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Appendix A. More Related Work

Besides CLIP-based OOD detection, we also include a brief review of relevant research works
of traditional OOD detection for a comprehensive survey as follows. Tradtional OOD Detec-
tion Traditional OOD detection primarily utilizes CNN-based or Vision Transformer (ViT)-based
approaches Dosovitskiy et al. (2021) for detection by leveraging visual features. Some methods
attempt to enhance the distinction between ID and OOD samples by designing proper scoring func-
tions. MSP Hendrycks and Gimpel (2017) uses the maximum softmax score as a criterion, positing
that the model exhibits higher confidence levels for ID samples. ODIN Liang et al. (2018) further
enhances the separation between ID and OOD scores through temperature scaling and input prepro-
cessing.

However, the study Nguyen et al. (2015) indicates that discriminative models can exhibit over-
confidence. Instead, the energy score Liu et al. (2020), theoretically aligns with the probability
density function, seeking to mitigate the issue of over-confidence. The Mahalanobis score Lee
et al. (2018) approaches the problem from the feature space, assuming that the class-conditional
distribution follows a multivariate Gaussian distribution and uses the Mahalanobis distance as the
scoring function. RMD Ren et al. (2021) further improves the Mahalanobis distance by removing
the influence of background statistics, enhancing the detection performance of Near-OOD samples.
ViM Wang et al. (2022) argues that considering the probability space, logits space, or feature space
individually has limitations and proposes a virtual logit to integrate perspectives from all three. Be-
yond designing different scoring functions, some studies have sought to improve OOD detection by
examining the model’s behavior. ReAct Sun et al. (2021) identifies differences of the activation pat-
terns between OOD data and ID data and further improves performance by implementing clipping
methods. Meanwhile, LogitNorm Wei et al. (2022) addresses the problem of over-confidence by
enforcing a constant vector norm on the logits in training.

Appendix B. More Implementation Details

B.1. Training Details

B.1.1. NEGATIVE MINING.

We use the NLTK library to extract nouns and adjectives from the WordNet 3.1 Fellbaum (1998) cor-
pus dataset. To mitigate semantic overlap, we select only the first word for each lexname. Following
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Table 1: Examples of LLM inputs, prompts, and outputs for superclass labels and background
descriptions generation. The example LLM model is Claude 3.5 Sonnet with temperature setting to
zero.

Target Output LLM Input LLM Prompt Example Output

Superclass
labels

Class labels Output immediate super-
class of {class label} in its
classification hierarchy.
Provide only the lower
case superclass name, no
explanation.

{
"tench": "cyprinidae",
"goldfish": "cyprinidae",
"absorbent paper": "paper towel",
"bed": "cradle",

}

Background de-
scriptions

Superclass
labels

Provide description of a
{superclass label}: 10
precise, scenic-setting
details, 3-word phrases.
Each phrase should con-
tain environment and
related object. Avoid
using adjectives, provide
concrete descriptions.
Separate with commas.
Single line output.

{
"absorbent paper":
"Paper soaks spill,
napkin catches drip,
towel dries hands,
blotter absorbs ink,
tissue wipes nose,
filter traps sediment,
coaster protects table,
sponge cleans counter,
pad collects grease,
liner prevents leaks",

"bed":
"Sheets whisper breeze,
pillows catch moonlight,
headboard frames window,
nightstand holds lamp,
rug absorbs footsteps,
curtains filter sunlight,
blanket drapes floor,
clock ticks softly,
books stack nearby,
mirror reflects bed",

}

NegLabel Jiang et al. (2024), we designate the lowest 15% similarity scores (0.95-quantile) in nouns
and adjectives as negative labels. We follow the same prompt template setting as in NegLabel.
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B.1.2. PROMPT TUNING.

Prompt tuning Zhou et al. (2022) with learnable vector length of 16 is performed for 200 epochs,
with few-shot training image batch size 256 and OOD image batch size 512, using a learning rate
of 0.025 (SGD optimizer).

B.1.3. VISUAL PROMPT TUNING (VPT).

VPT Jia et al. (2022) with learnable vector length of 12 is trained for 5 epochs, with few-shot training
image batch size 32 and OOD image batch size 64, using a learning rate of 0.2 (SGD optimizer).

B.2. Prompts For Superclass Labels and Background Descriptions

Table 1 presents our prompt design. For each class label, we employ LLMs to identify correspond-
ing superclass labels. Subsequently, after obtaining the set of superclass labels, we utilize LLMs
to generate relevant background descriptions. Based on the current price-per-token for Claude 3.5
Sonnet, the generation of superclass labels and background descriptions for ImageNet-1K would
incur an approximate cost of 1.2 US dollars.

Table 2: Comparison of the proposed zero-shot OOD detection method and NegLabel Jiang et al.
(2024) on robustness against covariate shift. The best result in each column is in bold. The values
for Superclass-BG are derived from the average of three independent generations using identical
prompts. All methods are based on CLIP-B/16, which employs a ViT-B/16 as the image encoder
and a masked self-attention Transformer as the text encoder. All values are measured in percentages.
The shaded part represents our method.

ID Dataset Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ImageNet-Sketch NegLabel 1.89 99.41 22.13 94.98 38.35 90.87 49.49 88.68 27.96 93.49
Superclass-BG 1.34 99.58 15.51 96.04 30.12 92.68 49.08 87.86 24.01 94.04

ImageNet-A NegLabel 3.23 98.97 36.85 90.69 54.21 83.96 66.28 79.88 40.14 88.38
Superclass-BG 3.32 98.89 36.55 90.08 55.46 82.55 71.81 72.52 41.78 86.03

ImageNet-R NegLabel 1.44 99.63 14.84 96.10 28.20 92.09 37.91 90.01 20.60 94.46
Superclass-BG 0.82 99.79 10.40 97.09 21.60 94.06 37.11 89.48 17.48 95.11

ImageNet-V2 NegLabel 2.05 99.48 23.64 94.77 40.34 90.41 51.93 87.99 29.49 93.17
Superclass-BG 1.50 99.65 17.16 95.98 32.76 92.41 51.74 87.36 25.79 93.85

Appendix C. Further Experiments and Discussions

C.1. Datasets and Benchmarks.

We utilize the ImageNet-1K OOD benchmark Huang et al. (2021) to compare our method with
existing zero-shot and few-shot training-based OOD detection approaches. The ImageNet-1K OOD
benchmark employs ImageNet-1K Deng et al. (2009) as the ID dataset and uses iNaturalist Van Horn
et al. (2018), SUN Xiao et al. (2010), Places Zhou et al. (2018), and Texture Cimpoi et al. (2014)
as OOD datasets, which have no class overlap with the ID dataset. Following the settings of the
NegLabel approach, we utilize ImageNet-A Hendrycks et al. (2021b), ImageNet-Sketch Wang et al.
(2019), ImageNet-R Hendrycks et al. (2021a), and ImageNet-V2 Recht et al. (2019) to evaluate
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Table 3: Comparison of the proposed zero-shot OOD detection method and NegLabel Jiang et al.
(2024) on the fine-grained dataset.

ID Dataset Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CUB-200 NegLabel 0.12 99.98 0.02 100.00 0.27 99.92 0.00 100.00 0.10 99.97
Superclass-BG 0.14 99.97 0.02 99.99 0.28 99.91 0.00 99.99 0.11 99.96

Oxford-Pet NegLabel 0.00 100.00 0.02 100.00 0.16 99.96 0.12 99.97 0.08 99.98
Superclass-BG 0.00 100.00 0.00 100.00 0.15 99.96 0.14 99.96 0.07 99.98

Stanford-Cars NegLabel 0.00 100.00 0.01 100.00 0.02 99.99 0.00 100.00 0.01 100.00
Superclass-BG 0.00 100.00 0.01 100.00 0.03 99.99 0.00 100.00 0.01 100.00

Food-101 NegLabel 0.00 100.00 0.00 100.00 0.01 100.00 1.67 99.61 0.42 99.90
Superclass-BG 0.00 100.00 0.00 100.00 0.00 100.00 1.38 99.75 0.35 99.94

Table 4: Comparison of the proposed zero-shot and few-shot OOD detection methods with MCM
Ming et al. (2022) and NegLabel Jiang et al. (2024) on the ImageNet-100 dataset.

Method iNaturalist SUN Places Texture Average

FPR95 ↓ AUROC↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

zero-shot
MCM 14.93 97.27 31.64 95.29 30.58 95.10 38.32 93.15 28.86 95.20
NegLabel 0.49 99.87 8.43 98.20 18.54 96.39 23.28 95.63 12.69 97.52
gray!20 Superclass-BG 0.19 99.92 7.22 98.31 14.52 97.00 23.55 95.38 11.37 97.65

16-shot
gray!20 Ours (Train) 0.14 99.94 5.40 98.64 9.52 97.88 4.72 98.85 4.94 98.82

Table 5: Performance of few-shot training for our proposed method across various datasets under
different numbers of training samples. The ID dataset is ImageNet-1K.

# of Samples iNaturalist SUN Places Texture SSB-hard NINCO

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

1 0.89 99.77 15.16 96.43 30.81 92.74 50.87 88.91 78.61 76.61 63.10 83.84
4 0.65 99.83 12.07 96.91 23.21 94.47 28.10 93.80 58.82 84.94 54.01 87.16
8 0.50 99.86 11.64 97.18 21.82 94.88 18.67 95.70 47.19 88.92 49.83 88.39

16 0.68 99.81 13.15 96.94 16.03 96.55 11.74 97.38 27.97 94.24 45.97 89.73

the robustness of our approach against covariate shift. In addition, we also evaluate our proposed
zero-shot OOD detection method on fine-grained datasets, including CUB-200 Wah et al. (2011),
Food-101 Bossard et al. (2014), Stanford-Cars Krause et al. (2013) and Oxford-Pets Parkhi et al.
(2012).

Beyond the aforementioned datasets, we further evaluate the proposed method on OpenOOD
V1.5 ImageNet-1K benchmark Zhang et al. (2023); Vaze et al. (2022). These benchmarks introduce
more challenging Near-OOD datasets, such as SSB-hard Vaze et al. (2022) and NINCO Bitterwolf
et al. (2023), and robustness evaluations against covariate shifts.

C.2. Robustness Against Covariate Shift

In Table 2, superclass-BG method demonstrates significant improvements in both FPR95 and AU-
ROC metrics across all ID datasets, with the exception of ImageNet-A. It is crucial to note that the
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Table 6: The impact of varying α on zero-shot OOD detection performance using the
Superclass-BGα. The ID dataset is ImageNet-1K.

α
iNaturalist SUN Places Texture SSB-hard NINCO

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 1.27 99.68 20.70 94.86 35.74 91.60 47.66 88.27 74.82 78.30 57.98 83.94
0.1 1.25 99.69 20.54 94.90 35.55 91.65 47.62 88.35 74.58 78.39 57.94 83.93
0.2 1.27 99.69 20.23 95.01 35.23 91.73 47.09 88.42 74.70 78.27 57.59 84.08
0.3 1.25 99.70 19.82 95.10 34.68 91.80 46.56 88.57 74.97 78.22 57.60 84.15
0.4 1.23 99.70 19.32 95.26 34.03 92.00 46.42 88.56 74.92 78.31 57.45 84.21
0.5 1.21 99.70 18.89 95.42 33.37 92.15 46.17 88.59 75.19 78.25 57.28 84.32
0.6 1.19 99.71 17.98 95.60 32.36 92.43 46.37 88.58 75.64 78.21 57.59 84.29
0.7 1.15 99.71 17.57 95.73 31.55 92.59 45.32 88.81 75.90 78.15 57.47 84.43
0.8 1.11 99.71 16.50 96.02 30.14 92.91 44.65 89.12 76.42 78.04 57.47 84.43
0.9 1.12 99.71 14.74 96.34 28.04 93.29 44.18 89.30 76.52 77.92 57.23 84.59
1.0 1.15 99.71 12.91 96.72 26.26 93.76 44.08 89.50 76.88 77.79 57.37 84.52
1.1 1.23 99.69 11.32 97.10 24.45 94.26 44.13 89.73 78.72 77.08 58.44 83.80
1.2 1.51 99.63 10.66 97.25 23.38 94.38 43.69 90.04 81.52 74.60 59.88 82.98

Table 7: The impact of varying β on the performance of enhanced positive embeddings, which are
applied after the phase 1 prompt tuning. The ID dataset is ImageNet-1K.

β

Near-OOD Far-OOD

SSB-hard NINCO Average iNaturalist Texture OpenImage-O Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

OpenOOD V1.5 ImageNet-1K
0 53.10 89.59 58.72 86.51 55.91 88.05 0.46 99.79 15.36 96.89 20.06 96.66 11.96 97.78

0.1 52.00 89.60 57.44 86.98 54.72 88.29 0.39 99.82 15.01 96.97 19.19 96.73 11.53 97.84
0.2 51.34 89.50 55.98 87.36 53.66 88.43 0.32 99.84 15.22 96.99 18.77 96.76 11.44 97.87
0.3 50.64 89.25 54.52 87.63 52.58 88.44 0.28 99.86 15.39 96.93 18.85 96.73 11.51 97.84
0.4 49.93 88.81 52.28 87.78 51.11 88.30 0.25 99.87 16.02 96.78 19.56 96.63 11.95 97.76
0.5 49.95 88.12 51.83 87.77 50.89 87.94 0.25 99.87 18.28 96.48 20.80 96.44 13.11 97.60
0.6 50.93 87.09 50.81 87.57 50.87 87.33 0.26 99.86 21.08 96.01 22.51 96.12 14.62 97.33
0.7 52.32 85.64 50.94 87.17 51.63 86.40 0.31 99.85 25.24 95.27 25.02 95.63 16.86 96.92
0.8 55.58 83.66 51.54 86.52 53.56 85.09 0.38 99.82 30.32 94.17 28.75 94.93 19.82 96.31
0.9 59.70 81.06 53.44 85.63 56.57 83.35 0.52 99.78 37.02 92.55 33.46 93.92 23.67 95.42

OpenOOD V1.5 ImageNet-1K Full-Spectrum
0 67.43 80.43 71.92 76.09 69.67 78.26 5.63 98.47 31.12 90.93 36.60 92.12 24.45 93.84

0.1 66.39 80.60 70.70 76.96 68.54 78.78 4.79 98.74 30.29 91.28 35.12 92.42 23.40 94.15
0.2 65.62 80.72 69.37 77.82 67.50 79.27 3.96 98.98 29.96 91.60 34.11 92.69 22.68 94.42
0.3 64.63 80.75 67.87 78.64 66.25 79.69 3.26 99.18 29.45 91.85 33.52 92.92 22.08 94.65
0.4 63.61 80.65 65.55 79.43 64.58 80.04 2.57 99.35 29.34 92.03 33.44 93.09 21.79 94.82
0.5 62.98 80.39 64.54 80.14 63.76 80.27 2.01 99.48 30.88 92.10 33.78 93.18 22.22 94.92
0.6 62.89 79.90 62.78 80.77 62.83 80.33 1.54 99.57 32.82 92.01 34.37 93.16 22.91 94.92
0.7 63.14 79.11 61.83 81.27 62.48 80.19 1.19 99.64 35.96 91.70 35.74 93.01 24.30 94.78
0.8 64.78 77.95 61.18 81.63 62.98 79.79 0.95 99.67 39.92 91.06 38.23 92.67 26.37 94.47
0.9 67.15 76.33 61.41 81.81 64.28 79.07 0.80 99.68 44.96 89.98 41.46 92.07 29.07 93.91

superclass-BG method considers candidate labels without filtering. Under comparable conditions,
the NegLabel method (i.e., with filtering) achieves an average FPR95 of 47.45% and an AUROC of
83.88% on the ImageNet OOD benchmark. These results indicate that the superclass-BG approach
not only help maintain robustness against covariate shift but also exhibits enhanced effectiveness in
this regard.



LEE CHEN WU

Table 8: Performance comparison of the proposed Superlcass-BG zero-shot OOD detection method
with different VLM architectures. The ID dataset is ImageNet-1K.

Backbone iNaturalist SUN Places Texture SSB-hard NINCO

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CLIP
RN50 1.84 99.53 18.95 95.47 34.30 91.99 46.99 88.54 78.66 77.47 70.76 79.86
RN101 1.86 99.55 20.85 95.07 39.77 90.42 48.17 87.70 80.69 75.38 61.69 83.64

ViT-B/32 1.99 99.55 15.53 96.44 28.44 93.59 48.87 88.51 79.85 75.69 59.88 82.74
ViT-B/16 1.15 99.71 12.91 96.72 26.26 93.76 44.08 89.50 76.88 77.79 57.37 84.52
ViT-L/14 1.09 99.72 13.80 96.88 22.48 94.93 42.59 89.12 72.46 79.82 54.46 86.21

ALIGN
EfficientNet-B7 2.90 99.35 16.33 95.90 29.61 92.64 44.31 88.42 79.55 77.37 69.68 78.57

C.3. Performance Comparison on Fine-Grained Dataset

In Table 3, we present a comparative analysis of four fine-grained datasets. It is noteworthy that
Oxford-Pet, Food-101, and CUB-200 encompass class labels pertaining to animal and food cate-
gories. Under unfiltered conditions, our experimental results demonstrate that the proposed Superclass-
BG method exhibits competitive performance over NegLabel. Moreover, when utilizing Food-101
as the ID dataset, we observe an improvement in performance for our approach with respect to
NegLabel.

C.4. Performance Comparison on ImageNet-100

We also conduct experiments on the smaller ImageNet-100 dataset. For fair comparisons, we use
the same training subset of ImageNet-1K classes as the ID dataset used in MCM while removing
16 images randomly per class for both zero-shot and few-shot OOD evaluations. In addition, the 16
removed images are served as the few-shot training dataset. As observed in Table 4, the Superclass-
BG method demonstrates notable improvements across all datasets except for the Texture dataset,
where it performs slightly inferior to NegLabel. Post-training results exhibit superior performance
across all datasets.

C.5. Comparison of Different Numbers of Training Samples in Few-Shot learning

In Table 5, we present a comparative analysis of the impact of varying quantities of training samples.
The results reveal that for the iNaturalist and SUN datasets, an increase in training samples does
not significantly affect overall performance. Conversely, for the Places, Texture, SSB-hard, and
NINCO datasets, we observe a consistent improvement in performance correlating with an increase
in training data. Notably, the 4-shot training results surpass the current state-of-the-art performance
of both CNN-based and CLIP-based models on the ImageNet OOD benchmark. This outcome
underscores the efficacy of our proposed methodology.

C.6. The Influence of Removing the Background Feature

Let SC denote the superclass labels generated by LLMs, and BG(SC) represent the background de-
scriptions corresponding to each superclass label, also generated by LLMs. Our proposed Superclass-
BG method isolates the core semantic features of the ID label space by removing background fea-
tures from the superclass features. In this section, we examine the impact of varying the proportion
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of background feature removal on zero-shot OOD detection performance. Let T be the text encoder
of CLIP, we define the refined representation as:

Superclass-BGα = T (SC)− α · T (BG(SC)). (1)

Analysis of the results presented in Table 6 reveals a notable trend: as the value of α increases, cor-
responding to a greater proportion of background feature removal, performance on the ImageNet
OOD benchmark improves significantly. Conversely, a slight decrease in performance is observed
on the SSB-hard dataset, while the NINCO dataset shows a marginal improvement. In the con-
text of the relatively more distinguishable ImageNet OOD benchmark, the removal of background
features allows for a more focused representation characterizing the core semantics within the ID
label space. This refinement enhances the model’s ability to differentiate OOD samples that are
inherently distant in semantics from the ID label space. However, this process may inadvertently
eliminate certain features crucial for identifying more challenging Near-OOD samples, explaining
the slight performance degradation observed in the SSB-hard dataset. The NINCO dataset, specifi-
cally designed to ensure no overlap in background or object features with any class in ImageNet-1K,
necessitates a more comprehensive understanding of the ID label space. We posit that the capacity
of the Superclass-BG method to produce a more refined representation of the ID label space con-
tributes to the observed improvement in performance on this particular OOD dataset. Based on the
empirical evidence, setting α = 1 yields a balanced performance across both the ImageNet OOD
and Near-OOD datasets. Consequently, we have opted to standardize the value of α at 1 for our
experiments.

C.7. Pilot Study of Candidate Label Filtering

Figures 1 and 2 illustrate the implications of deliberately excluding labels belonging to the animal
and food categories from the candidate labels to avoid conflicts with the ImageNet-1K major cate-
gories. This exclusion reveals an inherent entanglement between two objectives: ensuring greater
discriminative power between major categories and negative labels, and accurately identifying Near-
OOD samples (primary instances from the animal and the food categories that are visually similar
to ID samples). In the absence of semantically proximate negative labels, Near-OOD samples are
more likely to exhibit affinity towards visually similar ID labels, potentially leading to misclassi-
fication. Conversely, the inclusion of the animal and food category negative labels may adversely
affect ID sample classification, as evidenced in Figure 3. However, the fundamental principle of
negative-mining involves identifying negative labels that are semantically distant from the ID label
space to enhance ID-OOD discrimination. Consequently, the selected negative labels are inherently
those with greater semantic distance from ID labels within the candidate label set. We posit that the
impact on ID samples is relatively minor compared to the substantial improvement in Near-OOD
performance. Experimental results support this hypothesis. In the challenging ImageNet OOD
benchmark, while unfiltered results of our approach show a marginal decrease in performance,
there is a marked improvement in Near-OOD performance. Moreover, our proposed Superclass-BG
method demonstrates the capacity to enhance performance across both scenarios simultaneously by
refining the ID label space.
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Figure 1: Comparative analysis of the impact of candidate label filtering. Each row represents an
OOD image erroneously classified as ID under filtering conditions. The left column displays results
with filtering applied (removal of animal and food categories), while the right column shows results
without filtering. We examine the top 5 class labels with the highest cosine similarity to the image
embeddings, as well as the top 5 negative labels with the highest cosine similarity to the image
embeddings. These negative labels are obtained through negative mining from candidate labels. Our
observations indicate that for the SSB-hard dataset, a challenging Near-OOD dataset more closely
aligned with ImageNet-1K, the inclusion of animal and food candidate labels proves beneficial for
these difficult OOD samples. The selected negative labels demonstrate increased affinity between
the OOD images and these negative labels.
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Figure 2: Comparative analysis of the impact of candidate label filtering. Each row represents an
OOD image erroneously classified as ID under filtering conditions. The left column displays results
with filtering applied (removal of animal and food categories), while the right column shows results
without filtering. We examine the top 5 class labels with the highest cosine similarity to the image
embeddings, as well as the top 5 negative labels with the highest cosine similarity to the image
embeddings. These negative labels are obtained through negative mining from candidate labels.
Our observations indicate that for the NINCO dataset, a challenging Near-OOD dataset more closely
aligned with ImageNet-1K, the inclusion of animal and food candidate labels proves beneficial for
these difficult OOD samples. The selected negative labels demonstrate increased affinity between
the OOD images and these negative labels.
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Figure 3: Comparative analysis of the impact of candidate label filtering. Each row represents an ID
image erroneously classified as OOD under conditions without label filtering. The left column dis-
plays results with filtering applied (removal of animal and food categories), while the right column
shows results without filtering. We examine the top 5 class labels with the highest cosine similarity
to the image embeddings, as well as the top 5 negative labels with the highest cosine similarity to
the image embeddings. These negative labels are obtained through negative mining from candi-
date labels. The experimental results reveal that, although the essence of negative-mining lies in
selecting labels with lower similarity to the ID label space, these candidate labels, which belong to
the majority category of ID labels, may exert an adverse influence on ID images. Consequently,
ID images pertaining to the animals category might exhibit an increased affinity towards negative
labels within the animal category.
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Table 9: Full experiment results of our proposed zero-shot and few-shot OOD detection method on
the OpenOOD V1.5 benchmark.

Near-OOD Far-OOD

Method SSB-hard NINCO iNaturalist Texture OpenImage-O

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ImageNet-1K Benchmark
Ours (Superclass-BG) 64.93 77.74 56.27 84.48 0.75 99.71 44.64 90.25 39.55 92.52
Ours (Train) 26.59 94.21 42.22 89.69 0.51 99.81 9.41 98.04 9.68 98.13

ImageNet-1K Full Spectrum Benchmark
Ours (Superclass-BG) 70.52 74.17 62.51 81.80 0.85 99.65 50.98 88.32 45.77 91.14
Ours (Train) 43.80 86.22 58.89 79.85 4.71 98.88 23.48 93.46 23.88 94.85

Table 10: Performance comparison of proposed Superclass-BG zero-shot OOD detection method
on different LLMs across multiple OOD datasets. The ID dataset is ImageNet-1K.

LLM iNaturalist SUN Places Texture SSB-hard NINCO

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Run 1
Claude 3.5 Sonnet 1.16 99.71 13.73 96.53 26.85 93.60 44.54 89.50 76.61 77.81 57.50 84.30
gpt-4o 1.23 99.70 11.40 97.04 24.48 94.24 51.60 87.39 76.14 78.42 58.42 83.82
gpt-4-turbo 1.16 99.71 13.66 96.59 26.70 93.74 44.89 89.42 75.98 78.09 56.79 84.44
gpt-4o-mini 1.21 99.70 11.24 97.03 24.48 94.16 44.36 89.44 78.50 77.26 58.91 83.54

Run 2
Claude 3.5 Sonnet 1.15 99.71 12.91 96.72 26.26 93.76 44.08 89.50 76.88 77.79 57.37 84.52
gpt-4o 1.20 99.70 11.39 97.05 24.46 94.24 50.73 87.50 76.78 78.23 59.02 83.69
gpt-4-turbo 1.21 99.71 13.45 96.59 26.61 93.70 43.67 89.84 76.61 77.60 57.72 84.51
gpt-4o-mini 1.21 99.70 11.42 96.99 24.52 94.11 43.23 89.93 78.72 77.05 59.27 83.25

Run 3
Claude 3.5 Sonnet 1.14 99.71 13.44 96.67 26.76 93.75 44.17 89.72 77.37 77.63 57.64 84.21
gpt-4o 1.20 99.70 11.46 97.01 24.82 94.20 50.92 87.70 76.07 78.57 58.25 83.61
gpt-4-turbo 1.13 99.71 13.63 96.54 26.77 93.67 43.78 89.70 75.65 78.09 56.86 84.23
gpt-4o-mini 1.20 99.70 11.13 97.09 24.14 94.22 44.15 89.54 78.40 77.19 58.63 83.32

C.8. Enhancement of Utilizing Learned Positive Labels with Class Labels

Let β denote the weight of the class label embedding when constructing the enhanced positive
embedding. Formally, let C represent the class labels and P denote the positive labels learned
through phase 1 prompt tuning. The enhanced positive embedding P ′ is then defined as:

P ′ = (1− β) · T (P ) + β · T (C) (2)

To investigate the impact of different β values on the robustness against covariate shift, the results
presented in Table 7 demonstrate the performance of the enhanced positive embedding after phase
1 prompt tuning but without undergoing phase 2 visual prompt tuning. From these findings, we can
observe that while smaller β values yield superior performance on the OpenOOD V1.5 ImageNet-
1K benchmark, which does not account for covariate shift. This indicates that the positive labels
obtained through phase 1 prompt tuning have indeed adapted to the target distribution. However,
the opposite trend is observed in the full-spectrum benchmark that considers covariate shift. Upon
increasing the weight of the class label embedding, we note a reduction in the model susceptibility
to covariate shift, suggesting that the class labels inherently retain CLIP powerful generalization
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Table 11: Performance comparisons of various configurations in the proposed methods. S-BG
denotes Superclass-BG. The ID dataset is ImageNet-1K.

S-BG Filter PT VPT iNaturalist SUN Places Texture SSB-hard NINCO

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

zero-shot
× × 1.32 99.66 21.73 94.51 36.99 91.22 48.46 88.19 75.78 78.00 59.36 83.73
✓ × 1.15 99.71 13.36 96.64 26.62 93.70 44.26 89.57 76.95 77.74 57.50 84.34
× ✓ 1.65 99.56 18.84 95.68 34.15 91.93 44.91 89.94 84.00 70.59 69.05 77.25
✓ ✓ 1.46 99.59 10.94 97.33 23.86 93.97 39.04 91.18 84.94 69.05 69.93 75.99

few-shot
× × ✓ × 0.58 99.85 18.79 95.30 34.71 91.91 22.20 94.92 48.31 88.01 50.73 86.93
× × × ✓ 1.46 99.67 23.47 93.76 34.26 91.35 42.09 89.89 71.42 79.96 57.72 84.87
✓ × ✓ × 0.47 99.87 11.95 97.03 26.87 93.98 19.08 95.64 48.55 88.14 48.88 87.79
× ✓ ✓ × 0.71 99.81 14.61 96.62 30.40 93.20 18.58 95.93 58.81 83.80 61.77 82.68
✓ ✓ ✓ × 0.75 99.79 8.04 98.02 20.00 95.24 16.99 96.30 67.60 79.01 62.35 81.68
× × ✓ ✓ 0.71 99.80 21.38 95.12 23.47 94.84 15.14 96.60 31.04 93.43 47.69 89.07
✓ × ✓ ✓ 0.68 99.81 13.15 96.94 16.03 96.55 11.74 97.38 27.97 94.24 45.97 89.73
× ✓ ✓ ✓ 0.92 99.77 16.42 96.48 20.87 95.53 12.61 97.24 43.29 90.15 58.59 84.71
✓ ✓ ✓ ✓ 1.01 99.77 8.12 98.06 16.03 96.20 14.04 97.06 60.82 82.48 60.87 82.51

capabilities. Through the weighted sum of these two components, we aim to maintain robust gen-
eralization while simultaneously improving performance on the target distribution. Based on our
experimental findings, we have chosen to set β to 0.5, as this value provides the best balanced re-
sults, effectively preserving generalization capabilities while enhancing performance on the target
distribution.

C.9. Various Vision Language Model Architectures

For a more comprehensive comparison, we also provide the zero-shot OOD detection performance
of Superclass-BG with different VLMs, CLIP and ALIGN Jia et al. (2021) models. The experimen-
tal results are presented in Table 8.

Appendix D. Full Experimental Results

The greater details of the experimental results of Table 2, Table 4, Figure 3 and Table 5 in the main
paper can be found in Table 9, Table 10, Table 11 and Table 12, respectively. Table 9 presents the
full experimental results on the OpenOOD V1.5 ImageNet-1K benchmark and full-spectrum bench-
mark. Table 10 demonstrates the experimental outcomes of Superclass-BG generated by LLMs. Ta-
ble 11 provides an ablation study on different components of the experimental design. Finally, Table
12 presents the experimental results for various combinations of background description numbers
and description lengths.
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Table 12: Superclass-BG zero-shot OOD detection performance for various configurations. The ID
dataset is ImageNet-1K. Length of description denotes the length of a single background description
generated by LLMs, while number of descriptions indicates the total number of generated descrip-
tions. For all results, we use the same superclass labels generated by the LLM prompt as described
in Table 1, with the temperature setting at zero.

Number of iNaturalist SUN Places Texture SSB-hard NINCO

Description FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Length of Description: 1
5 1.33 99.68 10.99 97.26 23.11 94.57 51.52 87.83 77.06 77.81 59.19 82.48
6 1.31 99.67 10.13 97.45 21.79 94.90 51.67 87.60 76.59 77.94 60.36 82.15
7 1.30 99.67 10.35 97.41 22.28 94.72 48.88 88.84 77.87 76.19 60.82 81.84
8 1.22 99.70 10.18 97.43 22.28 94.66 49.49 88.65 78.16 76.47 61.18 81.93
9 1.28 99.68 10.59 97.38 22.87 94.54 48.07 89.30 78.71 75.54 61.45 81.72
10 1.39 99.66 10.26 97.46 22.40 94.65 47.29 89.37 78.85 75.71 62.27 81.35
11 1.40 99.66 10.15 97.52 21.94 94.75 47.98 89.28 78.21 75.98 62.69 81.02
12 1.32 99.67 9.67 97.56 21.38 94.92 50.34 88.54 77.41 76.85 61.31 81.15
13 1.40 99.65 10.10 97.54 22.24 94.76 49.04 89.19 78.09 75.47 61.79 80.85
14 1.34 99.67 9.86 97.54 21.57 94.88 49.15 88.88 77.43 76.38 61.57 81.03
15 1.32 99.67 11.18 97.27 23.54 94.45 48.19 88.99 77.62 76.51 61.14 82.10

Length of Description: 2
5 1.24 99.70 11.14 97.16 23.56 94.40 47.48 89.06 77.93 77.30 58.64 83.57
6 1.15 99.71 11.02 97.21 23.47 94.50 47.57 89.10 78.06 77.07 58.52 82.69
7 1.14 99.71 11.05 97.23 23.67 94.47 48.62 88.78 77.49 77.58 58.85 82.87
8 1.17 99.71 10.88 97.33 23.28 94.56 46.91 89.40 77.86 77.17 59.19 82.28
9 1.18 99.71 10.89 97.28 23.48 94.52 47.94 89.10 78.39 76.96 58.78 83.16
10 1.18 99.71 11.92 97.03 24.86 94.20 46.61 89.33 77.21 77.38 58.32 83.00
11 1.14 99.71 10.55 97.31 22.54 94.69 48.24 88.90 76.84 77.85 58.78 82.90
12 1.17 99.71 11.43 97.21 24.10 94.40 45.80 89.62 77.50 77.35 58.40 82.70
13 1.15 99.72 11.38 97.22 23.68 94.46 48.81 88.65 77.46 77.63 58.29 83.22
14 1.13 99.72 11.07 97.24 23.56 94.50 48.63 88.75 77.25 77.59 58.13 82.94
15 1.13 99.72 11.90 97.03 24.54 94.28 46.56 89.40 77.18 77.72 58.34 83.24

Length of Description: 3
5 1.22 99.70 13.35 96.54 26.46 93.62 45.90 89.08 76.94 77.73 57.93 84.22
6 1.19 99.71 12.74 96.82 25.71 93.98 47.16 88.49 76.61 78.22 57.62 83.98
7 1.16 99.71 12.63 96.77 25.53 93.91 47.39 88.47 76.90 77.87 57.67 84.31
8 1.13 99.71 13.36 96.69 26.42 93.79 43.89 89.67 77.40 77.58 57.37 84.20
9 1.15 99.71 13.51 96.57 27.05 93.59 45.57 89.12 77.15 77.64 57.08 84.42
10 1.15 99.71 12.91 96.72 26.26 93.76 44.08 89.50 76.88 77.79 57.37 84.52
11 1.15 99.70 12.94 96.72 26.08 93.79 47.02 88.71 76.82 78.01 57.71 84.55
12 1.15 99.71 12.88 96.82 25.52 94.03 46.88 88.69 76.46 78.19 57.23 83.91
13 1.09 99.71 13.33 96.57 26.35 93.66 45.14 88.93 76.66 77.89 57.66 84.31
14 1.10 99.71 13.61 96.62 26.67 93.71 45.43 89.14 76.65 77.91 57.15 84.27
15 1.12 99.71 14.05 96.49 27.38 93.57 44.80 89.40 76.46 77.84 57.13 84.03

Length of Description: 4
5 1.17 99.71 14.78 96.25 28.72 93.21 45.69 88.82 76.84 77.92 57.77 84.45
6 1.13 99.71 14.36 96.38 28.26 93.38 47.23 88.53 76.46 77.99 57.40 84.46
7 1.16 99.71 14.67 96.35 28.42 93.32 47.71 88.48 76.19 78.05 57.49 84.68
8 1.13 99.71 15.07 96.15 29.08 93.11 46.08 88.70 76.27 77.95 57.55 84.36
9 1.11 99.72 14.49 96.41 28.07 93.39 47.29 88.33 75.92 78.25 57.08 84.25
10 1.13 99.71 15.05 96.20 29.28 93.07 44.82 89.27 76.42 77.85 57.64 84.64
11 1.12 99.71 14.89 96.26 29.02 93.22 44.36 89.24 76.82 77.88 57.88 84.41
12 1.16 99.71 14.11 96.37 27.71 93.39 47.09 88.42 76.09 78.13 57.43 84.50
13 1.12 99.71 14.24 96.43 28.19 93.43 48.05 88.40 76.42 78.22 57.62 84.34
14 1.10 99.72 15.55 96.11 30.10 92.98 46.72 88.45 75.81 78.15 57.28 84.40
15 1.10 99.71 15.49 96.07 29.89 92.91 46.01 88.70 75.56 78.04 57.52 84.76
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