�◊d◊d
V €

d
)

Ë ÿ

i

|ai|

È
=

ÿ

i

Eai≥N (0,vi�◊d◊d
v€

i )[|ai|].

The distribution of |ai| follows a half-normal distribution, and there holds (cf. eq. (3) of Leone et al. (1961))

Eai≥N (0,vi�◊d◊d
v€

i )[|ai|] =
Ú

2
fi

(vi�◊d◊dv
€
i ) 1

2 .
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Consequently,

Ÿd =
Ú

2
fi

ÿ

i

(vi�◊d◊dv
€
i ) 1

2 and ˆŸd

ˆ¸d
=

Ú
1

2fi

ÿ

i

(vi�◊d◊dv
€
i )≠ 1

2 vi
ˆ

ˆ¸d
�◊d◊dv

€
i . (32)

It remains to examine the monotonicity of vi�◊d◊dv
€
i in ¸d. Indeed, by the definition of �d, we have

ˆ

ˆ¸d
[�◊d◊d(¸d)]j,jÕ = ˆ

ˆ¸d
‡

2
d exp

1
≠

d(j, j
Õ)

¸d

2
= ‡

2
dd(j, j

Õ)
¸

2
d

exp
1

≠
d(j, j

Õ)
¸d

2
,

and thus
ˆ

ˆ¸d
vi�◊d◊dv

€
i = ‡

2
d

¸
2
d

ÿ

j

ÿ

jÕ

vi,jd(j, j
Õ) exp

1
≠

d(j, j
Õ)

¸d

2
vi,jÕ .

Then it follows that if the vectors vi were arbitrary, the monotonicity issue would rest on the positive
definiteness of the associated derivative kernel. For example, for a Gaussian kernel e

≠ (x≠y)2
¸d (i.e. d is the

squared Euclidean distance), the associated kernel k(x, y) is given by (x ≠ y)2
e

≠ (x≠y)2
¸d . This issue seems

generally challenging to verify directly, since (x ≠ y)2 is not a positive semidefinite kernel by itself on R, even

though the Gaussian kernel e
≠ (x≠y)2

¸d is indeed positive semidefinite. Thus, one cannot use the standard Schur
product theorem to conclude the monotonicity. Alternatively, one can also compute the Fourier transform of
the kernel k(x) = x

2
e

≠x2 directly, which is given by

F [k(x)](Ê) = 2 ≠ Ê
2

4
1

Ô
2

e
≠ Ê2

4 .

see the proposition below for the detailed derivation. Clearly, the Fourier transform of the kernel x
2
e

≠x2

is not positive over the whole real line R. By Bochner’s theorem (see e.g. p. 19 of Rudin (1990)), this
kernel is actually not positive. The fact that the kernel is no longer positive definite makes the analytical
analysis challenging. This observation holds also for the Matern-1/2 kernel, see the proposition below. These
observations clearly indicate the risk for a potential non-monotonicity in ¸. Nonetheless, we emphasise that
this condition is only su�cient, but not necessary, since the kernel is only evaluated at lattice points (instead
of arbitrary scattered points). We leave a full investigation of the monotonicity to a future work, given the
compelling empirical evidence for monotonicity in both the NN and linearised settings.

Now we give Fourier transforms of the associated kernel for the Gaussian and Matern-1/2 kernels.
Proposition 1. The Fourier transforms of the functions x

2
e

≠x2 and |x|e
≠|x| are given by

F [x2
e

≠x2
](Ê) = 2 ≠ Ê

2

4
Ô

2
e

≠ x2
4 and F [|x|e

≠|x|](Ê) = 2(1 ≠ Ê
2)

Ô
2fi(1 + Ê2)2 .

Proof. Recall that the Fourier transform F [e≠x2 ] of the Gaussian kernel e
≠x2 is given by

F [e≠x2
](Ê) = 1

Ô
2fi

⁄ Œ

≠Œ
e

≠x2
e

≠iÊxdx = 1
Ô

2
e

≠ Ê2
4 .

Direct computation shows
k

ÕÕ(x) = 4x
2
e

≠x2
≠ 2e

≠x2
= 4x

2
e

≠x2
≠ 2k(x).

Taking Fourier transform on both sides and using the identity F [kÕÕ(x)](Ê) = ≠Ê
2
F [f(x)](Ê), we obtain

≠Ê
2
F [f(x)](Ê) = 4F [x2

e
≠x2

](Ê) ≠ 2F [f(x)](Ê),

which upon rearrangement gives the desired expression for F [x2
f(x)]. Next we compute F [|x|e

≠|x|](Ê):

F [|x|e
≠|x|](Ê) = 1

Ô
2fi

⁄ Œ

≠Œ
|x|e

≠|x|
e

≠iÊxdx

= 1
Ô

2fi

⁄ Œ

≠Œ
|x|e

≠|x|(cos Êx ≠ i sin Êx)dx = 2
Ô

2fi

⁄ Œ

0
xe

≠x cos Êxdx,
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since sin Êx is odd and the corresponding integral vanishes. Integration by parts twice gives
⁄ Œ

0
xe

≠x cos Êxdx = ≠xe
≠x cos Êx|

Œ
x=0 +

⁄ Œ

0
e

≠x(cos Êx ≠ Êx sin Êx)dx

=
⁄ Œ

0
e

≠x cos Êxdx ≠

⁄ Œ

0
Êxe

≠x sin Êxdx

=
⁄ Œ

0
e

≠x cos Êxdx + Êxe
≠x sin Êx|

Œ
x=0 ≠

⁄ Œ

0
e

≠x(Ê sin Êx + Ê
2
x cos Êx)dx.

Rearranging the identity gives
⁄ Œ

0
xe

≠x cos Êxdx = 1
Ê2 + 1

⁄ Œ

0
e

≠x cos Êxdx ≠
Ê

Ê2 + 1

⁄ Œ

0
e

≠x sin Êxdx

This and the identities
⁄ Œ

0
e

≠x cos Êxdx = 1
1 + Ê2 and

⁄ Œ

0
e

≠x sin Êxdx = Ê

1 + Ê2 ,

immediately imply

F [|x|e
≠|x|](Ê) = 2

Ô
2fi

⁄ Œ

0
xe

≠x cos Êxdx = 2(1 ≠ Ê
2)

Ô
2fi(1 + Ê2)2 .

This shows the second identity.

D Additional experimental discussion

In this section, we provide additional empirical evaluation of the uncertainty estimates obtained with the
linearised DIP. Validating the accuracy of the uncertainty estimates is crucial for their reliable integration
into downstream tasks and computer human interaction workflows, as discussed by Antorán et al. (2021),
Bhatt et al. (2021), and Barbano et al. (2021).

D.1 Evaluating approximate computations

We validate the accuracy of our approximate computation presented in section 6 on the KMNIST dataset.
KMNIST is the perfect ground for this evaluation due to the fact that the low-dimensionality of dx and dy

guarantees computational tractability of the inference problem, allowing us to benchmark the approximations
we introduce in section 6, against exact computation. In this section, if not stated otherwise, we carry out
our investigations with the setting where the forward operator A, comprises 20 angles, and we add 5% noise
to Ax. We repeat the analysis on 10 characters taken from the test set of the KMNIST dataset. We assess
the suitability of the Hutchinson trace estimator for the gradient of the log-determinant (section 6.1), and
the ancestral sampling for the TV-PredCP gradients (section 6.2). Figure 9 and fig. 10 show hyperparameter
optimisation (‡2

y, ‡
2
, ¸) using exact and estimated gradients. The hyperparameters trajectories match closely;

we only observe tiny oscillations when using estimated gradients. The log-determinant gradients ˆlog|�yy|
ˆ„

are estimated using 10 samples, v ≥ N (0, P ). The PCG for solving v
€�≠1

yy uses a maximum of 50 iterations
(with a early stopping criterion in place if a tolerance of 1.0 is met). We use a randomised SVD-based
preconditioner P (cf. 6.1), where the rank, r, is chosen to be 200, and P is updated every 100 steps. The
TV-PredCP gradients are estimated using 500 samples.

We assess the approximations introduced in section 6.3; the accuracy of the estimation of the posterior
covariance matrix, but most importantly, the estimation of the test log-likelihood. For large image sizes (e.g.
the Walnut cf. section 7.2), it is infeasible to store the posterior predictive covariance matrix �x|y œ Rdx◊dx ,
which in single precision would require 250 GB of memory. However, it can be made computationally cheaper
if we consider smaller image patches of pixels, neglecting the inter-patch-dependencies. This assumes the
covariance matrix �x|y to be block diagonal. Figure 11 shows the e�ect of neglecting inter-patch-dependencies.
The log-likelihood increases with increasing patch-size (i.e. with more inter-dependencies being taken into
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Figure 9: Hyperparameters’ optimisation in eq. (17) for lin.-DIP excluding PredCP (MLL), computing exact
gradients as well as resorting to the approximate numerical methods discussed in section 6.1 (i.e. PCG-based
log-determinant gradients) on 10 KMNIST images.

Figure 10: Hyperparameters’ optimisation in eq. (17) for lin.-DIP including TV-PredCP (TV-MAP), comput-
ing exact gradients as well as resorting to the approximate numerical methods discussed in section 6.1 (i.e.
PCG-based log-determinant gradients) and section 6.2 (i.e. ancestral sampling for TV-PredCP term) on 10
KMNIST images.
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Figure 11: Test log-likelihood computed with posterior predictive covariance matrices estimated via eq. (22),
and compared to the one obtained with exact methods (i.e. using exact posterior predictive covariance
matrices via eq. (14)). The log-likelihood is overall well approximated. As we would expect, we observe that
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Figure 12: KMNIST character recovered from a simulated observation y (using 10 angles and ÷(5%)) with
lin.-DIP, DIP-MCDO and along with their uncertainty estimates and histogram plots.

account). Figure 11 shows how well the test log-likelihood is approximated when resorting to posterior
predictive covariance matrices estimated via sampling using eq. (22), while sweeping across di�erent numbers
of samples and patch-sizes. As expected, estimating the log-likelihood for larger patch-sizes requires more
samples. On KMNIST, 1024 samples are su�cient for almost perfect approximation of the test log-likelihood,
when approximating the posterior predictive covariance matrix with patch-size of 28 ◊ 28. Note that a
patch-size of 28 ◊ 28 on KMNIST implies that no inter-patch-dependencies are neglected.

D.2 Further discussion on KMNIST

We include additional experimental figures to support the discussion about the experiments in section 7.1.2.
Figure 12, fig. 13, fig. 14, and fig. 15 are analogous to fig. 4, yet show a KMNIST character for four di�erent
problem settings: 10 angles and 20 angles, and the two noise regimes.

Figure 16 and fig. 17 show the hyperparameters’ optimisation via Type-II MAP and MLL outlined in
section 5.4. The use of our TV-PredCP prior leads to smaller marginal variances and larger lengthscales.
This restricts our prior over reconstructions to smooth functions. The TV-PredCP introduces additional
constraints into the model by encouraging the prior to contract (stronger parameter correlations and smaller
posterior predictive marginal variances. In turn, this results in a more contracted posterior, which we observe
as a larger Hessian determinant.
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Figure 13: KMNIST character recovered from a simulated observation y (using 20 angles and ÷(5%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and histogram plots.
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Figure 14: KMNIST character recovered from a simulated observation y (using 10 angles and ÷(10%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and histogram plots.
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Figure 15: KMNIST character recovered from a simulated observation y (using 20 angles and ÷(10%)) with
lin.-DIP, DIP-MCDO along with their uncertainty estimates and calibration plots.
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Figure 16: Optimisation of (¸, ‡
2) via MLL and Type-II MAP for 3 ◊ 3 convolution layers belonging to the

small U-Net used for KMNIST. Thicker dotted lines refer to the optimisation of the exemplary reconstruction
shown in fig. 4 while transparent lines correspond to other KMNIST images. The TV-PredCP leads to larger
prior lengthscales ¸ and lower variances ‡

2.

Figure 17: Hyperparameters’ optimisation via MLL and Type-II MAP for 1 ◊ 1 convolution layers belonging
to the small U-Net used for KMNIST, along with ‡

2
y. Thicker dotted lines refer to the optimisation of the

KMNIST image shown in fig. 4, while transparent lines correspond to other KMNIST images.
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For the KMIST dataset, one may question whether TV is an ideal regulariser. The TV regulariser enforces
sparsity in the local image gradients. A TV regulariser is highly recommended when we observe sparsity
in the edges present in an image, especially when the edges constitute a small fraction of the overall image
pixels. That is often the case in high-resolution medical images or natural images. Intuitively, the higher the
resolution of the image is, the higher the sparsity level of the edges is. However, in the KMIST dataset, due
to the low resolution of the images, the edges constitute a considerable fraction of the total pixels. Therefore,
a TV regulariser could be sub-optimal. In the KMNIST dataset, it is di�cult to distinguish (in TV sense)
what is part of the image structure and what is part of the background. The stroke is only a few pixels wide,
and ground-truth pixel values are generated through interpolation (Clanuwat et al., 2018). Indeed we observe
a larger gain from selecting hyperparameters using Type-II MAP (instead of MLL) for the real-measured
high-resolution Walnut data than for KMNIST.

Furthermore, some KMNIST images present spurious high valued pixels away from the region containing the
handwritten character. This contradicts the modelling assumption in eq. (1) which assumes x is noiseless. Our
likelihood function from eq. (12) is defined over the space of observations y and thus can not account for noise
in x. We translate the uncertainty induced by the observation noise to the space of images by computing the
conditional log-likelihood Hessian with respect to x: ≠

ˆ2 log p(y|x)
ˆx2 = ‡

≠2
y A€A œ Rdx◊dx . This matrix is of rank

at most dy, which potentially can be much smaller than dx due to the ill-conditioning of the reconstruction
problem, and therefore cannot act as a proper Gaussian precision matrix on its own. We incorporate the
noise uncertainty from the observation subspace into the image space by adding the mean of the diagonal of
the pseudoinverse ‡

2
y(A€A)† to the marginal variances of the predictive distribution. This can also be seen as

placing a Gaussian likelihood over reconstruction space, which can be marginalised to recover the predictive
distribution p(x|y) =

s
N (x; x̂, ‡

2
yTr((A€A)†)d≠1

x I)N (◊; ◊̂, �◊|y) d◊ = N (x; x̂, J�◊|yJ
€ + ‡

2
yTr((A€A)†)d≠1

x I).

D.3 Further discussions on Walnut data

We include additional figures to support the discussion in section 7.2. We evaluate the e�ect of the TV-PredCP
prior for hyperparameter optimisation. We observe that this prior leads to a slightly less heavy tailed standard
deviation histogram. It presents slightly better agreement with the empirical reconstruction error, resulting
in a lager log-likelihood. Figure 18 and fig. 19 show the optimisation of the hyperparameters (‡2

y, ¸, ‡2
◊)

using the method in section 5.4 and approximate computations in section 6. For both MLL and Type2-MAP
learning, the marginal variance for all CNN blocks except the two closest to the output goes to ¥0. This is
due to the representations from these last layer being able to explain the data well on their own. The our
hyperparameter objectives are thus able to eliminate previous layers from our probabilistic model, simplifying
it without sacrificing reconstruction quality. We did not observe this for KMNIST data, possibly because of
our use of a smaller, less overparametrised network without any spare capacity.

E Additional experimental setup details

E.1 Setup for KMNIST experiments

We use a down-sized version of U-Net (Ronneberger et al., 2015), cf. fig. 20, as the reduced output dimension
dx and the simplicity of the problem allow us to employ a shallow architecture without compromising the
reconstruction quality. This problem is computationally tractable removing the need for the approximations
described in section 6. We reduce the U-Net architecture in fig. 3 to 3 scales and 32 channels at each scale,
remove group-normalisation layers and use a sigmoid activation for the output. A filtered back-projection
reconstruction from y is used as the network input.

Table 7 lists the hyperparameters of DIP optimisation for each setting. These values were found by grid-search
on 50 KMNIST training images. The dropout rate p of DIP-MCDO is set to 0.05.
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Figure 20: A schematic illustration of the reduced U-Net architecture used in the numerical experiments on
KMNIST data. It has 3 scales and does not include group norm layers. Each light-blue rectangle corresponds
to a multi-channel feature map. We highlight the architectural components corresponding to each block for
which a separate prior is defined with red boxes.

Table 7: Hyperparameters of DIP optimisation selected using 50 randomly chosen images from the KMNIST
training set. The ⁄ values refer to our implementation of eq. (5) in which Î · Î

2 is replaced with mean squared
error (or the regularisation term is up-scaled by dx).

5% noise 10% noise
#angles 5 10 20 30 5 10 20 30

TV scaling for DIP: ⁄ 1e≠5 3e≠5 1e≠4 1e≠4 3e≠5 1e≠4 3e≠4 3e≠4
DIP iterations 14 000 29 000 41 000 50 000 7400 13 000 17 000 22 000

E.2 Computing the preconditioner for conjugate gradients

For our preconditioner P , we approximate AJ�◊◊J
€A€ —for simplicity denoted as H œ Rdy◊dy — as Ũ �̃Ũ

€,
using a randomised eigendecomposition algorithm (Halko et al., 2011; Martinsson & Tropp, 2020) with
Ũ œ Rdy◊r and r π dy. The approach first computes an orthonormal basis capturing the space spanned by
H’s columns. The idea is to obtain a matrix Q with r orthonormal columns, that approximates the range
of H. This is done by constructing a standard normal test matrix � œ Rdy◊r, and computing the (thin)
QR decomposition of H�. Once Q is computed, we solve for a symmetric matrix B œ Rr◊r (much smaller
than H) such that B approximately satisfies B(Q€�) ¥ Q

€
H�. We then compute the eigendecomposition

of B, V �V
€, and recover Ũ = QV . This method requires O(r) matvecs resembling Hv to construct not

only an approximate basis but also its complete factorisation. Finally, the preconditioner P is defined as
Ũ �̃Ũ

€ + ‡
2
yI. To compute P

≠1
v e�ciently, we make use of the Woodbury identity.

E.3 Setup for X-ray Walnut data experiments

In (Der Sarkissian et al., 2019) projection data sets obtained with three di�erent source positions are provided
for 42 walnuts, as well as high-quality reconstructions of size 5013 px3 obtained via iterative reconstruction
using the measurements from all three source positions. We consider the task of reconstructing a single slice
of size 5012 of the first walnut from a sub-sampled set of measurements using the second source position,
which corresponds to a sparse fan-beam-like geometry. From the original 1200 projections (equally distributed
over 360¶) of size 972 ◊ 768 we first select the appropriate detector row matching the slice position (which
varies for di�erent detector columns and angles due to a tilt in the setup), yielding measurement data of size
1200 · 768. We then sub-sample in both angle and column dimensions by factors of 20 and 6, respectively,
leaving dy = 60 · 128 = 7680 measurements. For evaluation metrics, we take the corresponding slice from
the provided high-quality reconstruction as the reference ground truth image x. The sparse operator matrix
A is assembled by calling the forward projection routine of the ASTRA toolbox (van Aarle et al., 2015) for
every standard basis vector, A = A[e1, e2, ... edx ]. While especially for large data dimensions it would be
favourable to directly use the matrix-free implementations from the toolbox, we also need to evaluate the
transposed operation v

€
y A, which would be only approximately matched by the back-projection routine

(especially for the tilted 2D sub-geometry, which would require padding). Therefore, we resort to the sparse
matrix multiplication via PyTorch.
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The network architecture is shown in fig. 3. Following Barbano et al. (2022c), we pretrain the network to
perform post-processing of filtered back-projection (FBP) reconstructions on synthetic data. The dataset
consists of pairs of images containing random ellipses, and corresponding FBPs from observations simulated
according to eq. (1) with 5% noise. The supervised pretraining accelerates the convergence of the subsequent
unsupervised DIP reconstruction from y. In the DIP phase, the FBP of y is used as the network input.
Table 8 lists the hyperparameters of DIP optimisation. The dropout rate p of DIP-MCDO is set to 0.05.

After DIP optimisation, following Antorán et al. (2022) the network weights are refined for the linearised
model (eq. (6)). We optimise the same loss function as for DIP, but with the linear model eq. (6) instead of
the network model, for 1000 steps. This yields network weights that fit better the subsequent MLL / Type-II
MAP optimisation eq. (17), which employs the linear model.

Table 8: Hyperparameters of DIP optimisation used for the walnut data. The ⁄ value refers to our
implementation of eq. (5) in which Î · Î

2 is replaced with mean squared error (or the regularisation term is
upscaled by dx).

TV scaling for DIP: ⁄ 6.5e≠6
DIP iterations (after pretraining) 1500

In MLL / Type-II MAP optimisation eq. (17), we use 10 probes to estimate the gradients of the log-
determinant log |�yy| eq. (19), employing the PCG method for solving v

€�≠1
yy using a maximum of 50 steps

with a randomised SVD-based preconditioner P of rank 200 that is updated every 100 steps. The TV-PredCP
gradients eqs. (20) and (21) are estimated using 20 samples. The MLL / Type-II MAP optimisation is run
for 3000 iterations.

The posterior predictive covariance matrices for all methods are estimated by drawing 4096 zero-mean samples
and computing empirical posterior predictive covariance matrix. The latter is done for patch-sizes from
1 ◊ 1 up to 10 ◊ 10 image patches. We use a stabilising heuristic for the estimated covariance matrices,
inspired by Maddox et al. (2019): by letting �̃x|y Ω –�x|y + (1 ≠ –)diag(diag(�x|y)), – = 1

2 , the impact of
the o�-diagonal entries is reduced. Note that our Gaussian assumption is correct in the case of linearised
DIP but not for MCDO. However, MCDO does not provide a closed form density over the reconstructed
image, only samples. The dimensionality of the reconstruction is too large for exact density estimation on
real-measured data. We thus compute the log-likelihood in the same way as for the linearised DIP, i.e. via a
Gaussian distribution with mean and posterior predictive covariance matrices estimated from samples. The
accelerated sampling method via J̃ & PCG uses a randomised SVD-based 500-rank approximation J̃ of the
Jacobian, and PCG for solving v

€�≠1
yy with a maximum of 50 steps along with a randomised SVD-based

preconditioner of rank 400. This sampling variant can be performed in single precision (32 bit floating point).
Thus constructing J̃ is actually much faster than reported in table 1 (0.5 min instead of 0.2 h).
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