
Appendix for "Episodic Multi-Task Learning with
Heterogeneous Neural Processes"

Jiayi Shen1, Xiantong Zhen1,2, Qi (Cheems) Wang3, Marcel Worring1
1University of Amsterdam, Netherlands, {j.shen, m.worring}@uva.nl

2 Inception Institute of Artificial Intelligence, Abu Dhabi, UAE, zhenxt@gmail.com
3 Kaiyuan Mathematical Sciences Institute, Changsha, China, hhq123go@gmail.com

Contents

A Frequently Asked Questions 2

B Properties of Valid Exchangeable Stochastic Processes 4

B.1 Proof of Exchangeability Consistency . . . . . . . . . . . . . . . . . . . . . . . . 4

B.2 Proof of Marginalization Consistency . . . . . . . . . . . . . . . . . . . . . . . . 5

C Tractable and Scalable Optimization 6

C.1 Derivation of Approximate ELBO for HNPs . . . . . . . . . . . . . . . . . . . . . 6

C.2 Meta-Training Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C.3 Meta-Test Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

D More Experimental Details 7

D.1 Transformer-structured Inference Modules in Regression Scenarios . . . . . . . . . 7

D.2 Backbone and Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

D.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

E Algorithm of the proposed HNPs 12

F More Experimental Results under Episodic Multi-Task Setup 13

F.1 Effects of More “Tasks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

F.2 4task20way1shot v.s. 20way4shot . . . . . . . . . . . . . . . . . . . . . . . . . . 13

F.3 Comparisons with More Recent Works . . . . . . . . . . . . . . . . . . . . . . . . 13

F.4 Comparisons on Another Benchmark Dataset . . . . . . . . . . . . . . . . . . . . 14

G More Experimental Results under Conventional Multi-Task Setup 14

G.1 Conventional Multi-Task Regression . . . . . . . . . . . . . . . . . . . . . . . . . 14

G.2 Conventional Multi-Task Classification . . . . . . . . . . . . . . . . . . . . . . . . 14

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



H Application to Brain Image Segmentation 16

A Frequently Asked Questions

In this section, we list frequently asked questions from researchers who help proofread this manuscript.
These raised questions might also be relevant for others and help in better understanding the paper, so
we include more detailed discussions here.

Connections between different settings. This work considers the multi-input multi-output setting
of multi-task learning under the episodic training mechanism.

As shown in Table 1, we use "Heterogeneous tasks" to distinguish the different branches of multi-task
learning: (1) single-input multi-output (SIMO) considers different tasks which have the same input
and different supervision information. (2) multi-input multi-output (MIMO) considers heterogeneous
tasks, which have different inputs and follow different data distributions. All tasks are related since
they share the target space. This setting encourages deep models to deal with the insufficient data of
each task by aggregating the training data from related tasks in the spirit of data augmentation.

Meanwhile, "Episodic training" is used to describe the data-feeding strategy. Multi-task meta-learning
also benefits from episodic training, but it follows the SIMO setting in every single episode and cannot
sufficiently handle heterogeneous tasks. In our work, episodic multi-task learning is designed based
on the MIMO setting, suffering from distribution shifts between heterogeneous tasks. In addition,
we note that conventional meta-learning follows the "Episodic training" mechanism but focuses on
single-task learning in each episode. Thus, "Heterogeneous tasks" is not available here (-). More
details are left in Table (1).

Table 1: Connections between different settings. The symbols ✓ and ✗ indicate whether or not the
specific setting has the corresponding characteristic.

Settings Methods Episodic training Heterogeneous tasks

single-input multi-output (SIMO) [1–7] ✗ ✗
multi-input multi-output (MIMO) [8–13] ✗ ✓
conventional meta-learning [14–19] ✓ -
multi-task meta-learning [20–26] ✓ ✗
episodic multi-task learning This paper ✓ ✓

Problem scope. In episodic multi-task learning, we restrict the scope of the problem to the case
where tasks in the same episode are related and share the same target space. There are two main
reasons: (1) we follow the MIMO setting of multi-task learning in every single episode, where the
same target space assures the existence of the knowledge shared among tasks. (2) As demonstrated in
recent works [27, 28], meta-learning tasks generated from the same categories or taxonomic clusters
are closer. This also implies that tasks with the same target space are related.

Differences from other episodic single-task setups. Based on episodic training, there are several
approaches related to the setting of episodic multi-task learning: (1) cross-domain few-shot learning
addresses few-shot learning under domain shifts [29]. Several models [30, 29, 31–34] train a model
on a single source domain or several source domains and then generalize it to other domains. In
contrast, our research emphasizes the domain shifts within individual episodes rather than among
them. (2) multimodal meta-learning extends few-shot learning from a single input-label domain to
multiple different input-label domains [35]. These methods [36, 35, 37–40] design a meta-learner
that can handle tasks from distinct distributions in sequence. Our work centers on simultaneously
dealing with several related tasks within a meta-training or meta-test episode. (3) cross-modality
few-shot learning [41–43] leverages semantic information (e.g., word vectors) to augment the
performance of visual tasks and not among visual tasks only. The aforementioned approaches
exclusively address single-task learning per episode, while our work concurrently tackles multiple
heterogeneous and related tasks within each meta-training or meta-test episode. Intuitive comparisons
with the approaches are shown in Figure 1.
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Figure 1: Differences from other episodic single-task setups. Each row corresponds to an episode.
Different color denotes different categories; the same color with different shades represents different
categories in the same task. Episodic multi-task learning is orthogonal to these setups since it
concurrently tackles multiple heterogeneous and related tasks within each episode.

Different roles of global and local latent variables. In this paper, we introduce global latent
representations and local latent parameters within a hierarchical architecture. Each type of them plays
a distinct role in the proposed model: (1) Global latent representations provide rich task-specific
information during the inference of all local latent parameters. This enables the model to generate
task-specific decoders to handle heterogeneous tasks in a single episode effectively. (2) Local latent
parameters with prediction-aware information constitute task-specific decoders. Each local latent
parameter reveals the knowledge corresponding to a specific prediction across different tasks. This
enhances the expressive power of the proposed model. In practice, we observe that global latent
representations and local latent parameters complement each other when performing predictions in
meta-test episodes.

Advantages of the proposed hierarchical Bayes framework. We summarize the advantages of
the proposed framework. (1) A hierarchical Bayesian framework with global and local latent variables
yields a richer and more complex latent space to mitigate the expressiveness bottleneck, thus better
parameterizing task-specific functions in stochastic processes. (2) Global and local latent variables
capture epistemic uncertainty in representation and parameter levels, respectively, and show improved
performance in our experiments.

Roles of probabilistic HNPs and KL values in meta training. The probabilistic HNPs encode the
context as the heterogeneous prior and reveal the uncertainty resulting from data insufficiency and the
extent of observations in tasks. Additionally, minimizing KL terms encourages priors inferred from
context sets to stay close to posteriors inferred from target sets, guiding more efficient conditional
generation. In training processes, we observed the KL divergence value does not decrease to 0 after
convergence, e.g., KL values are in the order of e-1 on Office-home. This is also part of traits in
the NPs family, suggesting the approximate posterior and the approximate prior encode different
conditional information during the generation of latent variables.

Real-world examples or benchmarks for episodic multi-task learning. Episodic multi-task
learning has several potential applications in the real world, such as autonomous driving and robotic
manipulations. In detail, the autonomous driving system needs to deal with different and related
sensor data in an environment. However, the driving environment constantly changes along with the
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weather, time, country, etc. Thus, fast adapting of the current multi-tasker to new environments is
challenging in this application and our method can be a plausible solution for this challenge.

B Properties of Valid Exchangeable Stochastic Processes

Here, we further demonstrate that HNPs are valid stochastic processes, as meeting the exchangeability
and marginalization consistency conditions [18]. As stated in [18]: the conditions, including (finite)
exchangeability and marginalization, are sufficient to define a stochastic process with the help of the
Kolmogorov extension theorem. Here we follow the notations in the main paper. For convenience,
we provide the used symbols and the corresponding descriptions in Table 2.

In this paper, we model the functional posterior distribution of the stochastic process by approximating
the joint distribution over all target sets p(y1:M

τ |x1:M
τ , C1:M

τ ), which is conditioned on all context
samples C1:M

τ . To distinguish the order set among different tasks, we use nm
τ to denote the number

of target samples corresponding to a specific task in the episode τ . For simplicity, we omit the
meta-knowledge ω and ν1:M in the formulations during the proof.

Table 2: Notations and their corresponding descriptions in this paper.

Notation Description

(·)τ Variables correspond to an episode.
(·)m Variables correspond to a single task.

Im
τ A single task in the episode τ , which is sampled from a specific task distribution.

p(Im) The specific task distribution.
M The number of task distributions and the number of tasks in a single episode.

I1:M
τ All heterogeneous tasks in the episode τ .
C A context set.
T A target set.
x̄ A context sample feature of the context set.
x A target sample feature of the target set.
x Set of all target sample features in the target set.
ȳ The ground truth of the context sample.
y The ground truth of the target sample.
y Set of the ground truth of all target samples in the target set.
NC The numbers of context samples in the context set.
NT The numbers of target samples in the target set.
zmτ The introduced global latent representation for a given task.

wm
τ,1:O The introduced local latent parameters for a given task.

B.1 Proof of Exchangeability Consistency

We now provide the proof of Exchangeability Consistency: the joint prediction distribution is invariant
to the permutation of the given multiple tasks and the corresponding samples in each task.

Theorem B.1. (Exchangability) For finite n∗
τ =

∑M
m=1 n

m
τ , if π∗

τ = {πm
τ }Mm=1 is a permutation of

{1, · · · , n∗} where πm
τ is a permutation of the corresponding order set {1, · · · , nm

τ }, then:

p(π∗
τ (y

1:M
τ )|π∗

τ (x
1:M
τ ), C1:M

τ ) = p(y1:M
τ |x1:M

τ , C1:M
τ ),

where π∗
τ (y

1:M
τ ) := (π1

τ (y
1
τ ), · · · , πM

τ (yM
τ )) = (yτ,π∗

τ (1)
, · · · , yτ,π∗

τ (n
∗
τ )
) and π∗

τ ({x1:M
τ }) :=

(π1
τ (x

1
τ ), · · · , πM

τ (xM
τ )) = (xτ,π∗

τ (1)
, · · · , xτ,π∗

τ (n
∗
τ )
).
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Proof.

p(π∗
τ (y

1:M
τ )|π∗

τ (x
1:M
τ ), C1:M

τ )

=

∫ ∫
p(π∗

τ (y
1:M
τ )|π∗

τ (x
1:M
τ ),w1:M

τ,1:O)
( M∏

m=1

p(wm
τ,1:O|zmτ , C1:M

τ )
)( M∏

m=1

p(zmτ |Cm
τ )

)
dw1:M

τ,1:Odz
1:M
τ

=

∫ ∫ ( n∗
τ∏

i=1

p(yτ,π∗
τ (i)|xτ,π∗

τ (i),w
1:M
τ,1:O)

)( M∏
m=1

p(wm
τ,1:O|zmτ , C1:M

τ )
)( M∏

m=1

p(zmτ |Cm
τ )

)
dw1:M

τ,1:Odz
1:M
τ

=

∫ ∫ M∏
m=1

{ nm
τ∏

j=1

p(ym
τ,πm

τ (j)|xm
τ,πm

τ (j),w
m
τ,1:O)p(w

m
τ,1:O|zmτ , C1:M

τ )p(zmτ |Cm
τ )

}
dw1:M

τ,1:Odz
1:M
τ

=

∫ ∫ M∏
m=1

{ nm
τ∏

j=1

p(ym
τ,j |xm

τ,j ,w
m
τ,1:O)p(w

m
τ,1:O|zmτ , C1:M

τ )p(zmτ |Cm
τ )

}
dw1:M

τ,1:Odz
1:M
τ

= p(y1:M
τ |x1:M

τ , C1:M
τ ).

B.2 Proof of Marginalization Consistency

We now aim to prove the Marginalization Consistency of the proposed model: if marginalizing out
a part of the target set in each task, the marginal distribution remains the same as defined on the
original target sets without the marginalized part.

Theorem B.2. (Marginalization) Given n̂∗
τ =

∑M
m=1 n̂

m
τ , where 1 ≤ n̂∗

τ ≤ n∗
τ and for each task

1 ≤ n̂m
τ ≤ nm

τ , the consistency is:∫
p(y1:M

τ |x1:M
τ , C1:M

τ )d(y1:M
τ )n̂∗

τ+1:n∗
τ
= p((y1:M

τ )1:n̂∗
τ
|(x1:M

τ )1:n̂∗
τ
, C1:M

τ ),

where (y1:M
τ )1:n̂∗

τ
= ((y1

τ )1:n̂1
τ
, · · · , (yM

τ )1:n̂M
τ
) = (yτ,1, · · · , yτ,n̂∗

τ
) and (x1:M

τ )1:n̂∗
τ

=

((x1
τ )1:n̂1

τ
, · · · , (xM

τ )1:n̂M
τ
) = (xτ,1, · · · , xτ,n̂∗

τ
).

Proof.∫
p(y1:M

τ |x1:M
τ , C1:M

τ )d(y1:M
τ )n̂∗

τ+1:n∗
τ

=

∫ ∫ ∫
p(y1:M

τ |x1:M
τ ,w1:M

τ,1:O)
( M∏

m=1

p(wm
τ,1:O|zmτ , C1:M

τ )
)( M∏

m=1

p(zmτ |Cm
τ )

)
dw1:M

τ,1:Odz
1:M
τ d(y1:M

τ )n̂∗
τ+1:n∗

τ

=

∫ ∫ ∫ ( n∗
τ∏

i=1

p(yτ,i|xτ,i,w
1:M
τ,1:O)

)( M∏
m=1

p(wm
τ,1:O|zmτ , C1:M

τ )
)( M∏

m=1

p(zmτ |Cm
τ )

)
dw1:M

τ,1:Odz
1:M
τ d(y1:M

τ )n̂∗
τ+1:n∗

τ

=

∫ ∫ M∏
m=1

{∫ nm
τ∏

j=1

p(ym
τ,j |xm

τ,j ,w
m
τ,1:O)p(w

m
τ,1:O|zmτ , C1:M

τ )p(zmτ |Cm
τ )d(ym

τ )n̂m
τ +1:nm

τ

}
dw1:M

τ,1:Odz
1:M
τ

=

∫ ∫ M∏
m=1

{ n̂m
τ∏

j=1

p(ym
τ,j |xm

τ,j ,w
m
τ,1:O)p(w

m
τ,1:O|zmτ , C1:M

τ )p(zmτ |Cm
τ )

∫ nm
τ∏

j=n̂m
τ +1

p(ym
τ,j |xm

τ,j ,w
m
τ,1:O)d(y

m
τ )n̂m

τ +1:nm
τ

}
dw1:M

τ,1:Odz
1:M
τ

=

∫ ∫ M∏
m=1

{ n̂m
τ∏

j=1

p(ym
τ,j |xm

τ,j ,w
m
τ,1:O)p(w

m
τ,1:O|zmτ , C1:M

τ )p(zmτ |Cm
τ )

}
dw1:M

τ,1:Odz
1:M
τ

= p((y1:M
τ )1:n̂∗

τ
|(x1:M

τ )1:n̂∗
τ
, C1:M

τ ).
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C Tractable and Scalable Optimization

For the proposed HNPs, it is intractable to obtain the true joint posterior
p(w1:M

τ,1:O, z
1:M
τ |T 1:M

τ ;ω, ν1:M ) for each episode. Thus, we employ variational inference to
optimize the designed model by approximating the true joint posterior in each episode. To do so, we
introduce the variational joint posterior distribution:

qθ,ϕ(w
1:M
τ,1:O, z

1:M
τ |T 1:M

τ ;ω, ν1:M ) =

M∏
m=1

qθ(z
m
τ |T m

τ ; νm)qϕ(w
m
τ,1:O|zmτ , T 1:M

τ ;ω), (1)

where qθ(zmτ |T m
τ ; νm) and qϕ(w

m
τ,1:O|zmτ , T 1:M

τ ;ω) are variational posteriors of their corresponding
latent variables. We note that variational posteriors are inferred from the target sets that are avail-
able in the meta-training stage. The variational posteriors are parameterized as diagonal Gaussian
distributions [44]. The inference networks θ and ϕ are shared by the variational posteriors and their
corresponding priors, following the protocol of vanilla NPs [18].

C.1 Derivation of Approximate ELBO for HNPs

By incorporating the variational posteriors in Eq. (1) into the modeling of HNPs in the main paper,
we can derive the approximate ELBO LHNPs(ω, ν

1:M , θ, ϕ) as follows:

log p(T 1:M
τ |C1:M

τ ;ω, ν1:M )

=

M∑
m=1

log p(T m
τ |C1:M

τ ;ω, νm)

=

M∑
m=1

{
log

∫ {∫
p(ym

τ |xm
τ ,wm

τ,1:O)pϕ(w
m
τ,1:O|zmτ , C1:M

τ ;ω)dwm
τ,1:O

}
pθ(z

m
τ |Cm

τ ; νm)dzmτ
}

=

M∑
m=1

{
log

∫ {∫
p(ym

τ |xm
τ ,wm

τ,1:O)pϕ(w
m
τ,1:O|zmτ , C1:M

τ ;ω)
qϕ(w

m
τ,1:O|zmτ , T 1:M

τ ;ω)

qϕ(wm
τ,1:O|zmτ , T 1:M

τ ;ω)
dwm

τ,1:O

}
pθ(z

m
τ |Cm

τ ; νm)
qθ(z

m
τ |T m

τ ; νm)

qθ(zmτ |T m
τ ; νm)

dzmτ
}

≥
M∑

m=1

{
Eqθ(z

m
τ |T m

τ ;νm)

{
log

∫
p(ym

τ |xm
τ ,wm

τ,1:O)pϕ(w
m
τ,1:O|zmτ , C1:M

τ ;ω)
qϕ(w

m
τ,1:O|zmτ , T 1:M

τ ;ω)

qϕ(wm
τ,1:O|zmτ , T 1:M

τ ;ω)
dwm

τ,1:O

}
− DKL[qθ(z

m
τ |T m

τ ; νm)||pθ(zmτ |Cm
τ ; νm)]

}
≥

M∑
m=1

{
Eqθ(z

m
τ |T m

τ ;νm)

{
Eqϕ(wm

τ,1:O
|zmτ ,T 1:M

τ ;ω)[log p(y
m
τ |xm

τ ,wm
τ,1:O)]

− DKL[qϕ(w
m
τ,1:O|zmτ , T 1:M

τ ;ω)||pϕ(wm
τ,1:O|zmτ , C1:M

τ ;ω)]
}

− DKL[qθ(z
m
τ |T m

τ ; νm)||pθ(zmτ |Cm
τ ; νm)]

}
= LHNPs(ω, ν

1:M , θ, ϕ).

(2)

In general, when the variational joint posterior is flexible enough, the posterior approximation gap
between the variational posterior and the intractable true posterior can be reduced to an arbitrarily
small quantity [45]. In this case, maximizing the approximate ELBO increases the overall log
likelihood in the proposed model accordingly. We construct task-specific decoders in a data-driven
way by inferring local latent parameters wm

1:O from all context sets and the meta-knowledge. This
enables our model to amortize the training cost of each task-specific decoder, further reducing the
model’s over-fitting behaviors for episodic multi-task learning.
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C.2 Meta-Training Objective
In practice, we consider the loss function as the negative approximate ELBO of HNPs as given in
Eq. (2). By adopting Monte Carlo sampling [44, 46], the meta-training objective for each episode is:

− LHNPs(ω, ν
1:M , θ, ϕ) ≈

M∑
m=1

{
1

Nz

Nz∑
i=1

{ 1

Nw

Nw∑
j=1

[− log p(ym
τ |xm

τ ,wm
τ,1:O

(j))]

+ DKL[qϕ(w
m
τ,1:O|zmτ (i), T 1:M

τ ;ω)||pϕ(wm
τ,1:O|zmτ (i), C1:M

τ ;ω)]
}

+ DKL[qθ(z
m
τ |T m

τ ; νm)||pθ(zmτ |Cm
τ ; νm)]

}
,

(3)

where zmτ
(i) and wm

τ,1:O
(j) are sampled from their corresponding variational posteriors. Nz and Nw

are the number of Monte Carlo samples for zmτ and wm
τ,1:O, respectively.

C.3 Meta-Test Prediction
At the meta-test stage, we perform predictions with the learned model on the target sets for a new
episode τ∗, which involves the prior distributions of global and local latent variables. We again
approximate the predictive distribution with Monte Carlo estimates:

p(T 1:M
τ∗ |C1:M

τ∗ ;ω, ν1:M ) ≈
M∏

m=1

{
1

Nz

Nz∑
i=1

1

Nw

Nw∑
j=1

p(ym
τ∗ |xm

τ∗ ,wm
τ∗,1:O

(j))

}
, (4)

where wm
τ∗,1:O

(j) ∼ pϕ(w
m
τ∗,1:O|zmτ∗

(i), C1:M
τ∗ ;ω) and zmτ∗

(i) ∼ pθ(z
m
τ∗ |Cm

τ∗ ; νm). Here the Monte
Carlo samples follow their corresponding prior distributions since the target sets are unavailable
during the meta-test.

D More Experimental Details

D.1 Transformer-structured Inference Modules in Regression Scenarios

Here we present the implementation details of transformer-structured inference module θ in regression
scenarios. In a single episode τ , the module θ encodes the task-specific information into each refined
task-specific token νm, and then infers the prior distribution or the variational posterior distribution
for the global latent representation zmτ . For episodic multi-task regression, the local latent parameters
wm

τ,1:O construct a task-specific regressor during inference. We assume that the output of the decoder
follows a Gaussian distribution for regression tasks. Thus, wm

τ,1:O are instantiated as parameters for
generating the mean and variance of predictions.

D.2 Backbone and Training Details

Following the protocol of [9], we apply the pre-trained deep model as the backbone for the proposed
method and baselines to extract the input features under the episodic multi-task classification setup.
To be specific, we adopt VGGnet [47] for Office-Home, and its feature size is 4096. We take
ResNet18 [48] for DomainNet with input size 512. In practice, we train our method and baselines
by the Adam optimizer [49] using an NVIDIA Tesla V100 GPU. The learning rate is initially set as
1e− 4 and decreases with a factor of 0.5 every 3, 000 iterations.

D.3 Implementation Details

To clearly show implementation details for episodic multi-task classification, we attach the Python
code of the proposed HNPs in the following.

1 import torch
2 import torch.nn as nn
3

4 from torch.distributions import Normal
5 from torch.distributions.kl import kl_divergence
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6 import basic_model
7

8 class HNP(nn.Module):
9 def __init__(self, config):

10 super(HNP, self).__init__()
11

12 self.dataset = config["dset_name"]
13 self.num_task = config["num_task"]
14 self.way_number = config["way_number"]
15 self.shot_number = config["shot_number"]
16 self.w_repeat = config["w_repeat"]
17 self.z_repeat = config["z_repeat"]
18

19 if self.dataset == "domainnet":
20 self.x_feature = 512
21 else:
22 self.x_feature = 4096
23 self.d_feature = self.x_feature
24 config["d_feature"] = self.d_feature
25

26 model = basic_model
27 # task-wise and class-wise transformers
28 self.task_probabilistic_encoder = model.ProbabilisticEncoder_theta(
29 config, self.d_feature, self.num_task)
30 self.class_probabilistic_encoder = model.ProbabilisticEncoder_phi(
31 config, self.d_feature, self.way_number)
32

33 @staticmethod
34 def print_parameters(net):
35 for name, parameters in net.named_parameters():
36 print(name, ':', parameters.size())
37

38 ######################################################################
39 # Transformer inference for global latent representations
40 ######################################################################
41 def task_wise_transformer_inference(self, x_c_order, x_t_order):
42

43 task_prior = x_c_order.view(self.num_task, -1, self.d_feature)
44 task_posterior = x_t_order.view(self.num_task, -1, self.d_feature)
45

46 # infer for prior
47 z_pmu, z_psigma = self.task_probabilistic_encoder(task_prior)
48 z_pdistirbution = Normal(z_pmu, z_psigma)
49 z_psample = z_pdistirbution.rsample([self.a_z])
50

51 # infer for posterior
52 z_qmu, z_qsigma = self.task_probabilistic_encoder(task_posterior)
53 z_qdistirbution = Normal(z_qmu, z_qsigma)
54 z_qsample = z_qdistirbution.rsample([self.z_repeat])
55

56 # kl_z
57 kl_z = kl_divergence(z_qdistirbution, z_pdistirbution).sum(dim=1)
58 return kl_z, z_psample, z_qsample
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59

60

61 ######################################################################
62 # Transformer inference for local latent parameters
63 ######################################################################
64 def class_wise_transformer_inference(self, a_qsample, a_psample,
65 x_c_order, x_t_order, x_t):
66

67 kl_w = []
68 output_prior_list = []
69 output_posterior_list = []
70 for num in range(self.num_task):
71

72 if self.training:
73 task_embedding = a_qsample[:, num, :]
74 else:
75 task_embedding = a_psample[:, num, :]
76

77 class_prior = x_c_order
78 class_posterior = x_t_order
79

80 # infer for prior
81 phi_pmu, phi_psigma = self.class_probabilistic_encoder(class_prior,
82 task_embedding)
83 phi_pdistirbution = Normal(phi_pmu, phi_psigma)
84

85 # infer for posterior
86 phi_qmu, phi_qsigma = self.class_probabilistic_encoder(class_posterior,
87 task_embedding)
88 phi_qdistirbution = Normal(phi_qmu, phi_qsigma)
89

90 # task-specific kl_w
91 task_specific_kl_w = kl_divergence(phi_qdistirbution,
92 phi_pdistirbution).mean(dim=0).sum()
93 kl_w.append(task_specific_kl_w.view(1))
94

95 # perform prediction
96 predict_samples = x_t[num].contiguous().view(-1, self.d_feature)
97 repeat_predict_samples = predict_samples.unsqueeze(0)
98 repeat_predict_samples = repeat_predict_samples.expand(
99 self.w_repeat * self.z_repeat, predict_samples.shape[0],

100 predict_samples.shape[1]).contiguous()
101

102 if self.training:
103 phi_qsample = phi_qdistirbution.rsample([self.w_repeat])
104 phi_qsample = phi_qsample.transpose(0, 1)
105 phi_qsample = phi_qsample.reshape(self.way_number,-1,
106 self.d_feature)
107 classifier_q = phi_qsample.transpose(0, 1).transpose(1, 2)
108

109 phi_psample = phi_pdistirbution.rsample([self.w_repeat])
110 phi_psample = phi_psample.transpose(0, 1)
111 phi_psample = phi_psample.reshape(self.way_number,-1,
112 self.d_feature)
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113 classifier_p = phi_psample.transpose(0, 1).transpose(1, 2)
114

115 else:
116 classifier_q = phi_qmu.unsqueeze(1).repeat(1, self.w_repeat, 1, 1)
117 classifier_q = classifier_q.reshape(self.way_number, -1,
118 self.d_feature)
119 classifier_q = classifier_q.transpose(0, 1).transpose(1, 2)
120

121 classifier_p = phi_pmu.unsqueeze(1).repeat(1, self.w_repeat, 1, 1)
122 classifier_p =classifier_p.reshape(self.way_number, -1,
123 self.d_feature)
124 classifier_p = classifier_p.transpose(0, 1).transpose(1, 2)
125

126 output_posterior = torch.bmm(repeat_predict_samples, classifier_q)
127 output_posterior = output_posterior.unsqueeze(0)
128 output_prior = torch.bmm(repeat_predict_samples, classifier_p)
129 output_prior = output_prior.unsqueeze(0)
130 output_posterior_list.append(output_posterior)
131 output_prior_list.append(output_prior)
132

133 kl_w = torch.cat(kl_w, 0)
134 output_posterior_all = torch.cat(output_posterior_list, 0)
135 output_prior_all = torch.cat(output_prior_list, 0)
136 return kl_w, output_posterior_all, output_prior_all
137

138 def forward(self, inputs_batch, labels_batch):
139 # dividing the context and target samples
140 label_all = labels_batch.squeeze(-1)
141 _, indices = torch.sort(label_all[0, :, 0])
142 x_c = inputs_batch[:, :, :self.shot_number, :]
143 x_t = inputs_batch[:, :, self.shot_number:, :]
144 x_c_order = x_c[:, indices, :, :]
145 x_t_order = x_t[:, indices, :, :]
146

147 # task-wise transformer
148 kl_z, z_psample, z_qsample = self.task_wise_transformer_inference(
149 x_c_order, x_t_order)
150 kl_w, output_posterior_all, output_prior_all \
151 = self.class_wise_transformer_inference(z_qsample, z_psample,
152 x_c_order, x_t_order, x_t)
153 if self.training:
154 return output_posterior_all, output_prior_all, kl_z, kl_w
155 else:
156 return output_prior_all

We also provide implementation details about the introduced transformer-structured inference modules
for hierarchical latent variables as follows.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as f
4 from torch.nn import TransformerEncoder, TransformerEncoderLayer
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5

6 class ProbabilisticEncoder_theta(nn.Module):
7 def __init__(self, config, feature_dim, num_learnable_token):
8 super(ProbabilisticEncoder_theta, self).__init__()
9 # inducing tokens

10 self.learnable_tokens = \
11 nn.Parameter(torch.empty((num_learnable_token, 1, feature_dim),
12 dtype=torch.float32).normal_(0.,0.1),requires_grad=True)
13

14 emsize = feature_dim
15 ninp = emsize
16 nhead = int(emsize/64)
17 nhid = emsize
18 task_encoder_layer = TransformerEncoderLayer(ninp, nhead, nhid, 0.2,
19 activation='gelu', batch_first=True)
20 self.transformer_encoder = TransformerEncoder(task_encoder_layer, 1)
21 sizes = [emsize, emsize, emsize, emsize]
22 self.mu_infer = nn.Linear(sizes[-2], sizes[-1])
23 self.sigma_infer = nn.Linear(sizes[-2], sizes[-1])
24

25 def forward(self, input):
26 context = input
27 query = self.learnable_tokens
28

29 # transformer, interactions between tokens
30 src = torch.cat([context, query], 1)
31 updated_src = self.transformer_encoder(src)
32 n_all, n_context = src.shape[1], context.shape[1]
33 updated_learnable_tokens = updated_src[:, n_context:, :]
34

35 # amortization inference
36 x = updated_learnable_tokens.squeeze(1)
37 mu = self.mu_infer(x)
38 sigma = f.softplus(self.sigma_infer(x), beta=1, threshold=20)
39 return mu, sigma
40

41 class ProbabilisticEncoder_phi(nn.Module):
42 def __init__(self, config, feature_dim, num_learnable_token):
43 super(ProbabilisticEncoder_phi, self).__init__()
44 self.way_number = config["way_number"]
45 self.d_feature = config["d_feature"]
46 # inducing tokens
47 self.learnable_tokens = \
48 nn.Parameter(torch.empty((num_learnable_token, 1, feature_dim),
49 dtype=torch.float32).normal_(0., 0.1),requires_grad=True)
50

51 emsize = feature_dim
52 ninp = emsize
53 nhead = int(emsize / 64)
54 nhid = emsize
55 task_encoder_layer = TransformerEncoderLayer(ninp, nhead, nhid, 0.2,
56 activation='gelu', batch_first=True)
57 self.transformer_encoder = TransformerEncoder(task_encoder_layer, 1)
58
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59 sizes = [emsize, emsize, emsize, emsize]
60 self.mu_infer = nn.Linear(sizes[-2], sizes[-1])
61 self.sigma_infer = nn.Linear(sizes[-2], sizes[-1])
62

63 def forward(self, input, embedding):
64 context = input.transpose(0, 1).reshape(self.way_number, -1, self.d_feature)
65 query = self.learnable_tokens
66 src = torch.cat([context, query], 1)
67 updated_src = self.transformer_encoder(src)
68 n_all, n_context = src.shape[1], context.shape[1]
69 updated_learnable_tokens = updated_src[:, n_context:, :]
70

71 # amortization inference
72 x = updated_learnable_tokens + embedding
73 mu = self.mu_infer(x)
74 sigma = f.softplus(self.sigma_infer(x), beta=1, threshold=20)
75 return mu, sigma

E Algorithm of the proposed HNPs

Algorithm 1: Meta-training phase of HNPs.

Input :M distinct and relevant task distributions p(I1:M ), numbers of Monte Carlo samples
Nz and Nw, learning rates α.

Output :Meta-trained transformer inference module θ and ϕ, learnable tokens ω1:O and ν1:M .
Initialize transformer inference module {θ, ν1:M} ;
Initialize transformer inference module {ϕ, ω1:O} ;
while Meta-Training not Completed do

// sample a meta-training episode indexed with τ.
for m = 1 to M do

Sample a task Im
τ ∼ p(Im), which shares the same target space Yτ with other tasks in

the episode;
Sample a context set Cm

τ and a target set T m
τ for the task Im

τ ;
end
// infer hierarchical latent variables.
for m = 1 to M do

Apply transformer inference module θ to infer prior and variational posterior
distributions over zmτ as Eq. (5), Eq. (6), and Eq. (7) in the main paper;

Draw Nz samples from the variational posterior, {zmτ (i)}Nz
i=1;

for i = 1 to Nz do
for o = 1 to O do

Apply transformer inference module ϕ to infer prior and variational posterior
distributions over wm

τ,o as Eq. (8), Eq. (9), and Eq. (10) in the main paper;
Draw Nw samples from the variational posterior, {wm

τ,o
(j)}Nw

j=1;
end

end
end
// optimize the objective.
Compute predictive distributions and minimize the empirical objective in Eq. (3) ;
Update θ, ϕ, ω1:O and ν1:M with learning rate α.

end
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Algorithm 2: Meta-test phase of HNPs.

Input :Meta-trained transformer inference module θ and ϕ, learned tokens ω1:O and ν1:M ,
numbers of Monte Carlo samples Nz and Nw.

Output :Prediction results.
while Meta-Test not Completed do

// given a meta-test episode indexed with τ∗.
Collect the context sets of all tasks in the episode, C1:M

τ∗ .
for m = 1 to M do

Apply transformer inference module θ to infer prior distributions over zmτ∗ as Eq. (5),
Eq. (6), and Eq. (7) in the main paper;

Draw Nz samples from the prior distribution, {zmτ∗
(i)}Nz

i=1;
for i = 1 to Nz do

for o = 1 to O do
Apply transformer inference module ϕ to infer the prior distribution over wm

τ∗,o

as Eq. (8), Eq. (9), and Eq. (10) in the main paper;
Draw Nw samples from the prior distribution, {wm

τ∗,o
(j)}Nw

j=1;
end

end
end
Perform predictions on the target sets in Eq. (4) ;

end

Table 3: Performance comparisons on Office-Home under the Xtask5way1shot setup during
inference.

Number of tasks 1 2 3 4
Average accuracy 64.33 ± 0.85 70.75 ± 0.67 74.95 ± 0.57 76.29 ± 0.51

F More Experimental Results under Episodic Multi-Task Setup

F.1 Effects of More “Tasks”

To investigate the effects of more "tasks" in the episodic multi-task setup, we perform experiments on
Office-Home under the Xway5way1shot setup by gradually increasing tasks during inference. Table 3
shows that the average accuracy increases with more tasks. The main reason is that more tasks can
provide richer transferable information. Our model benefits from the positive transfer among tasks,
and thus obtaining higher performance gain from more tasks.

F.2 4task20way1shot v.s. 20way4shot

To show the effectiveness of the proposed method, we conduct experiments with the 20-way 4-shot
setup, which needs to mix samples from all tasks in one episode. As shown in Table 4, MAML and
Proto.Net perform better under the 20-way 4-shot but cannot outperform our method. The main reason
is that our method can better handle distribution shifts among tasks by exploring task-relatedness
rather than simply mixing them together.

F.3 Comparisons with More Recent Works

To compare the proposed method with more recent works, we perform experiments on Office-Home
under the 4task5way1shot and 4task5way5shot setups. We provide some brief descriptions of two
recent works as follows:

[50] theoretically addresses the conclusion that MTL methods are powerful and efficient alternatives
to GBML for meta-learning applications. However, our method inherits the advantages of multi-task
learning and meta-learning: simultaneously generalizing meta-knowledge from past to new episodes
and exploiting task-relatedness across heterogeneous tasks in every single episode. Thus, our method
is more suitable for solving the data-insufficiency problem.
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Table 4: Performance comparisons under the 4task20way1shot and 20way4shot setups.

Methods 4task20way1shot 20way4shot

MAML 34.29± 0.19 37.23± 0.25
Proto.Net 32.72± 0.18 37.12± 0.22

Ours 51.82± 0.23 -

Table 5: Performance comparisons with more recent baselines.

Methods 1-shot 5-shot

MTL-bridge [50] 64.31± 0.55 75.10± 0.51
MLTI [51] 70.69± 0.73 79.59± 0.58
Ours 76.29± 0.51 80.80± 0.42

[51] augments the task set in meta-learning through interpolation. Our method fully utilizes several
observed tasks in a single episode rather than generating additional tasks.

Table 5 shows that our method significantly outperforms other baselines with severely insufficient
data, such as 1-shot. This is consistent with the conclusion obtained in the main paper.

F.4 Comparisons on Another Benchmark Dataset

We validate the performance of methods on the Office31 dataset [52, 53] under the 3task5way1shot
setup. This dataset contains 31 object categories in three domains: Amazon, DSLR, and Webcam.
Table 6 shows our method outperforms baseline methods, demonstrating our model’s effectiveness in
addressing the data insufficiency under the episodic setup.

G More Experimental Results under Conventional Multi-Task Setup

To show comparisons with existing multi-task models, which are designed for conventional multi-
task learning, we extend the proposed HNPs to conventional multi-task learning settings for both
regression and classification tasks by considering only one episode during training and inference.
Under conventional multi-task settings (MIMO), we investigate their effectiveness in exploring shared
knowledge when limited tasks and samples are available during training.

G.1 Conventional Multi-Task Regression

Dataset and Settings. We show the effectiveness of HNPs for conventional multi-task regression.
We design experiments for rotation angle estimation on the Rotated MNIST dataset [54]. Each task
is an angle estimation problem for a digit, and different tasks corresponding to individual digits are
related because they share the same rotation angle space. Each image is rotated by 0◦ through 90◦ in
intervals of 10◦, where the rotation angle is the regression target. We randomly choose 0.1% training
samples per task per angle as the training set.

We use the average of normalized mean squared errors (NMSE) of all tasks as the performance
measurement. The lower NMSE, the better the performance. We provide 95% confidence intervals
for the errors from five runs. Descriptions of baselines can be found in Section G.2.

Results and Discussions. The experimental results are summarized in Table 7. The proposed
HNPs outperform other counterpart methods by yielding a lower mean error. This demonstrates the
effectiveness of HNPs in capturing task-relatedness for improved regression performance.

G.2 Conventional Multi-Task Classification

Datasets and Settings. Office-Caltech [56] contains ten categories shared between Office-31
[52] and Caltech-256 [57]. One task uses data from Caltech-256, and the other tasks use data from
Office-31, whose images were collected from three distinct domains/tasks, namely Amazon, Webcam
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Table 6: Performance comparisons on the Office31 dataset.

Methods ERM Proto.Net CNPs NPs TNP-D Ours
Average Accuracy 63.53± 0.71 64.54± 0.64 49.02± 0.74 40.52± 0.75 69.69± 0.87 71.89± 0.52

Table 7: Conventional multi-task regression (normalized mean squared errors) for rotation
angle estimation.

Methods Average NMSE

STL .215 ±.001

VSTL .224 ±.004

BMTL .118 ±.003

VBMTL .121 ±.003

LearnToBranch [55] .109 ±.002

VMTL [8] .110 ±.003

HNPs .103 ±.001

and DSLR. There are 8 ∼ 151 samples per category per task and 2, 533 images. ImageCLEF [9], the
benchmark for the ImageCLEF domain adaptation challenge, contains 12 common categories shared
by four public datasets/tasks: Caltech-256, ImageNet ILSVRC 2012, Pascal VOC 2012, and Bing.
There are 2, 400 images in total. Office-Home [58] mentioned in the main paper is also used under
this setting.

We adopt the standard evaluation protocols [9] for multi-task classification datasets. We randomly
select 5%, 10% and 20% labeled data for training, which correspond to about 3, 6 and 12 samples
per category per task, respectively. In this case, each task has insufficient training data for building
a reliable classifier without overfitting. The average accuracy of all tasks is used for measuring the
overall performance. We again provide 95% confidence intervals for the errors from five runs.

Alternatives Methods. We conduct a thorough comparison with alternative multi-task learning
models. Single-task learning (STL) is implemented by task-specific feature extractors and predictors
without knowledge sharing among tasks. Basic multi-task learning (BMTL) shares feature extractors
and adds task-specific predictors. We also define variational extensions of single-task learning (VSTL)
and basic multi-task learning (VBMTL), which treat predictors as latent variables [8]. For a fair
comparison, all the baseline methods mentioned above share the same architecture of the feature
extractor and the train-test splits. We also compare the proposed HNPs to representative multi-task
models. MTL-Uncertainty [1], MRN [9], LearnToBranch [55] are deep MTL methods, employing
deep neural networks to construct information-sharing mechanisms for tasks. TCGBML [59],
MTVIB [60] and VMTL [8] are probabilistic MTL methods, applying Bayes frameworks to model
the relationships among tasks.

Table 8: Classification performance (average accuracy) on Office-Home, Office-Caltech and
ImageCLEF.

Office-Home Office-Caltech ImageCLEF
Methods 5% 10% 20% 5% 10% 20% 5% 10% 20%

STL 49.2 ±0.2 58.3 ±0.1 64.9 ±0.1 88.6 ±0.3 90.7 ±0.2 92.4 ±0.3 62.6 ±0.2 69.7 ±0.3 76.2 ±0.3

VSTL 51.1 ±0.1 60.2 ±0.2 65.8 ±0.2 89.0 ±0.2 91.1 ±0.2 93.4 ±0.3 64.9 ±0.3 70.8 ±0.3 77.2 ±0.2

BMTL 50.4 ±0.1 59.5 ±0.1 65.6 ±0.1 89.5 ±0.3 92.3 ±0.2 93.1 ±0.1 65.7 ±0.4 72.0 ±0.3 76.8 ±0.3

VBMTL 51.3 ±0.1 60.9 ±0.1 67.0 ±0.2 90.8 ±0.6 93.2 ±0.2 93.5 ±0.1 67.1 ±0.3 73.0 ±0.7 78.0 ±0.2

MTL-Uncertainty[1] 51.8 ±0.1 57.2 ±0.2 66.8 ±0.2 91.2 ±0.3 93.8 ±0.2 94.7 ±0.3 74.6 ±0.2 76.9 ±0.3 79.2 ±0.3

MRN [9] 57.4 ±0.1 63.4 ±0.2 67.1 ±0.1 93.4 ±0.2 94.8 ±0.3 95.1 ±0.1 73.7 ±0.4 75.8 ±0.2 79.7 ±0.3

LearnToBranch [55] 38.3 ±0.5 51.5 ±0.3 62.2 ±0.4 74.6 ±0.9 80.4 ±1.2 89.9 ±0.8 51.7 ±0.9 62.6 ±0.8 71.6 ±0.4

TCGBML[59] 52.8 ±0.1 60.0 ±0.2 68.7 ±0.2 91.8 ±0.1 95.0 ±0.2 95.1 ±0.1 73.9 ±0.3 76.5 ±0.4 79.3 ±0.4

MTVIB [60] 49.9 ±0.2 55.3 ±0.1 66.2 ±0.1 91.1 ±0.3 94.1 ±0.3 95.0 ±0.2 74.0 ±0.4 77.3 ±0.3 78.9 ±0.5

VMTL [8] 58.3 ±0.1 65.0 ±0.0 69.2 ±0.2 93.8 ±0.1 95.3 ±0.0 95.2 ±0.1 76.2 ±0.3 77.9 ±0.2 80.2 ±0.1

HNPs 60.0 ±0.1 66.2 ±0.2 70.9 ±0.2 94.6 ±0.1 95.4 ±0.1 95.8 ±0.1 76.4 ±0.1 79.5 ±0.1 80.9 ±0.1
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Results and Discussions. We provide more comprehensive comparisons on Office-Home,
Office-Caltech and ImageCLEF in Table 8. The best results are marked in bold. Our HNPs
achieve competitive and even better performance on conventional multi-task classification datasets
with different train-test splits. VSTL and VBMTL perform better than STL and BMTL, demonstrat-
ing the benefits of Bayes frameworks. Compared with multi-task probabilistic baselines, including
VBMTL, TCGBML, MTVIB and VMTL, our HNPs can model more complex functional distributions
with more powerful priors by inferring both representations and parameters for predictive functions.

Compared with VMTL [8], which neglects the hierarchical architecture of latent variables, the
proposed HNPs show better performance. This demonstrates that by modeling the complex depen-
dencies between heterogeneous context sets within the hierarchical Bayes framework, HNPs explore
task-relatedness better. The hierarchical Bayes framework enables our model to explore the relevant
knowledge even in the presence of distribution shifts among tasks.

H Application to Brain Image Segmentation

To show that HNPs have the potential to be helpful in settings other than categorization and regression,
we apply the proposed HNPs to brain image segmentation.

Dataset and Settings. We adopt a brain image dataset [61] with lower-grade gliomas collected
from 110 patients. The number of images varies among patients from 20 to 88. The goal is to segment
the tumor in each brain image by predicting its contour.

0.5967

0.8893

0.8173

0.9307

0.8954

0.7467

0.8883

0.9059

Figure 2: Segmentation results by HNPs (bottom row) and U-Net (upper row). The ground truth
contours are in green, and the predicted ones are in red. The numbers are DSC scores computed
against the ground truth. HNPs can predict contours closer to the ground truth ones, indicating the
advantages of exploring spatial context information for image segmentation.

We reformulate the segmentation task as a pixel-wise regression problem, where each pixel corre-
sponds to a regression task to predict the probability of this pixel belonging to the tumor. In doing
so, the spatial correlation and dependency among pixels are effectively modeled by capturing task-
relatedness. For the task m, we define Ωm as a local region centered at the spatial position m, which
provides the local context information. In this case, the region centered at the pixel provides the local
context information. Each task incorporates the knowledge provided by related tasks into the context
of the predictive function. This offers an effective way to model the long-range interdependence
of pixels in one image. In the implementation, we use U-Net [62] as the backbone and append our
model to the last layer.

Results and Discussions. The proposed HNPs surpass the baseline U-Net by 0.8% (91.2% v.s.
90.6%) in terms of dice similarity coefficients (DSC) for the overall validation set. We provide the
predicted contours by HNPs (bottom row) and the U-Net (upper row) in Figure 2, where the green
outline corresponds to the ground truth and the red to the segmentation output. This figure shows that
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HNPs predict contours closer to the ground truth. The results demonstrate the advantages of HNPs in
exploring spatial-relatedness for medical segmentation.

References
[1] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for

scene geometry and semantics. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[2] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention. In IEEE
Conference on Computer Vision and Pattern Recognition, 2019.

[3] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for multi-task
learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[4] Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. In International Conference on Learning Representations,
2020.

[5] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems, 2018.

[6] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018.

[7] Deblina Bhattacharjee, Tong Zhang, Sabine Süsstrunk, and Mathieu Salzmann. Mult: an end-to-end
multitask learning transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[8] Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling Shao. Variational multi-task learning with gumbel-
softmax priors. In Advances in Neural Information Processing Systems, 2021.

[9] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and S Yu Philip. Learning multiple tasks with multilinear
relationship networks. In Advances in neural information processing systems, 2017.

[10] Yi Zhang, Yu Zhang, and Wei Wang. Multi-task learning via generalized tensor trace norm. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021.

[11] Jiayi Shen, Zehao Xiao, Xiantong Zhen, Cees GM Snoek, and Marcel Worring. Association graph learning
for multi-task classification with category shifts. arXiv preprint arXiv:2210.04637, 2022.

[12] Yunlong Liang, Fandong Meng, Jinan Xu, Yufeng Chen, and Jie Zhou. Scheduled multi-task learning for
neural chat translation. arXiv preprint arXiv:2205.03766, 2022.

[13] Yi Zhang, Yu Zhang, and Wei Wang. Learning linear and nonlinear low-rank structure in multi-task
learning. IEEE Transactions on Knowledge and Data Engineering, 2022.

[14] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in Neural Information Processing Systems, 2016.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

[16] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Advances
in Neural Information Processing Systems, 2017.

[17] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. In Advances in Neural
Information Processing Systems, 2019.

[18] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[19] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In International
Conference on Machine Learning, 2018.

[20] Richa Upadhyay, Prakash Chandra Chhipa, Ronald Phlypo, Rajkumar Saini, and Marcus Liwicki. Multi-
task meta learning: learn how to adapt to unseen tasks. arXiv preprint arXiv:2210.06989, 2022.

17



[21] Qianqian Zhang, Xinru Liao, Quan Liu, Jian Xu, and Bo Zheng. Leaving no one behind: A multi-
scenario multi-task meta learning approach for advertiser modeling. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining, 2022.

[22] Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations between
data and tasks. In International Conference on Learning Representations, 2021.

[23] Donggyun Kim, Seongwoong Cho, Wonkwang Lee, and Seunghoon Hong. Multi-task processes. arXiv
preprint arXiv:2110.14953, 2021.

[24] Huaiwen Zhang, Shengsheng Qian, Quan Fang, and Changsheng Xu. Multi-modal meta multi-task learning
for social media rumor detection. IEEE Transactions on Multimedia, 24:1449–1459, 2021.

[25] Chu Han, Huasheng Yao, Bingchao Zhao, Zhenhui Li, Zhenwei Shi, Lei Wu, Xin Chen, Jinrong Qu,
Ke Zhao, Rushi Lan, et al. Meta multi-task nuclei segmentation with fewer training samples. Medical
Image Analysis, 2022.

[26] Guan-Yuan Chen and Ya-Fen Yeh. Mmtl: The meta multi-task learning for aspect category sentiment
analysis. In Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing,
2021.

[27] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In Proceedings
of the IEEE/CVF international conference on computer vision, 2019.

[28] Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic task modelling for meta-learning.
In Uncertainty in Artificial Intelligence, 2021.

[29] Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. Cross-domain few-shot classifica-
tion via learned feature-wise transformation. In International Conference on Learning Representations,
2020.

[30] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look at
few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

[31] Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko, Tajana
Rosing, and Rogerio Feris. A broader study of cross-domain few-shot learning. In European Conference
on Computer Vision, 2020.

[32] Yingjun Du, Xiantong Zhen, Ling Shao, and Cees G M Snoek. MetaNorm: Learning to normalize few-shot
batches across domains. In International Conference on Learning Representations, 2021.

[33] Debasmit Das, Sungrack Yun, and Fatih Porikli. Confess: A framework for single source cross-domain
few-shot learning. In International Conference on Learning Representations, 2022.

[34] Wei-Hong Li, Xialei Liu, and Hakan Bilen. Cross-domain few-shot learning with task-specific adapters. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7161–7170,
2022.

[35] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-learning
via task-aware modulation. In Advances in neural information processing systems, 2019.

[36] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Toward multimodal model-agnostic meta-
learning. In arXiv preprint arXiv:1812.07172, 2018.

[37] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

[38] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning. In
International Conference on Machine Learning, 2019.

[39] Milad Abdollahzadeh, Touba Malekzadeh, and Ngai-Man Man Cheung. Revisit multimodal meta-learning
through the lens of multi-task learning. In Advances in Neural Information Processing Systems, 2021.

[40] Jiayi Chen and Aidong Zhang. Hetmaml: Task-heterogeneous model-agnostic meta-learning for few-shot
learning across modalities. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, 2021.

18



[41] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pedro O O Pinheiro. Adaptive cross-modal few-shot
learning. In Advances in Neural Information Processing Systems, 2019.

[42] Frederik Pahde, Patrick Jähnichen, Tassilo Klein, and Moin Nabi. Cross-modal hallucination for few-shot
fine-grained recognition. arXiv preprint arXiv:1806.05147, 2018.

[43] Frederik Pahde, Mihai Puscas, Tassilo Klein, and Moin Nabi. Multimodal prototypical networks for
few-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2021.

[44] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[45] Qi Wang, Marco Federici, and Herke van Hoof. Bridge the inference gaps of neural processes via
expectation maximization. In International Conference on Learning Representations, 2023.

[46] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In Advances in neural information processing systems, 2015.

[47] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[50] Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards efficient
training and effective adaptation. In International Conference on Machine Learning, 2021.

[51] Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpolation.
arXiv preprint arXiv:2106.02695, 2021.

[52] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European Conference on Computer Vision, 2010.

[53] Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation using
asymmetric kernel transforms. In CVPR 2011. IEEE, 2011.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[55] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
International Conference on Machine Learning, 2020.

[56] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain
adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[57] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Dataset Report,
2007.

[58] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[59] Bart Bakker and Tom Heskes. Task clustering and gating for bayesian multitask learning. Journal of
Machine Learning Research, 2003.

[60] Weizhu Qian, Bowei Chen, Yichao Zhang, Guanghui Wen, and Franck Gechter. Multi-task variational
information bottleneck. arXiv preprint arXiv:2007.00339, 2020.

[61] Mateusz Buda, Ashirbani Saha, and Maciej A Mazurowski. Association of genomic subtypes of lower-
grade gliomas with shape features automatically extracted by a deep learning algorithm. Computers in
biology and medicine, 109:218–225, 2019.

[62] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, 2015.

19


	Frequently Asked Questions
	Properties of Valid Exchangeable Stochastic Processes
	Proof of Exchangeability Consistency
	Proof of Marginalization Consistency

	Tractable and Scalable Optimization
	Derivation of Approximate ELBO for HNPs
	Meta-Training Objective
	Meta-Test Prediction

	More Experimental Details
	Transformer-structured Inference Modules in Regression Scenarios
	Backbone and Training Details
	Implementation Details

	Algorithm of the proposed HNPs
	More Experimental Results under Episodic Multi-Task Setup
	Effects of More “Tasks”
	4task20way1shot v.s. 20way4shot
	Comparisons with More Recent Works
	Comparisons on Another Benchmark Dataset

	More Experimental Results under Conventional Multi-Task Setup
	Conventional Multi-Task Regression
	Conventional Multi-Task Classification

	Application to Brain Image Segmentation

