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Abstract

In this supplementary document, we first collect an overview of inconsistencies
in existing planning benchmarks. Next, we provide details on the NAVSIM imple-
mentation and the dataset used in our study. Moreover, we include descriptions of
the baselines and present supplementary results. Finally, we provide information
on the 2024 NAVSIM challenge and discuss the broader impact of our work.

1 Inconsistencies in nuScenes Planning Benchmarks

Designing a consistent and standardized evaluation pipeline is crucial to ensure fair comparisons
in benchmarks. However, due to the lack of a standardized evaluation setup on nuScenes [1] for
end-to-end driving, there have been inconsistencies in prior work [27, 11, 12]. Specifically, although
the same metrics, such as ADE or collision rates, have been reported, the underlying evaluation
protocols1 often differ. These differences include how metric results are averaged over timestamps,
which objects are filtered during metric calculation, which frames are masked during evaluation, and
what resolution of the BEV grid is used to calculate collisions. Such subtle differences can lead to
inaccurate conclusions, which emphasizes the importance of our NAVSIM benchmark with principled
and standardized evaluation on an independent test server, which is kept open to new submissions.

2 Implementation Details: NAVSIM

This section provides additional details regarding the NAVSIM framework and metrics used during
evaluation. The code of NAVSIM, including baselines and evaluation, is available under the Apache-
2.0 license [8] and open-sourced on GitHub: https://github.com/autonomousvision/navsim.

2.1 Task Description for Driving Agents

Keyframe-Based Evaluation. Simulating high-dimensional sensor streams for cameras or LiDAR
can be cumbersome. Therefore, in NAVSIM, the trajectory planned by the driving agent in the initial
frame of the scene is kept fixed for the entire simulation horizon. Unlike traditional closed-loop
benchmarks that only use a small initial segment of the trajectory before replanning [6], NAVSIM
uses the trajectory as a whole for evaluation. Therefore, agents need to anticipate the movement of

1For details on inconsistencies in nuScenes end-to-end driving evaluation, please refer to PARA-Drive [26].
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Figure 1: Navigation Goal. Given the map, we extract a route centerline (gray) to interpolate a goal
point at a distance s = 20m (orange) from the rear axle of the ego-vehicle (red). The navigation goal
is classified as a right turn, as the lateral distance exceeds 2m to the right.

surrounding agents and plan accordingly. We simulate the trajectory with a controller and motion
model (see Sec. 2.2).

Sensor Input. Autonomous vehicles require sensor setups to capture details regarding their envi-
ronment. At every time step, an agent in NAVSIM has access to 8 surround-view cameras, each
with an image resolution of 1920 × 1080 pixels. Agents may additionally receive a point cloud
merged from 5 LiDAR sensors mounted on the vehicle. While recent literature in open-loop planning
has shifted away from using LiDAR [11, 12, 26], processing multi-view imagery during training
and testing significantly increased compute requirements. We include LiDAR to enable exploration
for more efficient architectures, utilizing fewer or lower-resolution camera inputs. Besides these
sensors, agents have access to the ego velocity, acceleration, and navigation goal. This information
is accessible for the current time step and 3 past frames, which are 0.5 seconds apart. Note that
privileged information, such as the HD map, is only used in NAVSIM to unroll the simulation and
compute metrics but is not accessible to the driving agents.

Navigation Goal. To disambiguate driver intention, we provide a discrete directional command as a
one-hot vector (i.e., left, straight, right, and unknown). The command is based on the centerline in [6],
which extracts the lane-center segments along the route using Dijkstra’s algorithm on the map. We
interpolate along the centerline for s = 20m from the ego position and classify the direction as left
or right if the interpolated point exceeds a lateral threshold of ±2m, as shown in Fig. 1. Otherwise,
the direction is categorized as straight. Finally, it is set to unknown if the route is not available. The
navigation goal in NAVSIM does not incorporate information about obstacles or human operator
behavior, unlike previous benchmarks [10–12] based on nuScenes [1].

2.2 Predictive Driver Model Score (PDMS)

Metric Weight Range

No at-fault Collision (NC) - {0, 1
2 , 1}

Drivable Area Compl. (DAC) - {0, 1}
Time to Collision (TTC) 5 {0, 1}
Ego Progress (EP) 5 [0, 1]
Comfort (C) 2 {0, 1}

Table 1: PDMS. Subscores with weights and ranges.

Similar to established closed-loop bench-
marks [7, 13], NAVSIM evaluates the driv-
ing performance of agents with a single ag-
gregated score called Predictive Driver Model
Score (PDMS) ∈ [0, 1]. This scoring func-
tion closely resembles nuPlan’s closed-loop
score (CLS) [13] and originates from the PDM-
Closed planner, the winner of the 2023 nuPlan
competition. The non-reactive simulation and
metrics for PDMS are highly optimized due
to the strict run-time requirements of the nuPlan challenge. We use a frequency of 10Hz for the
simulation and scoring pipeline. As OpenScene provides frames at 2Hz, we interpolate agent bound-
ing boxes to a resolution of 10Hz. As observed in previous work [1, 20], we find that upsampling
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the temporal resolution is sufficient for scoring, and beneficial given the substantial reduction in
storage requirements. In the following, we provide further details on the simulation and the subscores,
summarized in Table 1.

Non-Reactive Simulation. The simulation ensures that a driving agent is evaluated on vehicle
movement that is kinematically feasible. Given that the trajectory of a driving agent provides poses
with time steps, we first interpolate the trajectory to the simulation frequency of 10Hz. Over the
simulation horizon of h = 4s, we execute a Linear Quadratic Regulator (LQR) [15] controller
to calculate acceleration and steering values and propagate the ego pose with a kinematic bicycle
model [21]. We use the same controller parameters of PDM-Closed and nuPlan [6, 13].

No at-fault Collisions (NC). The background agents in NAVSIM are non-reactive and do not consider
motion behavior that deviates from the human operator. Therefore, the NC metric penalizes collisions
classified as at-fault. Such at-fault cases are (1) collisions with a stationary bounding box, (2) ego-
front collisions with any detected entity, and (3) ego-side collisions when the ego-vehicle is in an
intersection or multiple lanes. The collision metric additionally distinguishes between vulnerable
agents (vehicles, pedestrians, bicycles) and static classes (e.g., traffic cones, generic objects), with the
score given by:

scoreNC =


1 no at-fault collision,
0.5 one at-fault collision with static class,
0 otherwise.

(1)

Drivable Area Compliance (DAC). Vehicles must remain in drivable areas to ensure traffic law
compliance and pedestrian safety. In NAVSIM, drivable areas include lanes, intersections, or parking
areas. If any corner of the ego-vehicle bounding box leaves the drivable area, the metric assigns a
multiplied penalty of scoreDAC = 0, or scoreDAC = 1 upon compliance.

Ego Progress (EP). The ego progress metric ensures that the vehicle is advancing along the intended
route as specified by the navigation goal. Specifically, the progress result scoreEP represents the
agent progress as a ratio to an approximated safe upper bound. We use a search-based strategy with
trajectory proposals of PDM-Closed [6], the SoTA planner on the benchmark, to identify this upper
bound. The ratio is clipped to [0, 1] while discarding low or negative progress scores, e.g., if the
upper bound is below 5 meters.

Time to Collision (TTC). The TTC score ensures that the ego vehicle maintains a safe distance from
other actors and avoids near collisions. In NAVSIM, TTC is the minimum time in any iteration until
the ego vehicle collides with a bounding box. At each simulated iteration, the metric projects the
ego-vehicle with a constant velocity and heading with a step size of 0.3s and checks for collisions.
Certain collisions are discarded, e.g., if the bounding box is behind the ego vehicle. The result is
either scoreTTC = 1, if TTC > 0.9s, or scoreTTC = 0 otherwise.

Comfort (C). This comfort metric verifies that several kinematic statistics, such as acceleration
and jerk, are within predefined thresholds. We use the same statistics and thresholds as the nuPlan
framework [13], which were determined based on the human driver. If the planner complies with all
thresholds, the result is scoreC = 1, otherwise scoreC = 0.

Additional Subscores. We implemented additional subscores for PDMS, such as driving direction
compliance and speed limit compliance. However, we observed technical issues or little impact of
these subscores with their initial implementations and have excluded the metrics from the main study
and inaugural challenge. We also experimented with traffic light infractions but faced difficulties
with the annotations. The nuPlan dataset applies several post-processing steps on the traffic light
states [13], e.g., to fill labels or to ensure consistency on intersections. While this post-processing
provides complete traffic lights for all actors in the scene, we frequently encountered false traffic light
infractions by the human operator and, therefore, did not include the subscore in PDMS. We aim to
extend the PDMS with improved subscores in future NAVSIM competitions.

Metric Update v1.1. Following the initial NAVSIM challenge, we updated the PDMS implementation
for the public navtest leaderboard. The update includes (1) a minor fix in the trajectory selection of
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Name Logs Sensors Config parameters

Standard
trainval 14 GB >2000 GB train_test_split=trainval

test 1 GB 217 GB train_test_split=test
mini 1 GB 151 GB train_test_split=mini

NAVSIM
navtrain - 445 GB* train_test_split=navtrain
navtest - - train_test_split=navtest
navmini - - train_test_split=navmini

Leaderboard private_test_e2e <1 GB 25 GB train_test_split=private_test_e2e

Table 2: Dataset Splits. Available data splits and storage requirements of OpenScene (i.e., standard)
and the filtering options for NAVSIM. We provide standalone downloads for the leaderboard split
and the navtrain sensors (*requiring 300GB when excluding past frames).

the PDM-Closed planner [6], leading to a different normalization constant in the ego-progress and (2)
a re-implementation of the driving direction compliance (DDC) metric in nuPlan [13]. The DDC
metric verifies that the distance traveled in oncoming traffic does not exceed predefined thresholds
within a 1 second window. During evaluation, the DDC metric is merely collected in the background,
but does not contribute to the PDMS.

3 Dataset & Data Splits

This section discusses the supported data for NAVSIM and the associated licenses. Additionally, we
offer a comprehensive overview of the data splits and curation.

3.1 Dataset Support of OpenScene

NAVSIM provides initial support for the OpenScene v1.1 dataset [4], a collection of 120h driving
data derived from the nuPlan dataset [13]. OpenScene reduces the temporal frequency of sensor
and annotation data to 2Hz, thereby significantly reducing storage demands. As such, OpenScene is
distributed under Creative Commons Attribution Non-Commercial Share Alike 4.0 (CC BY-NC-SA
4.0) [5] and nuPlan’s Dataset License Agreement for Non-Commercial Use [19]. The licensing covers
all available splits in OpenScene, including the private data for the NAVSIM challenge. We refer
to nuPlan’s terms of use [19] for information on the privacy policy or takedown request regarding
privacy concerns. We thank the nuPlan team from Motional for their consent to the re-distribution of
OpenScene and for providing a private data split for the competition.

In the future, we aim to extend the support for more datasets in NAVSIM. Such datasets ideally
provide sensor data as driving policy input, with tracked traffic entities in BEV (e.g., bounding boxes)
and a semantic HD map for evaluation. We hope more datasets are openly released to the community,
allowing for diverse and challenging benchmarks.

3.2 Dataset Splits & Curation in NAVSIM

Dataset Splits. We summarize all splits used in NAVSIM in Table 2. The OpenScene dataset provides
several data splits, such as trainval for training and validating driving policies, test as split for
regular testing, and mini for lightweight demonstrations (see “Standard” in Table 2). Each split
consists of (1) log files for annotations, the ego status, or metadata and (2) sensor data providing
surround view camera images and LiDAR point clouds. For NAVSIM, we provide fixed filtering
options for challenging scenarios on the respective standard splits, called navtrain, navtest, and
navmini. These filtering options do not require additional downloads and can be applied to the
OpenScene splits. We recommend the usage of navtrain and navtest as standardized training
and evaluation protocols, e.g., when benchmarking in research papers. Given the storage demands
of sensors in trainval, we provide a separate download only for the frames needed in navtrain.
These navtrain sensor frames require only 445GB of storage or 300GB when a driving agent does
not require past sensor frames. Lastly, the private_test_e2e split serves as the private set for
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the HuggingFace leaderboard, with removed annotations and metadata in the log files to ensure the
integrity of the challenge.

Split Agent NC DAC TTC Comf. EP PDMS

trainval Const. Velocity 93.1 89.7 88.8 100 73.3 78.7
Human 99.4 97.0 97.9 99.9 84.7 90.9

navtrain Const. Velocity 68.6 59.3 47.8 100 21.1 22.4
Human 100 100 100 99.9 88.0 94.9

Table 3: Challenging Scenes. We show the PDMS and subscores for the constant velocity baseline
and human operator on the trainval and navtrain splits.

Curation & Filtering. As mentioned in the main paper, we filter the dataset to remove frames with
(1) near-trivial solutions or (2) annotation errors that provide problems during evaluation. For (1), we
define trivial frames as situations where the constant velocity baseline achieves a PDMS of more than
80. We find this strategy effective in filtering frames that do not require active decision-making or
intervention, as the constant velocity model (with straight driving) can be interpreted as an action-
repeat policy. In (2), we remove frames where the human operator achieves a PDMS of less than 80.
These failures are often due to false collisions with erroneous bounding boxes or off-road infractions,
given the over-approximated ego extent. We present the PDMS results of the constant velocity agent
and human operator in Table 3. The PDMS of 78.7 of the constant velocity baseline on trainval
indicates that most frames have trivial solutions. After filtering in navtrain, the constant velocity
PDMS drops to 22.4, whereas the human operator improves (i.e., 94.9 vs. 90.9). Thus, we ensure
that the human operators provide a valid expert for imitation in terms of PDMS.

4 Baselines

In this section, we provide further details on the implementation of the baselines and experiments.

4.1 Baselines for Alignment Between Open-Loop and Closed-Loop Evaluation

Experimental Setting. To benchmark open-loop and closed-loop metrics, we use the nuPlan
simulator as a reactive environment. We simulate short scenarios with a duration of d = 15s and
frequency of f = 10Hz, where a planner outputs a new trajectory. As is the default in nuPlan, all
planners must output a trajectory over the horizon of 8s, with positions and orientation values. The
closed-loop score (CLS) is calculated over the complete simulation (i.e., d = 15s), whereas the open-
loop score (OLS) and PDMS are computed on the first frame of each scenario. For implementation
details on CLS and OLS, we refer to [13]. In the following, we outline details of the motion planners
used in the main paper.

Constant Kinematics. We consider 2 constant velocity baselines when interpolating the vehicle
state on the longitudinal axis of the ego vehicle or the lane centerline [6], respectively. We extend
the constant velocity planner with 4 acceleration values (i.e. {±1,±2} ms−2) along the longitudinal
ego-axis and the centerline, totaling 8 constant acceleration baselines.

IDM Planner. For the alignment study, we include the Intelligent Driver Model (IDM) [24] planner
from nuPlan [13]. By default, the planner uses a fallback target velocity of v0 = 10ms−1, a desired
gap to the leading vehicle of s0 = 1m, a headway time of T = 1.5s, a maximum acceleration of
a = 1ms−2, a maximum deceleration (positive) of b = 3ms−2, and a map radius of r = 40m. We
vary the default setting and consider 2 fallback target velocities v0 ∈ {5, 15}ms−1, 2 desired leading
gaps s0 ∈ {0.1, 5}m, 2 headway times T ∈ {0, 3}s, 2 acceleration parameters a ∈ {4, 6}ms−2,
2 maximum deceleration’s b ∈ {4, 6}ms−2, and 2 map radii of r ∈ {1, 10}m. Lastly, we add 1
‘aggressive’ driver profile (v0 = 15ms−1, s0 = 0.1m, T = 0s, a = 6ms−2, b = 3ms−2) and 1
‘passive’ setting (v0 = 8ms−1, s0 = 5m, T = 3s, a = 1ms−2, b = 6ms−2) to the study. With all
configurations, we include a total of 15 IDM planners.
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PDM-Closed. Additionally to the default PDM-Closed planner [6], which evaluates 5 target speeds
{10, 40, 60, 80, 100}% of the speed-limit combined with 3 lateral offsets ({−1, 0, 1}m), we include
a variant with only a single offset of 0m and two with only a single target speed of 100% and
200% of the speed-limit respectively. We also test one version that uses only a single sample obtained
by combining an offset of 0m from the centerline with a target speed of 100% of the speed-limit.
Moreover, we evaluate three versions that simulate proposals over {1, 2, 8}s instead of the default 4s.
Finally, we individually drop trajectory scoring metrics for no-collision, drivable area compliance,
and driving direction compliance individually and all at once. In total, this results in 12 variants of
the PDM-closed planner.

Urban Driver. We consider the Urban Driver open-loop implementation [23], that is provided
in nuPlan. Specifically, we train the model with 2 embedding sizes (128 and 256) on 6 datasets
({25%, 50%, 100%} of navtrain and an equal-sized non-filtered set) and evaluate 2 checkpoints at
different epochs (i.e., after 2 and 100 epochs), resulting in a total of 24 Urban Driver models. We
train all models for 100 epochs on a single NVIDIA 3090 GPU with an AdamW optimizer [18], an
L1-loss, a batch size of 64, and a learning rate of 1e−4 that is divided by 10 after 50 and 75 epochs.
Training a single Urban Driver model takes about 1 day.

PlanCNN. For the study, we modify a PlanCNN model [22], to receive all 15 input combinations
of a BEV raster, the kinematic ego status (velocity and acceleration), the navigation goal, and the
centerline according to [6]. We use a ResNet-50 [9] to encode the BEV raster and apply linear layers
to project all input features to a vector of size 512. We concatenate the feature vectors and apply an
MLP (with 2 hidden layers and a hidden state size of 512) to regress the output trajectory. All models
are trained on {25%, 50%, 100%} of navtrain and an equal-sized non-filtered set, resulting in 90
PlanCNN variants. We use a single NVIDIA 2080Ti GPU and train for 100 epochs with the AdamW
optimizer [18], an L1-loss function, a batch size of 64, and a learning rate of 1e−4 that is divided by
10 after 50 and 75 epochs. The training process takes about 1 day per model.

4.2 Baselines for End-to-End Autonomous Driving

TransFuser. We base our TransFuser [3] implementation on carla_garage2, with several modifica-
tions to the original architecture. First, we stitch the front-view camera (cam_f0) and cropped side
cameras (cam_l0, cam_r0) to a single 1024× 256 input image (approx. FOV of 140◦), to replace
a single wide-angle camera available in CARLA [7]. To offer a lightweight sensor baseline, we
apply ResNet-34 [9] on the LiDAR and image grid. We tokenize the resulting BEV feature grid,
concatenate a linear projection of the ego status (incl. velocity, acceleration, navigation goal), and
forward the features as keys and values in a Transformer decoder [25]. The decoder has 3 layers
and uses a dimensionality of dmodel = 256 for input-output features, dffn = 1024 for Feed Forward
Networks (FFNs), and has 8 attention heads. We use 30 learnable queries for vehicle detection and
1 learnable ego query for trajectory regression. We apply a bounding box regression head on the
vehicle queries for detection according to DETR [2]. We use a simple FFN on the resulting ego query
for the ego trajectory prediction. Moreover, we ignore the depth and semantic segmentation heads of
TransFuser since no labels are available in NAVSIM for these tasks. However, we maintain the BEV
segmentation head on the front-facing 32m × 64m to predict the rasterized drivable area, walkways,
lane centerlines, static objects, vehicles, and pedestrians. We apply an L1-loss on the ego trajectory, a
Hungarian matching loss on the vehicle detection’s (i.e., consisting of a cross-entropy and L1-loss),
and a cross-entropy loss on the BEV segmentation. By default, we train the TransFuser model for 100
epochs on navtrain with a single NVIDIA A5000 GPU, which takes about 1 day. We use an Adam
optimizer [14], a batch size of 96, and a constant learning rate of 1e−4. We refer to the NAVSIM
repository for additional details (see Sec. 2).

Latent TransFuser (LTF). For LTF [3], we replace the LiDAR input grid with a learned tensor of
the same shape. Since only a front-facing image is provided to LTF, we adapt the object detection

2https://github.com/autonomousvision/carla_garage
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Figure 2: Visualization of the PARA-Drive Model’s output. Eight surrounding cameras are
displayed with detected object bounding boxes. In the center, the predicted BEV information is
shown, including object bounding boxes, their predicted multi-modal future trajectories, as well as
the planned trajectory for the ego vehicle.

auxiliary tasks only to detect bounding boxes in front of the ego vehicle (i.e., in the 32m × 64m area).
The remaining training parameters and configurations are equivalent to those of TransFuser.

UniAD. We reproduce UniAD [11] using its official codebase3. It takes inputs from the 8 surround-
view cameras, at a resolution of 1920×1080 for each image. The ego status (incl. velocity and
acceleration) is input to the BEV encoder. We extend the length of the temporal input frames and the
trajectory planning frames to 3 and 8, respectively, to match the NAVSIM settings. The frame lengths
for occupancy forecasting are also aligned. For detection, we filter the training labels based on the
visibility with the LiDAR sensor. In the mapping module, we select 2 classes (pedestrian crossing
and road boundary) as thing classes and 1 stuff class (i.e., drivable area). The backbone of UniAD
is replaced with a ResNet-50 [9], while the other model settings remain the same. For the training
strategy, we first train a 3D detection model, BEVFormer [17], on navtrain for better parameter
initialization. This BEVFormer is initialized with a corresponding pre-trained BEVFormer on the
nuScenes dataset [1]. We then train the UniAD in an end-to-end manner, combining stage 1 and stage
2 of the original UniAD training scheme. The gradient back-propagation of the image backbone is
stopped to reduce memory cost. The UniAD is trained for 14 epochs with all modules, including
losses for tracking, mapping, motion prediction, occupancy forecasting, and planning. The batch size
is set to 1 per GPU across 96 GPUs, with a learning rate of 2e−4 for convergence stability. Other
hyper-parameters remain unchanged. The entire training process takes 3 days.

PARA-Drive. Similar to the UniAD adaptation, we train PARA-Drive [26] following the NAVSIM
settings. Both training of the UniAD and PARA-Drive share the use of the same BEVFormer pre-
trained weights on the NAVSIM dataset. The primary differences between UniAD and PARA-Drive
lie in the architecture design as in [26]. The batch size is set to 1 per GPU, and we use 10 nodes for
training, each with 8 NVIDIA A100, with a total of 80 GPUs for about 3.5 days of training.

5 Additional Results

In this section, we provide supplementary results on the experiments of the main paper.
3https://github.com/OpenDriveLab/UniAD
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Optimization? NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
✓ 97.8 91.9 92.9 100 78.8 83.4
✗ 95.4 86.0 87.3 99.3 71.9 75.2

Table 4: UniAD runtime trajectory optimization. We observe that trajectory optimization to
minimize overlap with predicted occupancy significantly lowers PDMS on the navtest split.

5.1 Alignment Between Open-Loop and Closed-Loop Evaluation

For this subsection, we present additional results for the alignment study between the open- and
closed-loop metrics. We consider the PDMS with an evaluation horizon of h = 4 and the OLS of
nuPlan (as open-loop metrics) in comparison to the CLS of nuPlan [13].
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Figure 3: Correlation of Subscores.

Subscores. In Fig. 3, we show the correlations of subscores
given the PDMS and CLS implementations. Despite the
longer duration for closed-loop simulation (d = 15s), we ob-
serve that PMDS is able to approximate statistics across all
subscores. Drivable-area compliance (DAC), ego progress
(EP), or comfort (C) appear easier to approximate over the
PDMS horizon of h = 4s, compared to the collision-based
metrics (i.e. NC, TTC). However, we observe higher cor-
relations for collision metrics with a reduced closed-loop
duration (d = 4s). Generally, the PDMS submetrics pro-
vide valuable scores for benchmarking despite the strong
assumption of a non-reactive trajectory planner.
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Figure 4: Training Split CLS.

Filtered Training. In Fig. 4, we show the CLS results for
the learned planners from Section 4.1. We compare the
box plots when training on {50%, 100%} of the filtered
navtrain split and an equal sized non-filtered split, given
a planning frequency f = 2Hz, that yielded the highest
scores for learned agents. For 100% training data, we ob-
serve minor differences in performance, where navtrain
indicates higher variance, whereas the unfiltered split re-
sults in a wider range (indicated by the whiskers). The
PlanCNN variant, which omits the ego status, achieves the
highest CLS results on both training splits (i.e., 0.65 vs.
0.67). Moreover, when using 50% of training data, the planners perform worse when trained on the
navtrain split. We conclude that training on filtered data does not necessarily benefit a learned
planner but does not harm performance when given a sufficient training size.

Additionally, we present our benchmark results for privileged planning in Fig. 5, where we show the
scatter plots for different CLS durations d (4s to 15s), planning frequencies f (10Hz vs. 2Hz), and
evaluation horizons h of PDMS (2s to 8s).

5.2 Revisiting the State of the Art in End-to-End Autonomous Driving

Occupancy-Based Trajectory Optimization. The default implementation of UniAD uses the
network’s predicted occupancy to optimize the planned trajectory using Newton’s method, minimizing
its overlap with occupied cells in a binary occupancy grid. As shown in Table 4, this leads to a drop
in performance, in particular due to more off-road driving and reduced progress. This optimization is
also run independently per waypoint, leading to a slightly reduced comfort score. We disable this
optimization for our results reported in the main paper.
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ID Track Motion Occ. Plan NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
A ✓ ✓ ✓ ✓ 97.8 92.0 93.7 99.7 78.3 83.6
B ✓ ✓ ✓ 97.9 92.4 93.0 99.8 79.3 84.0
C ✓ ✓ 97.1 91.5 91.5 99.7 78.2 82.3
D ✓ 97.1 90.9 92.0 99.8 77.0 81.9

Table 5: PARA-Drive ablations on the effectiveness of each task. We assess the impact of the
auxiliary tasks in PARA-Drive on the navtest split. The default configuration, which excludes
occupancy prediction, has the highest PDMS.

Team NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
1. Hydra-MDP [16] 97.9 100 95.9 100 87.5 92.7
2. ZERON 97.2 97.9 94.5 98.6 80.0 87.5
3. xiaokt001 98.6 95.2 93.1 100 79.4 85.5
4. Neuros 97.9 95.2 93.1 100 79.5 85.4
5. ppp 96.6 95.2 93.8 100 78.4 85.0

Baseline: TransFuser 97.2 94.5 92.4 100 80.0 84.8

Table 6: CVPR 2024 NAVSIM Challenge.

Analysis of Auxiliary Tasks. We study the performance influence of auxiliary tasks for PARA-Drive
in Table 5. All auxiliary tasks (A), including tracking, motion forecasting, and occupancy prediction,
lead to a PDMS of 83.6. Interestingly, we observe the highest PDMS (i.e., 84.0) when excluding the
occupancy prediction (B) and thus use this setting by default in the main paper. However, our results
indicate the value of the motion prediction heads, with a PDMS reduction of 1.7 when left out (C).
Only training for the downstream planning task, i.e., further removing tracking in (D), we observe the
lowest PDMS of 81.9 on navtest. We conclude that auxiliary tasks are beneficial for planning in
NAVSIM but emphasize that further studies are needed to improve performance across the subscores.
We further visualize the PARA-Drive predictions in Fig. 2.

6 2024 NAVSIM Challenge

In this section, we present supplementary details on the 2024 NAVSIM challenge. The nuPlan team
from Motional provided additional data for the competition, which we carefully processed for the
leaderboard evaluation. We only release non-overlapping sequences with sensor data and ego status
information to the competitors in the local coordinate frame. This prevents ground-truth pose leakage
or utilization of the HD map that operates in global coordinates. Moreover, we remove future poses,
annotations, and metadata from the log files and filter the dataset for challenging scenarios. The
processing results in a smaller split compared to navtest but ensures the integrity of the challenge.

In Table 6, we present the results from the 2024 NAVSIM challenge of the top 5 teams. The
competition was held from March to May 2024 and received 463 submissions from 143 teams.
The winning team proposed Hydra-MDP [16], which extends TransFuser with multiple trajectory
candidates, which are selected based on a predicted cost term. This cost function considers several
factors, such as human similarity, collision avoidance, or on-road compliance, that are provided as
targets during training. Hydra-MDP achieves top scores in almost all submetrics, with a PDMS of
92.7 on the leaderboard. Team ZERON ranked second with a PDMS of 87.5 and applied a vision
language model (VLM) in their driving agent. We want to actively maintain the evaluation server to
provide a standardized benchmark for diverse driving approaches. Moreover, we aim to hold future
competitions with additional metrics and larger evaluation sets.

7 Broader Impact

NAVSIM provides new simulation-based metrics to evaluate driving policies from sensor data. We
only consider data from three US cities and Singapore, which can lead to geographical biases in
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the benchmark. While the metrics in NAVSIM show advances in terms of safety assessment of
autonomous vehicles, several attributes, including traffic law compliance or ethical decisions, are not
considered for the benchmark. We hope our open-source framework will encourage the adoption of
more principled driving metrics for research on autonomous vehicles.
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Figure 5: Closed-Loop Alignment. We visualize the open-loop metrics (OLS, PDMS) against the
closed-loop score (CLS) of the privileged planners. On the left column, we vary the CLS duration
d (4s to 15s) and planning frequency f (10Hz vs. 2Hz). The right column shows different PDMS
horizons h (2s to 8s). (Default: d = 15s, h = 4s, f = 10Hz).
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