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1. DEFINITIONS 

1.1. Channel vs parameter 

Satellite telemetry consists of multiple time series that are called parameters by SOEs. This name is very problematic from the 

ML point of view because it collides with its fundamental nomenclature in which the parameter already has a couple of different 

meanings: 

• a parameter of the model that is updated during the training, i.e., a single weight of the neural network; 

• a parameter (or hyperparameter) of the algorithm which controls its behavior; 

• a parameter of a statistical test (e.g., mean or variance of the estimated Gaussian distribution). 
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Hence, the parameter was replaced with the channel for purposes of ESA-ADB to avoid potential nomenclature collisions. 

Channels represent measurements from different sensors, status flags, and payload-related information. Each channel contains a 

list of samples defined by pairs of timestamps and signal values.  

1.2. Subsystems 

Satellites are typically composed of multiple specialized parts (subsystems) including propulsion, electrical power, thermal 

control, attitude and orbit control, communication, and data handling subsystems. There are also unique satellite-specific 

subsystems in some missions. A subsystem gathers all components (and channels) responsible for a specific function.  

1.3. Telecommands 

Telecommands (TCs) are sent from the Earth to the satellite in order to control different aspects of its operation. There are 

hundreds or thousands of different TCs for each mission with millions of total executions, affecting different subsystems and 

specific components. Many different TCs are frequently executed simultaneously or in series to perform specific instructions. 

They may affect the observed telemetry in various ways, from no visible changes to strong disruptions. In our dataset, each TC is 

a binary signal with values of 1 in the exact timestamps of TC’s executions on-board the satellite. TCs are not expected to 

contain any anomalies and even if they were, anomalies (e.g., missing TCs) would be impossible to identify automatically 

without additional expert knowledge and information about mission plans. Thus, they are not monitored nor annotated for 

anomalies. 

1.4. Target and non-target channels 

Not every channel can be a target for anomaly detection benchmarking. Like telecommands, some channels are not expected to 

contain any anomalies, and it would be impossible to annotate them without additional external data anyway. Examples include 

status flags, counters, and metadata, such as location coordinates. They often contain important information in the context of 

anomaly detection but are not monitored nor annotated for anomalies. They may contain outliers that are, however, irrelevant (or 

nominal) for SOEs. They are called non-target channels in ESA-ADB. This aspect is usually not considered in existing 

multivariate anomaly detection datasets and benchmarks. The selection of target and non-target channels is somewhat subjective 

and it may turn out that some algorithms would be able to properly handle some non-target channels by discovering some 

unknown relationships in the data. However, the metrics in ESA-ADB are calculated only for target channels. Non-target 

channels may and should be used as input features for algorithms. 

1.5. Event class vs category vs type 

Each annotated event can be assigned to a different class, category, and type: 

• event classes relate to main causes of events and their specific variations (subclasses) as identified by SOEs. For 

example, attitude disturbances (with subclasses depending on the specific cause), resets, power drops, latch-ups, solar 

flares, etc.; 

• event categories relate to the categorization of events from the operational point of view, i.e., anomalies, rare nominal 

events, communication gaps, and invalid segments, as described in the next section; 

• event types relate to the signal characteristics of events according to the taxonomy introduced in Appendix Section 1.7. 

Note that each feature is independent of others, that is, events of the same class can have different categories and types, e.g., 

resets caused by telecommands are categorized as rare nominal events, but unexpected non-commanded resets are categorized as 

anomalies. 

1.6. Event categories 

For the purposes of our project, 4 categories of events are introduced: anomalies, rare nominal events, communication gaps, 

and invalid segments. They are defined in Table 5. The main reason was to distinguish atypical changes in the telemetry that 

should not be alarmed to operators (rare nominal events, communication gaps, and invalid segments) from unexpected ones that 

should be alarmed (anomalies). Rare nominal events are not anomalies from the operators’ point of view and they are usually not 

reported in anomaly tracking systems. Eventually, they are recorded in the mission log as special operations. For some missions, 

i.e., Mission2, there is a significant number of such operations causing (not so) rare events. Hence, the ideal algorithm should not 

alarm for rare nominal events, but it is usually impossible to distinguish between novel rare nominal events and anomalies 

without additional a priori expert knowledge. As agreed with SOEs, it would be acceptable if an anomaly detection system 

shows a false alarm for the first occurrence of the specific rare event, but it should not alarm for any subsequent occurrences of 

similar rare events. In machine learning, we can define that problem as active one-shot learning. To enable evaluation in such a 

scenario using ESA-AD, it is necessary to distinguish rare events from anomalies in ground truth annotations. Besides, such a 

division allows us to calculate separate performance metrics for rare events and “real” anomalies. It also helps to interpret the 

results in case of false negative or false positive detections for rare events. 

1.7. Event types  

To the best of our knowledge, the taxonomy by Blázquez-García et al. [1] is the only one in the literature that comprehensively 

defines multivariate anomaly types, and our definitions are built based on this foundation. It divides event types into point and 

subsequence ones, where point events are defined as single outlying data points. However, this definition does not take into 
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account varying sampling rates for which the length of “a single data point” may differ in time. Thus, for our purposes, multi-

instance point anomalies are allowed if they are relatively short fragments of the signal that resemble points or peaks (i.e., up to 3 

samples) when inspected using a typical sampling frequency for the channel. Both point and subsequence anomalies may be 

univariate or multivariate depending on whether they affect one or more channels. Anomalies can additionally be divided into 

global and local (contextual) ones, similarly as proposed in behavior-driven taxonomy by Lai et al. [2]. To make the original 

definitions more specific in our taxonomy, the global subsequence anomaly is defined as a subsequence of anomalous values in 

which at least one instance can be treated as a global point anomaly.  

In the proposed taxonomy, each anomaly type can be described by three attributes: dimensionality (uni-/multi-variate), locality 

(local/global), and length (point/subsequence), as presented in Fig. 11. These attributes can be automatically inferred from per-

channel annotations: 

1. Dimensionality can be inferred by counting the number of channels affected by an anomaly. One affected channel 

makes it univariate and more affected channels make it multivariate. 

2. To infer locality, we calculate the minimum and maximum values of all nominal samples in the dataset for each 

channel. If any sample of an annotated event lays out of <min, max> range for any channel, we mark it as global, 

otherwise it is local. This approach is a bit simplistic taking into account severe distribution shifts and different nominal 

levels of the signal in some missions, but it should be enough to identify global anomalies which could be detected with 

an out-of-distribution approach from more challenging local anomalies. 

3. In terms of length, considering non-uniform sampling rates and the differences between mission and channels, it is hard 

to give a strict definition of a point anomaly. Our proposition is to make it dependent on the dominant sampling 

frequency for each mission (0.033 Hz for Mission1, 0.056 Hz for Mission2 and 0.065 Hz for Mission3). A point 

anomaly is defined as a sequence of up to 3 samples after signal resampling to the dominant sampling frequency. 

Importantly, some anomalies are fragmented into several non-overlapping annotated regions. In this case, we treat each 

region separately, so even if an anomaly contains several regions it can be a point anomaly if all of these regions are 

categorized as point anomalies. 

Such automatically inferred attributes for every anomaly and rare event are given in anomaly_types.csv for each mission, 

taking into account annotations for all channels. However, when working with subsets of channels, only the specific subset of 

channels should be considered to infer anomaly types. For this purpose, the script infer_anomaly_types.py is available in the 

code repository. The attributes are not inferred for communication gaps and invalid fragments. 

 

TABLE 5 

DEFINITIONS OF EVENT CATEGORIES 

Event category Definition Typical examples Alarming 

Anomaly 

Atypical, rare, unplanned, and unwanted change 

in the telemetry.  

 

Micrometeorite impacts, solar flares, 

hardware or software failures, latch-

ups, unexpected responses to 

telecommands 

Every occurrence should 

be alarmed. 

Rare nominal 

event 

Atypical and rare but expected or planned 

change in the telemetry. It can be triggered by 

known telecommands (commanded rare event) 

or by any other non-commanded special event 

in the mission timeline.  

Commanded: maneuvers, resets, 

calibrations, switching devices on/off 

 

Non-commanded: planned 

autonomous operations, eclipses, 

lunar transitions 

Only the first occurrence 

of a rare nominal event 

from each class may be 

alarmed. Subsequent 

occurrences should not be 

alarmed. 

Communication 

gap 

Unusually long gap in the telemetry (missing 

data in some or all channels) not directly related 

to known anomalies.  

Problems with the ground 

infrastructure, effects of resets 

It should not be alarmed 

unless explicitly stated to 

do so. 

Invalid segment 

Fragment of telemetry data containing invalid or 

forbidden values not directly related to known 

anomalies. It is neither nominal nor anomalous.  

Telemetry does not meet clearly 

defined validity rules of the mission. 

It should not be alarmed 

unless explicitly stated to 

do so. 
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2. ESA ANOMALIES DATASET 

 
Fig. 4. Increasing complexity of selected ESA spacecrafts 

over time [3]. 

 
Fig. 5. Overview of 3 channels from group 4 in Mission1 

without annotations (top panel) and annotated (bottom panel). 

Blue, yellow, and red vertical bars are rare nominal events, 

communication gaps, and anomalies, respectively. 

 

 
Fig. 6. Overview of 3 channels from group 8 in Mission1 

without annotations (top panel) and annotated (bottom panel).. 

Blue, yellow, and red vertical bars are rare nominal events, 

communication gaps, and anomalies, respectively. The close-

up of these channels is presented in Fig 2. in the main text. 

 

 
Fig. 7. Overview of 4 channels from group 2 in Mission2 

without annotations (top panel) and annotated (bottom panel). 

Blue and red vertical bars are rare nominal events and 

anomalies, respectively. 

 
Fig. 8. Overview of 2 channels from group 31 in Mission2 

without annotations (top panel) and annotated (bottom panel). 

Blue and red vertical bars are rare nominal events and 

anomalies, respectively. Note that channels have very similar 

values, so it is hard to distinguish them. 

TABLE 6 

MAIN CHALLENGES POSED FOR ALGORITHMS BY MISSIONS IN 

ESA-ADB 

Mission Main challenges for algorithms 

1 

• Several anomalies are hard to spot (see Table 7) 

• Several huge outliers (usually related to rare 

nominal events) 

• Low signal-to-noise ratio in channels from group 8 

• Monotonically non-decreasing signals in channels 

from group 2 

• Last 18 months include a severe concept drift in 

channels from groups 4, 7, and 13 

• There is a visible seasonality with a very long 

period length 

• Overabundance of telecommands 

2 

• Several anomalies are hard to spot when looking at 

individual channels only (see Table 7) 

• Overabundance of rare nominal events and a very 

small number of anomalies 

• No obvious periodicity of the signal 

• Monotonically non-decreasing signals in channels 

from group 20 

• Many categorical and non-target channels 
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2.1. Mission3 

Mission3 is a part of ESA-AD but is omitted in ESA-ADB. It was omitted mainly because of many communication gaps (see 

Fig. 9), invalid segments (corrupted data), long periods of constant signals, lack of telecommands, and a small number of 

anomalies that are trivial to detect according to Definition 1 of Wu & Keogh [4]. However, it may still be an interesting resource 

for practitioners in the domain as it is fully annotated and contains a unique set of challenges related to satellite telemetry.  

 

 
Fig. 9. Distributions of classes of annotated events across the timeline of Mission3. 

 

2.2. Examples of challenging events to detect 

As mentioned in the main text, the initial selection of missions was based on the presence of challenging anomalies according 

to SOEs. To support the analysis of results, a list of selected events of this type in test sets of ESA-ADB is provided in Table 7. It 

is not a complete list. It is limited to test sets and includes only subjectively selected examples among many others. Example 

detections by semi-supervised algorithms trained on full (suffix “-Full”) and lightweight (suffix “-Light”) subsets for selected 

events are presented in Appendix Section 4. as a series of figures referenced in Table 7. 

Other interesting examples include events from classes 2, 14, 15, and 22 in Mission1 where similar changes in the same 

channel are sometimes categorized as anomalies and sometimes as rare nominal events, depending on the presence of TCs. A 

similar case for Mission2 is visualized in Fig. 10 for the non-commanded anomaly id_618 and the commanded rare event 

id_609. One of the important future works is to design algorithms that would be able to distinguish between such cases.   

There are also some interesting nominal fragments related to atypical changes in sampling frequency in Mission1. There are 3 

main examples of such behavior in the training set on days 2001-05-28, 2001-05-31, and 2001-06-27 where rapidly changing 

sampling rate causes small atypical “gaps” in data for channels 41-46. In the refinement process, it was observed that those gaps 

are detected as anomalies by many algorithms. However, we decided that they should not be annotated, because varying 

sampling rates are expected in satellite telemetry and these false detections are mainly since the selected algorithms are not aware 

of frequency changes.  

 

 
Fig. 10. Annotated anomaly id_618 (marked in red) directly preceding the commanded rare nominal event id_609 (marked in 

blue) in Mission2. The Y-axis is omitted, as channels are normalized and vertically shifted for improved visualization.
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TABLE 7 

LIST OF SELECTED CHALLENGING EVENTS ANNOTATED IN TEST SETS OF ESA-ADB 

Mission 
Event 

category  

Event 

ID 

Start time 

(YYYY-MM-DD 

hh:mm:ss)  

Duration Reason for selection 

M
is

si
o

n
1
 

Rare Event id_24 
2012-12-18 

06:32:09 
24h 15m 

Hard to spot and not commanded. Not found by SOEs initially 

and added during the refinement process. It is related to a 

temporary change of nominal operational conditions. 

Rare Event id_49 
2011-10-08 

07:08:39 
10h 25m 

Hard to spot, especially when looking at too narrow context. 

Caused by a rare TC. Fig. 17 

Rare Event id_51 
2011-08-14 

19:12:39 
1h 19m 

Hard to spot, especially when looking at too narrow context. 

Caused by a rare TC. Fig. 18 

Rare Event id_55 
2011-04-23 

08:19:39 
0s (point) 

Hard to spot in both lightweight and full sets. Caused by a 

unique execution of TC of priority 1. Overlaps with the rare 

event id_155. 

Anomaly id_138 
2009-10-13 

06:39:17 
1d 20h 

Hard to spot using the lightweight subset of channels 41-46 only. 

Much easier to spot in channels 58-60. Fig. 19 

Anomaly id_153 
2011-01-28 

22:29:18 
15h 14m 

Hard to spot using the lightweight subset of channels 41-46 only. 

Much easier to spot in channels 64-66. Fig. 20 

Rare Event id_155 
2011-04-21 

22:15:52 
11d 

Hard to spot using the lightweight subset of channels 41-46 only. 

Easier to spot in multiple other channels, but hard to accurately 

identify the start time due to very slow changes. Main text Fig 2. 

and Fig. 21 

Anomaly id_157 
2011-04-19 

07:09:39 
14h 35m 

Hard to spot using the lightweight subset of channels 41-46 only. 

Much easier to spot in channels 64-66. 

Rare Event id_159 
2011-06-09 

02:57:09 
10d 21h 

Hard to spot using the lightweight subset of channels 41-46 only. 

Very long annotations in other affected channels. Fig. 22 

M
is

si
o

n
2
 

Rare Event id_466 
2003-02-08 

16:25:19 
1h 10m 

Small disturbance in 7 channels which may be easily overlooked, 

especially when using only the lightweight subset. 

Rare Event id_591 
2002-04-16 

16:30:53 
35m Small disturbance in 7 channels which may be easily overlooked. 

Anomaly id_631 
2001-12-14 

19:16:29 
1h 18m 

Small disturbance of unknown source in 7 channels which may 

be easily overlooked by operators. Fig. 23 

Anomaly id_644 
2002-02-18 

05:42:45 
9h 48m 

Divergence of channel 81 from channel 73 which can only be 

detected when looking at both channels in the proper context 

window. 

 

2.3. Annotation details 

While annotating, a special focus was put on the precise identification of anomaly starting points for all channels. On the other 

hand, anomaly end times may be less accurate, because they are much harder to identify objectively, especially for long 

anomalies. Importantly, ARTS reports are intended for human use and are not well-suited for ML purposes. They usually include 

only approximate time ranges and a small fraction of affected channels. Moreover, well-known anomalies and rare nominal 

events are often not reported. Thus, the whole signal was carefully revisited by the ML team in search of any suspicious events. 

An initial list of subsystems, channels, and telecommands relevant for anomaly detection was proposed by SOEs, but was 

gradually extended during several iterations of the annotation refinement process in which overlooked anomalies were 

discovered by the ML team using different TSAD algorithms. During this process, channels were divided into target and non-

target for anomaly detection. Non-target channels should only be used as additional information for the algorithms. They are not 

annotated and are not assessed in the benchmark. Examples include status flags, counters, and metadata such as location 

coordinates, where anomalies are not expected or it is not possible to check for anomalies without external data. Related 

channels measuring the same physical values and showing similar characteristics are organized into numbered groups, so it is 

easier to manage the dataset for ML purposes, e.g., to train group-specific models or to visualize results. 

There are hundreds of different telecommands (TCs) in each mission. Some of them are critical for detecting annotated 

anomalies (i.e., when there is no reaction to the TC or the reaction is different than usual) or distinguishing anomalies from rare 

nominal events. However, it may be impractical to use them all in anomaly detection algorithms. Thus, 4 different priority levels 

for TCs were introduced as a suggestion about their potential usefulness for anomaly detection algorithms. The priorities from 

the least important to the most important are: 

0. TCs not directly related to any subsystem included in the dataset. 

1. TCs related to subsystems included in the dataset but not marked as potentially valuable for anomaly detection by 

SOEs. 

2. TCs selected as potentially valuable for anomaly detection by SOEs. 
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3. A fraction of TCs of priority 2. assessed as valuable for anomaly detection by the ML team. The main rejection criteria 

were the scarcity of occurrences in the training data (less than 3) or no occurrences in the test data.  

TCs of priority 3 are used as input for DC-VAE-ESA and Telemanom-ESA algorithms trained on full sets of channels. These 

priorities are only suggestions and ESA-ADB users are welcome to experiment with any combination of TCs. 

 

2.4. Anonymization details 

The anonymization had to be applied to conform with the ESA privacy policy and to avoid any accidental disclosure of 

sensitive mission-specific information or metadata. The anonymization process was carefully designed to maintain data integrity, 

so the results are independent of the anonymization. The following modifications were applied as a part of the anonymization 

process for each mission: 

• Renaming of missions, subsystems, channels, telecommands, physical units, anomaly classes, and event types. They 

were consistently numbered according to their order of occurrence in files. Subsystems and physical units have 

consistent naming across missions, so it is possible to train cross-mission models.  

• Time scaling and shifting of each mission. The timeline of every mission was scaled by a non-disclosed factor larger 

than 1 and shifted to start on 1st January 2000.  

• Normalizing values within channel groups to <0, 1> range. Normalization per group was applied to preserve the same 

dependencies between similar channels before and after anonymization.  

It was verified that the anonymization is fully reversible and there are no numerical errors related to the limited floating point 

resolution of values or timestamps. Additionally, it was verified that all deterministic algorithms in the benchmark produce the 

same results before anonymization.  

2.5. Dataset structure 

ESA-AD consists of three folders, one per each mission. Each folder has the same structure presented in Table 8. There is a 

subfolder named channels and an optional subfolder named telecommands. Both subfolders include serialised and compressed 

Pickle files (docs.python.org/3/library/pickle.html, protocol version 4.0, zip compression), one for each channel and 

telecommand. Each file contains a single pandas DataFrame (pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.html, pandas version 1.5.3) including an index with consecutive timestamps and a 

single column with the corresponding raw telemetry values. Annotations of all events are in a separate file called labels.csv 

placed directly in the mission folder. It contains rows that describe anomalous fragments using 4 columns: the anomaly identifier 

(ID), the name of the channel affected by the anomaly, the start time, and the end time of the anomalous segment. Start and end 

times are defined as closed ranges and they usually represent timestamps of actual points in the dataset. There may be multiple 

segments with the same ID and channel name, but their time ranges cannot overlap. Additional information on anomalies can be 

found in the anomaly_types.csv file. It describes each anomaly ID with its class, subclass, category, and type. The channels are 

described in the channels.csv file using the channel name, the associated subsystem, and the physical unit. The channel 

description also includes group numbers that indicate similar channels and the information if the channel is a target channel. If 

telecommands are included in the dataset their priority is described in the telecommands.csv file.  

 

TABLE 8 

FOLDER STRUCTURE OF ESA-AD 

• ESA-Mission/ 

• channels/ folder including all channels of the 

mission 

• *.zip compressed Pickle files for each 

channel 

• telecommands/ (optional) folder including all 

telecommands of the mission 

• *.zip compressed Pickle files for each 

telecommand  

• labels.csv annotations 

• anomaly_types.csv description of anomalies 

and rare nominal events 

• channels.csv description of channels 

• events.csv (optional) list of special operations 

and mission events 

• telecommands.csv (optional) description of 

telecommands 

 

https://docs.python.org/3/library/pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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Some files are marked as optional, these files are not mandatory for the dataset or there might be missions not including these 

files. It should be possible to apply anomaly detection algorithms to the datasets not using the optional data, but it is expected 

that the optional data enhances the performance of algorithms when used. Mission2 includes an optional file events.csv which 

lists special operations and events with their start and end times according to the mission plan provided by SOEs. It was used to 

identify rare nominal events annotated in labels.csv, usually with slightly different start and end times due to different 

propagation times between channels.  

2.6. Comparison to related public datasets 

Space-related dataset. A quantitative comparison of the missions included in ESA-ADB and other public spacecraft-related 

telemetry datasets from the literature is presented in Table 9. There are 5 other public datasets of real-life spacecraft telemetry – 

3 by NASA and 2 by ESA – and a single simulated one (CATS). The most popular ones are Soil Moisture Active Passive 

(SMAP) and Mars Science Laboratory (MSL) released by NASA [5]. According to the search for “SMAP” and “MSL” terms in 

Google Scholar since 2018, there are more than 200 documents that mention these datasets in the set of more than 500 citations 

of the source paper [5]. Besides a lot of criticism of these datasets in the recent literature [4], [6], [7], there is a common 

misconception about the number of channels included in these datasets. The data may come from 82 different physical channels 

in total, but there is a separate fragment for each channel without any synchronization with other channels, so they cannot be 

used effectively as a multivariate dataset. This is made clear in the description of the dataset in Table 9. NASA LASP 

WebTCAD [8] has tens of millions of points, but there are only 5 partially overlapping channels and no annotations of 

anomalies. ESA Mars Express Power Challenge [9] is popular in satellite telemetry forecasting, but does not contain anomalies 

annotations. The very recently published ESA OPSSAT-AD [16] is a toy dataset with 2213 univariate fragments of real OPS-

SAT telemetry. It is contains anomaly annotations for whole fragments and is designed specifically for on-board applications.  

Non-space-related datasets. There are also several related real-life datasets from outside the domain of satellite telemetry that 

are frequently used to benchmark multivariate TSAD algorithms. Notable examples include the Secure Water Treatment (SWaT) 

[10] and Water Distribution (WADI) [11] datasets which contain recordings from tens of channels from a real-world water 

treatment plant within several days. Server Machine Dataset (SMD) [12] including 5-week-long data from 38 parameters of 28 

machines from 3 servers at a large internet company. The recent TELCO dataset [13] is worth noting due to related ideas of 

separate annotations for each channel, anomalies in training sets, and gradually increasing training set sizes. It contains 12 

channels corresponding to real measurements collected over 7 months at an operation mobile internet service provider. To the 

best of our knowledge, the Exathlon benchmark [14], including real data traces from tens of repeated executions of streaming 

jobs with 2283 parameters (channels) on a Spark cluster over 2.5 months, is the only related dataset of volume comparable to 

ESA-AD, with more than 5 billion samples and 25 GB of data. However, it does not contain per-channel annotations and has 

been criticized for unrealistic anomaly density and positional bias [6]. 

Table 10 gives qualitative description of how ESA-ADB addresses main 4 flaws reported by Wu & Keogh [4]. 
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TABLE 9 

QUANTITATIVE COMPARISON OF ESA-AD AND OTHER PUBLIC SPACECRAFT DATASETS. 

Dataset name Number of channels Total volume Number of annotated events 

ESA-AD (Ours) 

Mission1: 1 fragment with 76 

channels and 698 commands 

Mission2: 1 fragment with 100 

channels and 123 commands 

1,551,591,259 samples 

3,512,724 commands 

executions 

842 (1.17% of all samples) 

NASA SMAP and MSL 

[5] 

SMAP: 55 fragments with 1 

channel and 24 commands 

MSL: 27 fragments with 1 channel 

and 55 commands 

706,971 samples 

410,030 commands executions 
105 (8.98% of all samples) 

NASA LASP WebTCAD 

[8] 

1 fragment with 5 partially 

overlapping channels 55,258,122 samples not annotated 

NASA Shuttle Valve Data 

(cs.fit.edu/~pkc/nasa/data) 

TEK: 12 fragments with 1 channel 

VT1: 27 fragments with 1 channel 
552’000 samples 8 whole fragments 

CATS [15] (simulated) 1 fragment with 17 channels 85,000,000 samples 200 (2.15% of all samples)  

ESA Mars Express Power 

Challenge [9] 

Train: 3 fragments with 38 

channels (including 5 metadata-

related)  

Test: 1 testing fragment with 5 

metadata channels 

198,045,083 samples not annotated for anomalies 

ESA OPSSAT-AD [16]  
2123 univariate fragments from 9 

different channels  303,493 samples 434 whole segments (20.44%) 

 

TABLE 10 

A LIST OF FLAWS REPORTED BY WU & 2.6 [4] AND HOW THEY ARE ADDRESSED BY ESA-ADB. 

Flaw How does ESA-ADB address it?  

Triviality 

• ESA-AD is large and contains a diverse set of anomaly types and concept drifts which 

hamper the usage of simple algorithms 

• ESA-AD offers a selection of non-trivial anomalies, so they can be evaluated separately 

(Appendix Section 2.2) 

• ESA-ADB includes a set of simple algorithms to verify the potential triviality of anomalies 

Unrealistic 

anomaly density 

• ESA-AD is large and the anomaly density in the dataset is below 2% of data points 

• There are only dozens of anomalous events per year  

• Series of separate annotated segments within a short region are usually assigned to the 

same event and are treated as such when computing metrics 

Mislabelled 

ground truth 

• While this flaw cannot be fully resolved in real-life datasets there were several iterations of 

the annotation refinement process aided by unsupervised and semi-supervised algorithms 

to identify potential mislabelling [17] 

Run-to-failure 

bias 
• Anomalies are scattered across long, failure-free, operational periods of acquired telemetry 

data from real satellite missions 
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3. METHODS 

3.1. Anomaly types 

Fig. 11 gives an overview of the proposed taxonomy of anomaly types and Table 11 gives statistics of each anomaly types 

across all missions in ESA-AD. 

 
Fig. 11. Anomaly types considered in ESA-ADB. 

TABLE 11 

DISTRIBUTION OF 8 COMBINATIONS OF ANOMALY TYPES ACROSS MISSIONS 

Length Locality Dimensionality Mission1 Mission2 Mission3 

Point 

Global 
Univariate 0.00% 0.00% 9.09% 

Multivariate 5.10% 0.00% 0.00% 

Local 
Univariate 0.51% 0.00% 0.00% 

Multivariate 0.51% 0.00% 0.00% 

Subsequence 

Global 
Univariate 12.24% 0.00% 60.61% 

Multivariate 40.31% 90.84% 15.15% 

Local 
Univariate 3.57% 1.40% 6.06% 

Multivariate 37.76% 7.76% 9.09% 

 

3.2. Metrics 

 

 
Fig. 12. Visualization of differences between the original and corrected event-wise F-scores. 
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Fig. 13. Visualization of the event-wise alarming precision calculation. 

 
Fig. 14. Visualization of differences between the original and modified affiliation-based scores on a simulated example. (P – 

precision, R – Recall) 
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3.2.1. Analysis of metrics from the literature 

There are some recent comprehensive reviews of TSAD metrics in the literature [18], [19]. It is an active area of research in 

which many new approaches were introduced recently. However, none of these metrics is universal, they focus on different 

aspects of detection quality which may differ between applications. Table 12 gives an overview of our analysis of state-of-the-art 

metrics together with their pros and cons in the context of satellite telemetry anomaly detection. 

 

TABLE 12 

ANALYSIS OF EXISTING METRICS FROM THE LITERATURE WITH REASONS FOR INCLUSION/EXCLUSION IN ESA-ADB. 

Category Metric  
Included in 

ESA-ADB 
Reason for inclusion/exclusion 

Sample-wise 

All classic precision-based 

and recall-based metrics 

treating each time point as 

an independent sample 

No 

Simple per-sample metrics are not aware of temporal aspects of time 

series in which anomalies are usually continuous sequences of 

correlated samples (like a vast majority of anomalies in satellite 

telemetry). This leads to multiple problems with a proper assessment 

of algorithms, i.e., longer anomalies are getting more importance 

than shorter ones, and close detections are not rewarded. 

R
a

n
g

e-
b

a
se

d
 

NAB score [20] No 

It is only applicable to domains where an anomaly is a single sample 

rather than a series of samples. Moreover, there are certain 

ambiguities in the scoring functions and magic numbers for its 

parameters [21]. 

Point-adjust [22] No 

It is recently widely criticized for various reasons [23], [23], [24], 

[25], [26]. Mainly because it is overly optimistic and even a random 

anomaly score can reach state-of-the-art results in this metric in 

specific adversarial cases [23], [24], [26]. Also, it gives more 

importance to longer anomalies and is unable to give a larger score to 

a model which finds the true range of the anomaly better. 

Event-wise score [5] No 

It is improvement of point-adjust approach which partially solve the 

problem with higher importance of long anomalies, i.e., long 

anomalies have the same “weight” as short ones, but there is still a 

much higher probability that a random detector will detect the longer 

anomaly. Moreover, an algorithm that simply detects anomalies for 

every sample in the dataset would have a perfect event-wise 

precision. 

Composite F-score [27] No 

It calculates the precision in a per-sample manner and recall in an 

event-wise manner, so it still gives smaller weights to short false 

positives which are equally or more annoying than longer ones. 

Corrected event-wise F-

score [26] 
Yes 

It resolves issues with the event-wise precision using a correction for 

per-sample true negative rate. It increases importance of short false 

positives and penalizes overly long detections.  

Precision and Recall for 

Time Series [28] 
No 

It requires 4 hyperparameters to be tuned. The recall is not 

monotonically decreasing with an increasing threshold. Such a 

behavior can even lead to problems when computing aggregated 

metrics that assume recall consistency [6]. Its calculation time does 

not scale well for large datasets. 

TaPR and eTaPR [23]  No 
It requires 3 hyperparameters and its calculation time does not scale 

well for large datasets. 

Affiliation-based score 

[24] 
Yes 

It is parameter-free, locally and statistically interpretable, robust to 

“adversary” predictions, and scales well for large datasets. 

Volume Under the 

Surface [29] 
No 

It operates on continuous anomaly scores and we require binary 

outputs. It has very high computational complexity and does not 

scale well for large datasets. 

D
et

ec
ti

o
n

 t
im

in
g
 

Early Detection [30] No 

It assumes that anomalies can only be detected within the ground 

truth interval – after they appear in the signal. It does not account for 

too early detections which may be treated as false positives by 

spacecraft operators.  

Before/After-TP [31] No 

This approach requires calculation of two different values (Before-

TP and After-TP) which are not obvious to aggregate to assess the 

overall detection timing quality. Moreover, it is impossible to 

calculate both values for every detections.  
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o
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) HitRate@P% [12] No 

It needs information about the relative relevance of detections that is 

not available when using binary outputs. It does not penalize models 

detecting too many channels. To always achieve a score of 1 model 

can simply mark all channels as anomalous. It is a crucial problem in 

satellite telemetry because we aim to mark only relevant channels to 

investigate by space operations. Any additional irrelevant detections 

should be penalized. 

Normalized Discounted 

Cumulative Gain [32] 
No 

It needs information about the relative relevance of detections that is 

not available when using binary outputs. 

 

3.2.2. Description of metrics priorities 

The highest priority aspect relates to the proper identification of anomalous events, but with a strong emphasis on avoiding 

false alarms at the same time (aspects 1a. “No false alarms” and 1b. “Anomaly existence” in Table 3 in the main text). This is 

because false positives are costly to resolve and deter operators from using the system. A high false positive rate is reported in 

the literature as the main obstacle to the wider adoption of anomaly detection algorithms in space operations [5]. This fact 

additionally supports our idea of hierarchical evaluation, since a high false positive rate disqualifies an algorithm even if it 

obtains perfect scores in other aspects. Moreover, most other aspects focus only on performance for true positive detections (i.e., 

channel identification, alarming precision, timing quality), so they indirectly depend on the anomaly existence aspect. 

The second highest priority for SOEs is to have information about subsystems and channels affected by anomalies (aspects 2a 

and 2b). Proper subsystem identification is more important for SOEs as it gives a more concise overview of the situation than a 

long list of specific affected channels. Again, it is of paramount important to avoid false positives. It is strongly preferable to 

miss some channels rather than to wrongly identify many irrelevant channels. ESA-AD contains tens of target channels which is 

already hardly manageable for manual analysis, moreover, it is just a fraction of channels from actual missions. Hence, an 

algorithm which does not provide affected channels is of low practical utility, or even worse, it may amplify the “black box” 

nature of advanced algorithms and decrease trust in this kind of system among operators. That is why it was considered as the 

second of two primary aspects of highest priority. 

The following 3 secondary aspects are not so crucial for SOEs but are certainly useful to differentiate between algorithms 

having the same primary scores. The 3rd priority is to avoid algorithms that frequently repeat alarms for the same continuous 

anomaly segment (aspect 3. “Exactly one detection per anomaly”). It is strongly connected to the 1a. “No false alarms” priority, 

because even if all repeated alarms are true positives, they would be annoying and confusing to operators, nearly as badly as 

false positives. The last 2 priority levels directly relate to the anomaly detection timing. It is better to detect anomalies earlier 

than later (aspect 4. “Detection timing”), it is preferable to detect a whole time range of an anomaly instead of just a part of it, 

and, in case of false detections, it is better to show them close to real anomalies (aspect 5. “Anomaly range and proximity”). 

These aspects are often highly emphasized in TSAD benchmarks from the literature, e.g., NAB [20] and Exathlon [14]. 

However, they are relatively less important for on-ground mission control. Additionally, the latter aspect cannot be precisely 

assessed due to the problems with the objective identification of anomaly end times (discussed in Appendix Section 2.3). 

3.2.3. ESA-ADB metrics definitions 

The definitions of the proposed metrics are given in the following paragraphs. All implementations are available in the 

published code. All metrics are defined in the <0, 1> range where 1 is the perfect score. Technical details of implementations are 

listed in Section 3.2.4.  

Subsystem/channel-aware F-scores. Typical TSAD metrics are applicable only in univariate settings. To get a single score 

for multiple channels, there must be some aggregation performed. Such aggregation loses information about the performance for 

individual subsystems or channels, so it is impossible to assess their correct identification. In recent articles [33], [34], special 

anomaly diagnosis metrics are proposed to address this issue, namely HitRate and Normalized Discounted Cumulative Gain. 

These metrics measure how relevant are the detected channels according to the list of annotated channels. However, they need 

information about the relative relevance of detections which is not available when using binary outputs. Thus, a new approach is 

proposed based on precisions and recalls of identifying the list of affected subsystems and channels. 

SOEs inspect potential anomaly sources at two levels of detail. First, they check which subsystems are affected by the 

anomaly. Later on, they look at the specific channels affected in those subsystems. The usefulness of algorithms supporting such 

inspection is proposed to be measured with subsystem-aware (SA) and channels-aware (CA) F-scores. A subsystem is counted 

as true positive (𝑇𝑃𝑆𝐴) if it has at least one annotated channel and at least one detected channel (not necessarily the same) 

overlapping with the full time span of an event. A subsystem is considered a false negative (𝐹𝑁𝑆𝐴) if it has at least one annotated 

channel but no such detections. A false positive subsystem (𝐹𝑃𝑆𝐴) has no annotated channels but has at least one such detection. 

Thus, the subsystem-aware F-score 𝐹𝛽𝑆𝐴
 is given by (3).  
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𝐹𝛽𝑆𝐴
= (1 + 𝛽2)

𝑃𝑟𝑆𝐴∙ 𝑅𝑒𝑐𝑆𝐴

(𝛽2∙𝑃𝑟𝑆𝐴)+𝑅𝑒𝑐𝑆𝐴
, 

𝑃𝑟𝑆𝐴 = 
𝑇𝑃𝑆𝐴

𝑇𝑃𝑆𝐴 + 𝐹𝑃𝑆𝐴
,       𝑅𝑒𝑐𝑆𝐴 =  

𝑇𝑃𝑆𝐴
𝑇𝑃𝑆𝐴 + 𝐹𝑁𝑆𝐴

 

(3) 

The channel-aware F-score is defined analogously, taking into account separate channels instead of subsystems. Again, 0.5 is 

used for β as a baseline to be consistent with the event-wise F-score. For the lightweight subsets of channels (selected from a 

single subsystem), the subsystem-aware F-score is not reported. 

Event-wise alarming precision. The corrected event-wise F-score counts only a single true positive even if there are multiple 

separated detections for the same fragment in the ground truth (Fig. 13). In practice, such redundant detections may cause 

repeated alarms which may be annoying for operators. The event-wise alarming precision measures the ratio of correctly 

detected events to the sum of correctly detected events and redundant alarms. This metric may seem too strict in some cases, i.e., 

many short detections close to each other, but it represents a practical aspect of mission operations and encourages applying 

better thresholding or postprocessing approaches to avoid redundant alarms. 

Anomaly detection timing quality curve (ADTQC). The goal of this novel metric is to assess the accuracy of the anomaly 

start time identification from the SOEs point of view. Some existing metrics of the anomaly detection latency, such as After-TP 

[31] or Early Detection (ED) [30], assume that an anomaly can be detected only within its ground truth interval – after it appears 

in the signal. However, the question arises how to assess algorithms that detect anomalies too early – before they start. They 

cannot be assessed using After-TP or ED metrics but they certainly have some value. The Before-TP metric [31] and the NAB 

score [20] rank earlier anomaly predictions (to distinguish them from detections) as better. However, in practice, as suggested by 

SOEs, too-early detections may be seen as false positives by operators if they cannot confirm the existence of an anomaly within 

a definable time. Thus, too early detections may decrease operators’ trust in an algorithm and, in this context, are much worse 

than late detections of comparable distance from an anomaly start time. According to SOEs, the quality of anomaly detection 

timing should decrease exponentially for detections before the actual start time as opposed to much slower degradation of quality 

for moderately late detections. A survey was conducted and confronted across SOEs from different missions in ESA and KP 

Labs to define the timing quality in the range from 0 to 1 as a function of detection start time. The resulting consensus reflecting 

the common operators’ point of view is reflected in the ADTQC described by Appendix Equation (4) in Appendix Section 3.2.2. 

Modified affiliation-based F-score. The affiliation-based approach by Huet et al. [24] claims to resolve all the major flaws of 

previous range-based metrics. That is, it is aware of the temporal adjacency of samples and anomalies duration, has no 

parameters, and is locally and statistically interpretable. The main idea is to divide ground truth into local zones affiliated with 

consecutive anomaly ranges. The borders of such affiliation zones lie in midpoints between consecutive anomalies. Precision and 

recall are calculated separately for each affiliation zone based on the average directed distance between sets of annotated and 

detected points, either the distance from annotated to detected (precision) or from detected to annotated (recall). Affiliation-based 

F-score with β of 0.5 is calculated to underscore the strong practical need to minimize the number of false positives. The final 

global F-score is calculated as the arithmetic average of all local F-scores (with each affiliation zone having the same weight). 

The important modification to the original implementation relates to frequent situations when it is impossible to calculate the 

precision in an affiliation zone (when there is no detection there are no true positives or false positives). In the original 

formulation, such an affiliation zone was simply ignored when calculating an average precision over all affiliation zones. 

However, this approach makes it hard to robustly compare different algorithms because of the different numbers of affiliation 

zones taken into account, e.g., it gives a higher score to an algorithm that detects a single anomaly very precisely and misses 4 

others than to an algorithm that detects all 5 anomalies relatively well – see Fig. 14. In our formulation, empty detections get a 

precision of 0.5. Such a value can be interpreted as a random detection, so this modification promotes algorithms that would 

rather give an empty detection than a false detection that is worse than random. There are also some other technical adaptations 

to handle point anomalies and fragmented annotations, as described in Appendix Section 3.2.2. 

 

3.2.4. Implementation details 

Operating in the time domain. ESA-AD has varying sampling rates and we keep them on purpose to maintain the true 

characteristics of satellite telemetry data. Our evaluation pipeline should handle this issue to consistently evaluate the results of 

algorithms using different sets of timestamps on the output. The only way to achieve this is to use metrics operating in the time 

domain instead of the samples domain, so that the ground truth and the detections can use completely different sets of 

timestamps (of different lengths and varying sampling rates). Original implementations of most metrics do not support 

timestamped arrays. They assume that the ground truth and the detections have the same uniformly sampled timeline. Our 

metrics operate on arbitrarily timestamped ground truth and detection arrays (possibly of different lengths and sampling 

frequencies). Hence, no matter the sampling frequency used in the algorithm, the metrics are always calculated relative to the 

original non-uniformly sampled ground truth. For operations on time ranges, we use the portion library 

(github.com/AlexandreDecan/portion). 

Timestamps as real numbers. Our modified version of the affiliation-based metric operates on timestamped arrays, but the 

timestamps are transformed into the number of nanoseconds since the beginning of the dataset, so the internal implementation of 

the affiliation-based score is unchanged (it can operate on real numbers only). Additionally, point events (with the same start and 

https://github.com/AlexandreDecan/portion
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end times) are adjusted, so that the end time is 1 nanosecond later than the start time. Such modification had to be applied 

because the affiliation-based score cannot be calculated for point events of zero length. The same point anomalies adjustment 

was applied to the channel-aware F-scores. 

Multiple annotations for the same event. It is a common situation in our dataset that multiple non-overlapping fragments 

close to each other are annotated with the same event ID (e.g., Fig 2. in the main text). This is usually because the source of the 

anomaly is the same for all fragments. In such cases, we should treat all fragments as a single anomaly (i.e., when selecting 

affiliation zones and calculating distances) as suggested in recent literature [4], [24]. To implement such correction in the 

affiliation-based score without changing its internal assumptions and implementation, a macro-averaging across anomaly IDs 

was introduced, i.e., it first aggregates zones affiliated with the same anomaly IDs by averaging their precision and recall scores 

and then calculates an average across all anomaly IDs. It also affects the implementation of the alarming precision metric which 

does not penalize redundant detections belonging to non-overlapping ground truth fragments.  

Overlapping events. There are several cases in our dataset where annotations of different events for the same channel are 

overlapping in time, i.e., when an anomaly occurred during a longer rare event. The affiliation-based metric is unable to separate 

such events because it is impossible to create non-overlapping affiliation zones for them, so there are no corrections for this 

situation to not interfere with the main principles and assumptions of the metric. For subsystem-aware and channel-aware 

metrics, each event is analyzed separately, i.e., separate true positives and false negatives are counted for each event. Moreover, 

any false positives related to correct detections of other overlapping anomalies are discarded. 

ADTQC details. The anomaly detection timing quality curve (ADTQC) is defined by (4) and visualized in Fig. 15. 

 
Fig. 15. Anomaly detection timing quality curve (ADTQC). 

𝐴𝐷𝑇𝑄𝐶(𝑥) =
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 (
𝑥 + 𝛼

𝛼
)
𝑒

       , −𝛼 < 𝑥 ≤ 0

1

1 + (
𝑥

𝛽 − 𝑥
)
𝑒 ,     0 < 𝑥 < 𝛽

0             ,     𝛽 ≤ 𝑥 < +∞

, 𝛼, 𝛽 > 0 

𝐴𝐷𝑇𝑄𝐶(𝑥) = {
0, 𝑥 ≠ 0
1, 𝑥 = 0

, (𝛼 = 0 ∧ 𝑥 ≤ 0) ∨ (𝛽 = 0 ∧ 𝑥 ≥ 0) 

𝛼 = min(𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒) 

𝛽 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 
 

(4) 

 

After agreeing on the shape of ADTQC, the most important issue was to select the operational range of values for which the 

function should return a quality higher than 0, that is, for which the detection is not useless from the practical point of view. The 

first straightforward step was to define detections later than the anomaly end time (β) as useless. Accordingly, detections earlier 

than the anomaly length from the start time were also considered useless. Hence, the shorter the anomaly the more accurately it 

must be detected to achieve similar quality value. In the extreme case of point anomalies, ADTQC returns a value of 1 for exact 

detections and 0 otherwise. It makes sense from the practical point of view for two reasons, 1) detections for short, hardly 

noticeable anomalies are likely to be considered false alarms if not well-timed, and 2) end times of long anomalies are usually 

much harder to annotate precisely than for short anomalies. Another unacceptable situation was identified when a detection is 

earlier than the previous anomaly start time. When anomalies are close to each other, the detection timing must be even more 

accurate to ensure their better separation.  

        
   

 

      
                 

            

       =
 +  

 

 

  

       =
1

1 +
 

   

 

 



15 

European Space Agency Dataset and Benchmark for Anomaly Detection in Real-World Time Series 

The ADTQC metric value for the specific anomaly is determined by simply calculating the value of the 𝐴𝐷𝑇𝑄𝐶(𝑥) function 

where 𝑥 is the difference between the detection start time and the anomaly start time. Similarly to Before/After-TP [31], the 

metric is calculated and averaged across all correctly detected events to get a final score in the range from 0 to 1. To support the 

analysis of the results, the ratio of detections after the anomaly starting points to all detections is calculated (called the after 

ratio). 

For multivariate anomalies, the ADTQC metric is calculated between the logical sums of annotations and detections across all 

target channels. It does not matter if the detections are for correct channels because the metric focuses on the timing alone. The 

second possible approach in the multivariate setting would be to calculate the ADTQC metric for each affected channel 

separately. The average across all affected channels would be the final ADTQC score for a specific anomaly. While this 

alternative approach would allow for more detailed quantification of the anomaly detection timing across channels, it does not 

reflect the operators’ perspective in which the first detection is the most important one, because it already enforces an action. 

Later detections for any other channel do not matter so much, because operators are already aware of the potential anomaly. 

All metrics can be calculated excluding some specific event categories, classes, or types. For the corrected event-wise F-score, 

detections for excluded events are ignored when counting true and false positives, and a lack of detection is not counted as a 

false negative for them. For other metrics, excluded events are simply not considered when calculating the mean across events. 

3.2.5. Approach for rare nominal events 

Most algorithms in the TimeEval framework (and in the literature) do not support learning rare nominal events explicitly (i.e., 

by one-shot learning or keeping rare events in memory). For such standard algorithms, rare events will always be detected as 

anomalies, so for simplicity, rare nominal events are treated as anomalies in the current benchmark. However, we strongly 

encourage to use ESA-AD to design models that learn nominal rare events and avoid detecting them in the future, which would 

be of high practical importance for mission control. For this purpose, we propose a framework to assess them: 

1) The first detection of a novel rare nominal event (not seen during training) should not be penalized. However, the algorithm 

should be able to actively learn from the operators’ feedback (i.e., “this is not an anomaly”) and should not detect similar events 

in the future (one-shot learning). 

2) For known rare events (seen during training or actively learned during inference), every subsequent detection should be 

penalized, i.e., we should minimize per-event false positive rate (FP / (FP + TN)) where FP is falsely detected rare event and TN 

is a correctly undetected rare event. 

3.3. Preprocessing 

Fig. 16 presents an example of the proposed zero-order hold resampling scheme. It is implemented as follows: 

1. Construct a uniformly sampled list of timestamps in the target sampling frequency. Set the first/last timestamp in the list 

to the value of the earliest/latest original timestamp across all channels rounded down/up to the target sampling 

resolution. Fill the list between the first and the last element using uniformly sampled timestamps in the target 

frequency, e.g., if we resample a list of original timestamps <8:10:12, 8:10:14, 8:10:38> to the target frequency of 1/10 

Hz (target resolution of 10 seconds), the resampled list will be <8:10:10, 8:10:20, 8:10:30, 8:10:40>. 

2. Propagate the last known value and label from the original samples (zero-order hold) to each timestamp in the 

constructed list. If there are still any missing values for the initial element of the list (i.e., when some channels start a 

little earlier than others), backpropagate the first known value from the original samples. This introduces a bit of 

information from the future, but it usually concerns only a few samples at the beginning of a test set. 

3. Apply a correction for missing anomalies to ensure that no point events are removed due to the resampling. Iterate 

through consecutive pairs of unannotated timestamps in the resampled list and, if there are any annotated original points 

in between, take the last annotated sample and assign its value and label to the latter timestamp from the pair. The result 

of such a correction is visible in the rightmost sample of Channel_1 in Fig. 16. 

Target sampling frequencies have been selected separately for each mission (0.033 Hz, 0.056 Hz, 0.065 Hz, for Missions 1, 2, 

3, respectively) based on the analysis of the most densely sampled target channels to prevent losing any annotated anomalies, 

especially point anomalies. 

Channels with categorical values and status flags are enumerated according to the order of occurrence of each state in the 

training set before standardization. This is a very naïve approach, but it does not require laborious manual analysis of all 

channels and preparation of state mappings for each potential mission. Also, it does not require special handling of categorical 

anomalies. Moreover, categorical channels are usually non-target. 
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Fig. 16. Visualization of our resampling procedure for two non-uniformly sampled channels. Colors represent different values of 

the signal for each channel. 

 

3.4. Algorithms 

This section provides all details on algorithms implementation, selection, and parametrization in the benchmark.  

 

3.4.1. Telemanom adaptation (Telemanom-ESA) 

The semi-supervised Telemanom algorithm proposed by NASA engineers [5] is an important point of reference in the domain. 

It can be considered the most popular algorithm for anomaly detection in satellite telemetry. Its core element is an LSTM-based 

RNN that learns to forecast a small number of time points (10 by default) for a single channel based on the hundreds of 

preceding samples (250 by default) from multiple input channels. The mean absolute difference between the forecasted samples 

and the real signal is treated as an anomaly score, which is thresholded using the non-parametric dynamic algorithm (NDT) to 

find anomalies. However, this “non-parametric” approach (in the sense that it does not use Gaussian distribution parameters to 

estimate thresholds) has several hyperparameters. In one of our previous works, a genetic algorithm was used to find optimal 

hyperparameters [35]. However, this wrapper approach would be too computationally expensive to run on our large datasets, so 

the default settings proposed by the authors were used.  

Our proposed Telemanom-ESA solves several technical issues of the original Telemanom identified when working on ESA-

ADB, including memory inefficiency, magic numbers causing problems in thresholding (Telemanom-ESA-Pruned), no proper 

handling of anomalies in training data, and a lack of scalability to hundreds of channels.  

• Memory inefficiency – Telemanom was designed for small and simplified datasets provided by NASA. Hence, the 

code is not optimized to handle very large datasets and it results in out-of-memory errors, e.g., there are many 

unnecessary copies of data, all training windows are loaded into memory at once, and binary annotations are loaded to 

memory as floating-point numbers. Telemanom-ESA: The code is optimized for memory consumption by using lazy 

generators to prepare training batches, in-place operations instead of copying data to new variables, and optimized data 

types.  

• Magic numbers in thresholding – there are several conditions in the thresholding code that are not well documented in 

the original article. Especially impactful is that windows with smoothed errors below 0.05 are never anomalous 

(github.com/khundman/telemanom/blob/26831a05d47857e194a7725fd982d5dea5402dd4/telemanom/errors.py#L339). 

This is a very data-specific condition that is not well-suited for channels with certain signal values. Telemanom-ESA: 

This specific condition was removed from the code. Telemanom-ESA-Pruned: The threshold of 0.05 is much too high 

for ESA-ADB, so it was changed to 0.007 based on the manual analysis of smoothed errors in the training data of both 

missions. This selection is highly subjective and is probably not optimal, but allows to assess the effect of such a 

pruning on the results. 

• No proper handling of anomalies in training data – Telemanom assumes that there are no anomalies in the training 

set which is not true in our real-life setting. Telemanom-ESA: only continuous nominal parts longer than 260 samples 

and without any anomalies in any target channel are used for training and validation.  

• Only a single output from the LSTM model – a single Telemanom model can take multiple input channels but it 

always outputs a prediction for a single target channel. This is a significant shortcoming when scaling this approach to 

hundreds of channels and gigabytes of data. The training of a single model may last hours or days, so training separate 

models for tens of channels can take months on a single PC. Also, it is impossible to provide different sets of input 

          

          

              

       

       

                     

       

          

                            

         
          

                            

         
                                      

       

       

       

       

https://github.com/khundman/telemanom/blob/26831a05d47857e194a7725fd982d5dea5402dd4/telemanom/errors.py#L339
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(non-target channels, telecommands) and output (target) channels. Telemanom-ESA: the output of Telemanom is 

extended, so that is possible to forecast any number of channels at once from a single model, like in DC-VAE[13]. The 

channels are still analyzed separately, but there is no need to train a separate model for each channel. 

• Problems with GPU support – the original implementation of Telemanom is based on TensorFlow version 2.0 which 

does not natively support the CUDA compute capability 8.6 of our Nvidia GPUs. Also, the TimeEval framework lacks 

GPU support. Telemanom-ESA: TensorFlow is upgraded to version 2.5 and the GPU support is added to TimeEval. 

3.4.2. GlobalSTD 

In this simple distribution-based approach, any samples deviating from the mean of the channel by more than N its standard 

deviations are detected as anomalies. This approach is categorized as semi-supervised because only nominal samples (excluding 

annotated events) from the training set are used to compute means and standard deviations for each channel to avoid the 

influence of outliers. In practice, the threshold of 3 standard deviations (GlobalSTD3) is frequently used (following the empirical 

statistical rule that 99.7% of data occurs within 3 standard deviations from the mean within a normal distribution [36]), but it 

may not be optimal when the number of false positives should be minimized, so the threshold of 5 standard deviations 

(GlobalSTD5) is also tested to provide a versatile baseline for other algorithms. This algorithm is unable to detect local 

anomalies, so it is not a good choice in practice. It is also not aware of dependencies between channels and it is very vulnerable 

to changes in the data distribution during the mission. It also cannot use the information about non-target channels and 

telecommands. 

3.4.3. DC-VAE and its adapted version (DC-VAE-ESA) 

Dilated Convolutional-Variational Auto Encoder (DC-VAE) [13] is one of the latest published multivariate TSAD algorithms. 

It is a reconstruction-based method that relies on dilated convolutions to capture long and short-term dependencies without using 

computation- and memory-intensive multi-layer RNNs. Unlike the original Telemanom, it does not need a complicated 

thresholding scheme, because it also estimates nominal standard deviations for each sample in each channel, so thresholding can 

simply be applied by looking for real samples exceeding reconstructions by more than N standard deviations. In the original 

implementation, N is selected from integers between 2 and 7 to maximize the range-based F1-score for each channel in the 

training set. This approach does not scale well with the number of channels and assumes the similarity of anomalies between the 

training and test sets. Thus, in DC-VAE-ESA, only two values of N are considered, 3 (STD3) and 5 (STD5). 

The modified DC-VAE-ESA introduces only two small technical improvements to fully cover 7 of the 9 mentioned 

requirements, 1) an option to handle different numbers of input and output channels, 2) L2 regularization of convolutional layers 

with the 0.001 rate to stabilize the training of VAE in the presence of concept drifts. 

3.4.4. Experiments with transformers 

We have experimented with transformer-based anomaly detectors, namely TranAD [34] and Anomaly Transformer [37] 

algorithms, using the code from their original repositories. We have not included the results in the current benchmark for several 

reasons: 

1. We were not able to achieve any reasonable qualitative results using the default hyperparameters of these algorithms. They 

would require additional investigation and hyperparameters selection that go beyond the scope of the study and 

computational resources allocated to it.  

2. The algorithms are not a part of the TimeEval framework and it would require additional effort to integrate and make them 

reproducible within our pipeline.  

3. The original implementations do not handle irregular sampling rates of data. Their data loaders assume uniform sampling 

when creating windows for training, so it is not possible to take advantage of the positional enconding of transformers. 

4. The original implementation of Anomaly Transformer provides just a single global anomaly score, so it does not meet the 

requirement R5 from Table 2 in the main text (“provide a list of affected channels”).  

 

Nevertheless, transformers seem to be a promising direction for future work based on the ESA-ADB benchmark.   

 

3.4.5. Algorithms’ selection 

Based on the initial requirements analysis, 20 algorithms were preselected among those available (or added) in the TimeEval 

framework that at least partially meet all primary requirements. Table 13 summarizes the detailed requirements analysis for those 

algorithms. Some examples of partially fulfilled requirements are for algorithms that R1) do not provide dedicated thresholding 

mechanisms, R2) technically allow for the online detection but with a large computational overhead, R4) handle anomalies in 

training data but cannot learn from them, R5) would need additional mechanisms or modifications of external libraries (i.e., 

PyOD [38]) to provide a list of affected channels, R7) give only a theoretical option to learn rare nominal events, or R9) are only 

possible to run for the lightweight subsets of channels (i.e., Windowed iForest and KNN). None of the preselected algorithms are 

able to explicitlyearn rare nominal events (R7) or handle varying sampling rates (R8).  

Based on the detailed analysis of the requirements, eight algorithms of various types were selected for ESA-ADB, five 

unsupervised – principal components classifier (PCC) [39], histogram-based outlier score (HBOS) [40], isolation forest (iForest) 

[41], k-nearest neighbours (KNN) [42], and three semi-supervised ones – global standard deviations from nominal (GlobalSTD), 
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Telemanom [5], and DC-VAE [13]. The selected unsupervised algorithms have several important limitations in terms of TSAD. 

They may be give suboptimal results because of the assumptions of independence of samples and identical fractions of anomalies 

in training and test data (they fulfil R4 because they learn contamination levels from the training data). They only give global 

scores, so it is impossible to calculate subsystem-aware and channel-aware scores for them. They also do not support non-target 

channels and telecommands on input, so this information was not used. However, they establish a baseline for more advanced 

algorithms.  

Among the rejected ones, Matrix Profile-based methods like DAMP [43] or MADRID [44] seem to be promising candidates 

due to their outstanding speed, high interpretability, and a theoretical possibility to memorize rare nominal events. However, they 

would need a special adaptation to support multidimensional data [45], they do not give option to annotate known anomalies in 

training data, and their implementations in Matlab pose several technical and licensing problems when integrated with TimeEval. 

The COPOD algorithm does not fulfil R9 after adapting it to online detection required by R2. LOF [46], k-Means [47], Torsk 

[48], and RobustPCA [49] showed very poor results in initial experiments. All semi-supervised algorithms that only partially 

fulfil R9 were rejected. The published code contains implementations of all methods listed in Table 13.  

 

TABLE 13 

ANALYSIS OF PRESELECTED ALGORITHMS ACCORDING TO ESA-ADB REQUIREMENTS. 0/0.5/1 MEANS THAT THE REQUIREMENT IS 

NOT/PARTIALLY/FULLY FULFILLED. ASTERISKS MARK NEW METHODS ADDED TO THE TIMEEVAL. BOLD-FACED REQUIREMENTS ARE 

“MUST”. 

Algorithm R1 R2 R3 R4 R5 R6 R7 R8 R9 
Included in 

ESA-ADB 

U
N

S
U

P
E

R
V

IS
E

D
 

COPOD [50] 1 1 0.5 0.5 1 0 0 0 0.5 NO 

HBOS [40] 1 0 1 0.5 0.5 0 0 0 1 YES 

iForest [41] 1 1 1 0.5 0.5 0 0 0 1 YES 

Windowed iForest [41] 1 1 1 0.5 0.5 0 0 0 0.5 SUBSETS 

k-Means [47] 1 1 1 0.5 0.5 0 0 0 0.5 NO 

KNN [42] 1 1 1 0.5 0.5 0 0.5 0 0.5 SUBSETS 

LOF [46] 1 1 1 0.5 0.5 0 0 0 0.5 NO 

Matrix Profile [43], [44] 1 0.5 1 0 0.5 0 0.5 0 1 NO 

PCC [39] 1 1 0.5 0.5 0.5 0 0 0 1 YES 

Torsk [48] 0.5 1 1 0.5 1 0 0 0 0.5 NO 

S
E

M
I-

S
U

P
E

R
V

IS
E

D
 

DAE [51] 0.5 1 1 0 1 0 0 0 0.5 NO 

DC-VAE [13]* 0.5 1 1 0 1 0 0 0 0.5 NO 

DC-VAE-ESA* 1 1 1 0.5 1 1 0 0 1 YES 

GlobalSTD* 1 0 1 0.5 1 0 0 0 1 YES 

Hybrid KNN [52] 1 1 1 0 0.5 0 0.5 0 0.5 NO 

LSTM-AD [53] 0.5 1 1 0 0 0 0 0 0.5 NO 

OmniAnomaly [12] 0.5 1 1 0 0.5 0 0 0 0.5 NO 

RobustPCA [49] 0.5 1 0.5 0.5 0.5 0 0 0 1 NO 

Telemanom [5] 1 1 1 0 1 0 0 0 0.5 NO 

Telemanom-ESA* 1 1 1 0.5 1 1 0 0 1 YES 

 

3.4.6. Algorithms’ parametrization 

To support the full reproducibility of our results, Table 14 lists all the algorithms’ parameters and their values used in our 

experiments. The parameters’ names directly correspond to the published code based on the TimeEval framework [54]. They use 

default values or settings recommended by algorithms’ authors, sometimes adjusted to the specific features of our datasets 

(boldfaced in the table).  

The number of 50 bins in HBOS was arbitrarily selected based on the analysis of the histograms of channels because the 

default value of 10 seemed to be much too small for our dataset. The default window size in Windowed iForest was decreased 
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from 100 to 17 to avoid out-of-memory errors for our datasets. Many parameters of DC-VAE were adjusted to our dataset. The 

scaling is not used because it is already present in our preprocessing. Outliers are not rejected (wo_outliers is False) because our 

preprocessing code removes known anomalies. The window size is increased to 256 to be similar to the default Telemanom’s 

window size (250). Also, the value of 256 showed good results on similar data in the original DC-VAE paper [13]. The number 

of CNN units is decreased from the default 64 to 32 because a significant overfitting was noticed in the validation scores for 64 

units. The latent space dimensionality depends on the number of input channels in the same way as suggested for the TELCO 

dataset in the original DC-VAE code. The two main changes to Telemanom are 1) the increased number of units for full set 

training sets depending on the total number of input and output channels, and 2) the new min_error_value parameter to avoid 

magic numbers in the Telemanom code. The default value of the min_error_value is set to 0 (no magic numbers), but for 

Telemanom-ESA-Pruned it is arbitrarily selected to be 0.007 based on a manual analysis of reconstruction errors for the 

validation set, since the default value of 0.05 was much too high for some channels. 

Importantly, the number of batches per epoch was limited to 1000 to avoid extremely long epoch training times for our datasets 

and to provide frequent validation score updates. Thus, the number of (sub)epochs was increased tenfold to 1000, and the early 

stopping patience was doubled to 20 for both DC-VAE and Telemanom to compensate for this.  

 

TABLE 14 

PARAMETRIZATION OF ALGORITHMS USED IN ESA-ADB. BOLDFACED PARAMETERS AND VALUES ARE DIFFERENT FROM THE 

DEFAULT ONES 
Algorithm Parameter name  Value(s) 

PCC 

max_iter None 

n_components None 

n_selected_components None 

random_state 42 

svd_solver auto 

tol 0.0 

whiten False 

HBOS 

n_bins 50 

alpha 0.1 

bin_tol 0.5 

random_state 42 

iForest 

n_trees 100 

bootstrap False 

max_features 1.0 

max_samples None 

random_state 42 

Windowed iForest 

n_trees 200 

window_size 17 

bootstrap False 

max_features 1.0 

max_samples None 

random_state 42 

KNN 

distance_metric_order 2 

leaf_size 30 

method Largest 

n_neighbors 5 

GlobalSTD 
tol 3 (STD3) and 5 (STD5) 

random_state 42 

DC-VAE-ESA 

alpha 3 (STD3) and 5 (STD5) 

T (window size) 256 

cnn_units 32 (16 for Phase 1) 

dil_rate [1,2,4,8,16,32,64] 

kernel 2 

strs (stride length of CNN layers) 1 

batch_size 64 

J (latent space dimensionality) 1/3 × total number of input channels and telecommands 

epochs 1000 

lr (learning rate) 10-3 

seed 123 

early_stopping_delta 0.001 

early_stopping_patience 20 
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Telemanom-ESA 

batch_size 70 

dropout 0.3 

early_stopping_delta 0.0003 

early_stopping_patience 20 

epochs 1000 

error_buffer 100 

layers 2 

number of units per layer 
80 for lightweight subsets. 

Total number of input and output channels for full sets. 

lstm_batch_size 64 

min_error_value (newly introduced 

to avoid magic numbers) 

0  

(0.007 for Telemanom-ESA-Pruned) 

prediction_window_size 10 

random_state 42 

smoothing_perc 0.05 

smoothing_window_size 30 

window_size 250 
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4. BENCHMARKING RESULTS 

TABLE 15 

BENCHMARKING RESULTS FOR DETECTION OF ALL EVENTS (EXCLUDING COMMUNICATION GAPS) IN LIGHTWEIGHT SUBSETS OF CHANNELS AND ALL CHANNELS FOR 

MISSION1. BOLDFACED RESULTS INDICATE THE BEST VALUES AMONG ALL ALGORITHMS (EXCLUDING AFTER RATIO OF ADTQC WHICH IS JUST A HELPER VALUE). 

Mission1 – trained and tested on the lightweight subset of channels 41-46 

Metric PCC HBOS  iForest 
Window 

iForest  
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.288 0.002 0.063 0.148 0.999 

Recall 0.554 0.585 0.585 0.738 0.754 0.431 0.169 0.554 0.338 0.894 0.424 

F0.5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.253 0.003 0.075 0.178 0.786 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

0.431 0.169 0.550 0.338 0.894 0.424 

Recall 0.285 0.159 0.463 0.221 0.738 0.275 

F0.5 0.351 0.167 0.514 0.283 0.837 0.362 

Alarming precision 0.033 0.047 0.017 0.015 0.017 0.057 0.035 0.070 0.028 0.868 0.875 

ADTQC 
After ratio 0.833 0.763 0.711 0.375 0.612 0.929 0.909 0.972 0.955 0.136 0.143 

Score 0.840 0.781 0.784 0.563 0.803 0.770 0.688 0.901 0.803 0.428 0.197 

Affiliation-

based 

Precision 0.535 0.543 0.543 0.599 0.522 0.559 0.699 0.584 0.780 0.727 0.711 

Recall 0.334 0.352 0.357 0.424 0.322 0.375 0.422 0.377 0.593 0.662 0.423 

F0.5 0.477 0.490 0.492 0.553 0.464 0.509 0.618 0.526 0.734 0.713 0.626 

Mission1 – trained and tested on the full set of channels 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision < 0.001 < 0.001 < 0.001 

Out-of-

memory 

Out-of-

memory 

< 0.001 0.002 < 0.001 0.005 0.007 0.050 

Recall 0.870 0.957 0.967 0.848 0.761 0.924 0.804 0.946 0.870 

F0.5 < 0.001 < 0.001 < 0.001 < 0.001 0.003 < 0.001 0.007 0.008 0.061 

Subsystem-

aware 

Precision 
Not available for unsupervised 

algorithms 

0.520 0.728 0.526 0.640 0.676 0.395 

Recall 0.694 0.538 0.764 0.670 0.859 0.861 

F0.5 0.528 0.664 0.538 0.623 0.689 0.436 

Channel-

aware 

Precision 
Not available for unsupervised 

algorithms 

0.380 0.276 0.398 0.359 0.514 0.267 

Recall 0.292 0.208 0.414 0.266 0.569 0.725 

F0.5 0.325 0.241 0.350 0.282 0.477 0.291 

Alarming precision 0.003 0.002 0.001 0.004 0.049 0.002 0.017 0.074 0.206 

ADTQC 
After ratio 0.613 0.443 0.438 0.718 0.743 0.647 0.716 0.322 0.463 

Score 0.642 0.603 0.685 0.723 0.691 0.752 0.692 0.673 0.684 

Affiliation-

based 

Precision 0.563 0.539 0.538 0.560 0.575 0.559 0.578 0.545 0.649 

Recall 0.522 0.578 0.456 0.492 0.462 0.476 0.511 0.368 0.484 

F0.5 0.554 0.547 0.519 0.545 0.548 0.540 0.563 0.497 0.607 
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TABLE 16 

BENCHMARKING RESULTS FOR DETECTION OF ALL EVENTS (EXCLUDING COMMUNICATION GAPS) IN LIGHTWEIGHT SUBSETS OF CHANNELS AND ALL CHANNELS FOR 

MISSION1. BOLDFACED RESULTS INDICATE THE BEST VALUES AMONG ALL ALGORITHMS (EXCLUDING AFTER RATIO OF ADTQC WHICH IS JUST A HELPER VALUE). 

Mission2 – trained and tested on the lightweight subset of channels 18-28 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision 0.029 0.055 0.557 0.951 < 0.001 0.006 0.061 0.003 0.064 0.188 0.978 

Recall 1.000 0.911 0.974 0.940 1.000 1.000 1.000 1.000 1.000 0.986 0.540 

F0.5 0.036 0.068 0.609 0.949 0.001 0.007 0.075 0.003 0.079 0.224 0.842 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

0.951 0.992 0.904 0.995 0.831 0.465 

Recall 0.462 0.372 0.554 0.451 0.870 0.384 

F0.5 0.767 0.723 0.787 0.783 0.822 0.442 

Alarming precision 0.061 0.105 0.075 0.217 0.060 0.054 0.061 0.052 0.068 0.912 0.862 

ADTQC 
After ratio 0.983 0.994 1.000 0.948 0.391 0.946 0.989 0.908 0.991 0.087 0.351 

Score 0.999 0.990 0.991 0.985 0.724 0.997 0.997 0.996 0.997 0.507 0.757 

Affiliation-

based 

Precision 0.890 0.936 0.982 0.968 0.561 0.740 0.935 0.680 0.939 0.688 0.759 

Recall 0.580 0.867 0.952 0.925 0.243 0.296 0.717 0.293 0.788 0.544 0.530 

F0.5 0.804 0.921 0.976 0.959 0.445 0.569 0.881 0.538 0.904 0.654 0.699 

Mission2 – trained and tested on the full set of channels 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision 0.082 0.016 0.022 0.034 

Out-of-

memory 

0.014 0.203 0.002 0.008 0.052 0.058 

Recall 0.983 0.820 0.903 0.746 0.997 0.972 0.997 0.994 0.992 0.964 

F0.5 0.1 0.02 0.027 0.042 0.018 0.241 0.002 0.011 0.064 0.071 

Subsystem-

aware 

Precision 

Not available for unsupervised algorithms 

0.922 0.961 0.672 0.911 0.409 0.258 

Recall 0.953 0.923 0.967 0.952 0.984 0.896 

F0.5 0.919 0.946 0.699 0.907 0.451 0.298 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

0.913 0.956 0.774 0.931 0.584 0.326 

Recall 0.454 0.376 0.592 0.507 0.783 0.823 

F0.5 0.745 0.715 0.713 0.783 0.592 0.368 

Alarming precision 0.183 0.148 0.112 0.179 0.112 0.179 0.066 0.083 0.771 0.790 

ADTQC 
After ratio 0.980 0.906 0.939 0.852 0.953 0.994 0.663 0.930 0.104 0.274 

Score 0.984 0.939 0.967 0.928 0.983 0.992 0.825 0.985 0.513 0.648 

Affiliation-

based 

Precision 0.758 0.570 0.621 0.608 0.718 0.961 0.603 0.859 0.586 0.591 

Recall 0.636 0.455 0.499 0.474 0.385 0.833 0.324 0.625 0.348 0.347 

F0.5 0.730 0.543 0.592 0.575 0.612 0.932 0.515 0.799 0.516 0.518 
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4.1. Example detections 

 
Fig. 17. Detections of rare nominal event id_49 (marked in red) for Mission1. It is not detected when using only the lightweight 

subset of channels 41-46. For the full set, only Telemanom-ESA shows a reasonable detection, but it is surrounded by many false 

detections. 

 
Fig. 18. Detections of rare nominal event id_51 (marked in red) for Mission1. It is reasonably detected only by Telemanom-

ESA. Surprisingly, Telemanom-ESA trained on the lightweight subset was also able to detect this. 
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Fig. 19. Detections of anomaly id_138 (marked in red) for Mission1. It is clearly visible in channels 58-60, so it is detected well 

by models trained on full sets of channels. However, it is not so easy using only the lightweight subset, i.e., Telemanom-ESA-

Pruned-Light shows no response. 

 
Fig. 20. Detections of anomaly id_153 (marked in red) for Mission1. It is not detected when using only the lightweight subset of 

channels 41-46. For the full set, it is detected by all algorithms. Telemanom-ESA-Full detects it too early. 
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Fig. 21. Detections of rare nominal event id_155 (marked in red) for Mission1. Only Telemanom-ESA was able to correctly 

detect this event in both lightweight and full sets of channels. 

 
Fig. 22. Detection of rare nominal event id_159 (marked in red) for Mission1. Only Telemanom-ESA was able to correctly 

detect this event in both lightweight and full sets of channels, with a good timing. DC-VAE-ESA-STD3-Full also seems to 

detected it relatively well. 
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Fig. 23. Detection of anomaly id_631 (marked in red) for Mission2. This anomaly is not so easy to spot manually but was 

detected by most algorithms, surprisingly, not by Telemanom-ESA-Pruned-Light. 

4.2. Results for anomalies only 

The analysis of the results for anomalies alone (excluding rare nominal events and communication gaps) in Table 17 is 

important for understanding the performance of the algorithms in detecting the actual anomalies desired by SOEs. In this 

analysis, any true positives, false positives, or false negatives related to events different than anomalies are ignored (see 

implementation details in Appendix Section 3.2.2). For Mission2, there are only 9 anomalies in the full test set and only 4 

anomalies in the lightweight test set (see Table 21), so the results should be interpreted with caution. A more reliable analysis 

can be conducted for Mission1 with 55 and 29 anomalies, respectively (see Table 20). 
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TABLE 17 

BENCHMARKING RESULTS FOR DETECTION OF ANOMALIES ONLY IN LIGHTWEIGHT SUBSETS OF CHANNELS AND ALL CHANNELS FOR MISSION1 IN ESA-ADB. BOLDFACED 

RESULTS INDICATE THE BEST VALUES AMONG ALL ALGORITHMS (EXCLUDING AFTER RATIO OF ADTQC WHICH IS JUST A HELPER VALUE). 
Mission1 – trained and tested on the lightweight subset of channels 41-46 – only anomalies 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.205 0.001 0.021 0.074 0.999 

Recall 0.310 0.379 0.414 0.552 0.448 0.310 0.241 0.310 0.241 0.931 0.862 

F0.5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.211 0.001 0.026 0.090 0.968 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

0.310 0.241 0.302 0.241 0.931 0.529 

Recall 0.282 0.241 0.285 0.241 0.882 0.862 

F0.5 0.293 0.241 0.297 0.241 0.914 0.722 

Alarming precision 0.102 0.054 0.444 0.889 0.120 0.034 0.024 0.048 0.010 0.818 0.862 

ADTQC 
After ratio 0.889 0.636 0.500 0.063 0.385 0.889 1.000 1.000 1.000 0.037 0.040 

Score 0.826 0.676 0.730 0.308 0.670 0.826 0.919 0.911 0.921 0.220 0.159 

Affiliation-

based 

Precision 0.536 0.543 0.532 0.562 0.521 0.561 0.919 0.559 0.906 0.774 0.927 

Recall 0.276 0.352 0.294 0.366 0.271 0.335 0.854 0.279 0.850 0.673 0.859 

F0.5 0.451 0.490 0.458 0.508 0.440 0.494 0.906 0.466 0.894 0.752 0.912 

Mission1 – trained and tested on the full set of channels – only anomalies 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision < 0.001 < 0.001 < 0.001 

Out-of-

memory 

Out-of-

memory 

< 0.001 0.001 < 0.001 0.003 0.004 0.032 

Recall 0.891 0.964 0.945 0.873 0.818 0.891 0.818 0.945 0.909 

F0.5 < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001 0.004 0.005 0.039 

Subsystem-

aware 

Precision 
Not available for unsupervised 

algorithms 

0.491 0.782 0.424 0.648 0.712 0.355 

Recall 0.721 0.676 0.739 0.721 0.855 0.909 

F0.5 0.507 0.748 0.448 0.644 0.717 0.397 

Channel-

aware 

Precision 
Not available for unsupervised 

algorithms 

0.327 0.355 0.272 0.311 0.497 0.195 

Recall 0.332 0.298 0.398 0.324 0.561 0.705 

F0.5 0.309 0.315 0.272 0.291 0.472 0.217 

Alarming precision 0.005 0.008 0.005 0.009 0.088 0.003 0.020 0.132 0.278 

ADTQC 
After ratio 0.633 0.415 0.423 0.708 0.756 0.673 0.733 0.327 0.380 

Score 0.611 0.553 0.633 0.728 0.654 0.730 0.654 0.561 0.536 

Affiliation-

based 

Precision 0.527 0.512 0.501 0.521 0.531 0.512 0.531 0.512 0.611 

Recall 0.486 0.563 0.445 0.462 0.434 0.452 0.473 0.344 0.436 

F0.5 0.519 0.521 0.489 0.508 0.508 0.499 0.518 0.467 0.566 
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TABLE 18 

BENCHMARKING RESULTS FOR DETECTION OF ANOMALIES ONLY IN LIGHTWEIGHT SUBSETS OF CHANNELS AND ALL CHANNELS FOR MISSION2 IN ESA-ADB. BOLDFACED 

RESULTS INDICATE THE BEST VALUES AMONG ALL ALGORITHMS (EXCLUDING AFTER RATIO OF ADTQC WHICH IS JUST A HELPER VALUE). 
Mission2 – trained and tested on the lightweight subset of channels 18-28 – only anomalies 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision < 0.001 0.000 0.004 0.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.000 

Recall 1.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

F0.5 < 0.001 0.000 0.005 0.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.000 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

1.000 1.000 1.000 1.000 0.600 0.000 

Recall 0.667 0.667 1.000 0.667 1.000 0.000 

F0.5 0.909 0.909 1.000 0.909 0.652 0.000 

Alarming precision 0.032 0.000 0.143 0.000 0.029 0.026 0.036 0.027 0.037 1.000 0.000 

ADTQC 
After ratio 1.000 - 1.000 - 1.000 1.000 1.000 1.000 1.000 0.000 - 

Score 1.000 - 1.000 - 1.000 1.000 1.000 1.000 1.000 0.358 - 

Affiliation-

based 

Precision 0.845 0.500 1.000 0.500 0.705 0.826 0.894 0.816 0.950 0.781 0.500 

Recall 0.925 0.000 0.971 0.000 0.517 0.862 0.994 0.888 0.981 1.000 0.000 

F0.5 0.860 0.000 0.994 0.000 0.657 0.833 0.912 0.830 0.956 0.817 0.000 

Mission2 – trained and tested on the full set of channels – only anomalies 

Metric PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

Event-wise  

Precision 0.001 < 0.001 < 0.001 < 0.001 

Out-of-

memory 

< 0.001 0.001 < 0.001 < 0.001 0.001 0.001 

Recall 0.667 0.667 0.667 0.500 0.667 0.167 0.833 0.667 1.000 1.000 

F0.5 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 < 0.001 0.001 0.001 

Subsystem-

aware 

Precision 

Not available for unsupervised algorithms 

0.167 0.000 0.333 0.333 0.417 0.278 

Recall 0.167 0.000 0.500 0.333 0.833 1.000 

F0.5 0.167 0.000 0.352 0.333 0.452 0.324 

Channel-

aware 

Precision 

Not available for unsupervised algorithms 

0.083 0.000 0.095 0.111 0.296 0.082 

Recall 0.021 0.000 0.229 0.042 0.573 0.833 

F0.5 0.052 0.000 0.098 0.083 0.325 0.096 

Alarming precision 0.364 0.308 0.143 0.158 0.031 1.000 0.026 0.040 0.375 0.462 

ADTQC 
After ratio 0.750 0.500 0.500 0.333 1.000 1.000 0.600 0.750 0.500 0.500 

Score 0.542 0.489 0.493 0.437 0.992 0.612 0.698 0.709 0.660 0.766 

Affiliation-

based 

Precision 0.660 0.608 0.618 0.616 0.523 0.500 0.539 0.418 0.671 0.620 

Recall 0.380 0.333 0.358 0.355 0.318 0.000 0.522 0.398 0.709 0.604 

F0.5 0.575 0.522 0.539 0.537 0.466 0.000 0.536 0.414 0.678 0.617 
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4.3. Results for lightweight test sets using algorithms trained on full sets 

For algorithms that provide separate anomaly scores for each channel, it is possible to limit the analysis of the global scores to 

an arbitrary subset of the channels used in training. It is especially useful to directly compare the results between models trained 

on full sets of channels and models trained only on lightweight subsets. Such a comparison is presented in Table 19 for the DC-

VAE-ESA and Telemanom-ESA algorithms. GlobalSTD is omitted because its results do not depend on the number of training 

channels.

 

TABLE 19 

BENCHMARKING RESULTS FOR DETECTION OF ALL EVENTS IN LIGHTWEIGHT TEST SETS IN ESA-ADB BY ALGORITHMS TRAINED ON 

LIGHTWEIGHT AND FULL SETS OF CHANNELS. BOLDFACED RESULTS INDICATE THE BETTER VALUE FOR EACH PAIR OF TRAINING 

SETS FOR EACH ALGORITHM (EXCLUDING AFTER RATIO OF ADTQC WHICH IS JUST A HELPER VALUE) 

Mission1 – tested on the lightweight test set 

Algorithm → 
DC-VAE-ESA 

STD3 

DC-VAE-ESA 

STD5 
Teleman-ESA 

Teleman-ESA-

Pruned 

Trained on → Light Full Light Full Light Full Light Full 

Event-wise  

Precision 0.001 0.008 0.014 0.216 0.148 0.027 0.999 0.043 

Recall 0.576 0.167 0.318 0.076 0.894 0.439 0.424 0.848 

F0.5 0.001 0.009 0.017 0.158 0.178 0.033 0.786 0.054 

Channel-

aware 

Precision 0.568 0.167 0.318 0.076 0.894 0.439 0.424 0.833 

Recall 0.442 0.101 0.207 0.066 0.738 0.328 0.275 0.848 

F0.5 0.506 0.134 0.262 0.071 0.837 0.377 0.362 0.834 

Alarming precision 0.052 0.072 0.034 0.119 0.868 0.659 0.875 0.505 

ADTQC 
After ratio 0.921 0.909 0.952 0.800 0.136 0.586 0.143 0.286 

Score 0.805 0.607 0.799 0.728 0.428 0.625 0.197 0.431 

Affiliation-

based 

Precision 0.577 0.562 0.741 0.524 0.727 0.616 0.711 0.621 

Recall 0.373 0.238 0.555 0.071 0.662 0.400 0.423 0.512 

F0.5 0.520 0.441 0.694 0.231 0.713 0.556 0.626 0.596 

Mission2 – tested on the lightweight test set 

Algorithm → 
DC-VAE-ESA 

STD3 

DC-VAE-ESA 

STD5 
Teleman-ESA 

Teleman-ESA-

Pruned 

Trained on → Light Full Light Full Light Full Light Full 

Event-wise  

Precision 0.003 0.003 0.064 0.017 0.188 0.152 0.978 0.268 

Recall 1.000 1.000 1.000 1.000 0.986 0.989 0.540 0.911 

F0.5 0.003 0.004 0.079 0.021 0.224 0.183 0.842 0.312 

Channel-

aware 

Precision 0.904 0.912 0.995 0.985 0.831 0.875 0.465 0.690 

Recall 0.554 0.543 0.451 0.445 0.870 0.739 0.384 0.848 

F0.5 0.787 0.788 0.783 0.772 0.822 0.823 0.442 0.708 

Alarming precision 0.052 0.034 0.068 0.046 0.912 0.907 0.862 0.861 

ADTQC 
After ratio 0.908 0.848 0.991 0.966 0.087 0.105 0.351 0.350 

Score 0.996 0.934 0.997 0.989 0.507 0.508 0.757 0.676 

Affiliation-

based 

Precision 0.680 0.675 0.939 0.914 0.688 0.681 0.759 0.738 

Recall 0.293 0.345 0.788 0.782 0.544 0.503 0.530 0.623 

F0.5 0.538 0.566 0.904 0.884 0.654 0.636 0.699 0.712 
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4.4. Results for different mission phases 

It is a common practice to periodically retrain or adapt algorithms when new telemetry becomes available from satellites, 

especially in the presence of significant changes in operational conditions. The experiments in this section simulate such an 

approach in ESA-ADB to assess the robustness of algorithms to changing conditions and to identify the earliest mission phase in 

which reliable detectors can be trained. These aspects are crucial for the selection of algorithms in different mission phases. 

Some classic algorithms may perform much better than others in early mission phases when very limited data is available, but 

they may be overcome by deep learning techniques in late mission phases. The goal of this section is to provide a basic analysis 

of these aspects in ESA-ADB. For this purpose, the effect of training set size (representing different mission phases) on the 

corrected event-wise F0.5-score for the test set is analyzed for the lightweight subsets of each. The analysis for full sets is not 

conducted as the scores are very low even for the longest training set. There are 5 training set lengths (phases) proposed for 

Mission1 and 4 for Mission2 following the idea presented in Fig. 24. Starting from just a few percent of the mission timeline 

(initial phases) to 50% of the mission (the default setting in ESA-ADB). The statistics of the phases are listed in Table 20 

(Mission1) and Table 21 (Mission2). 

As visualized in Table 22, there is a clear correlation between the training set length and the event-wise F0.5 scores for test sets 

for both missions. Especially significant improvements are visible between phases 2 and 3 for Mission1 and phases 1 and 2 for 

Mission 2. A clear example is Windowed iForest for which the event-wise F0.5-score goes from 0.020 to 0.901 for Mission2 in 

the phase 2. Based on this observation, the minimal reasonable training length can be estimated to be 21 months for Mission1 

and 5 months for Mission2. Surprisingly, the longest training sets do not always ensure the best results. There are some 

exceptions for which training on the longest training set does not give optimal results, i.e., PCC, DC-VAE-ESA, and 

Telemanom-ESA. We can only hypothesize what is the reason behind that, but it may be related to the concept drift present in 

the data. 

 

 

 
Fig. 24. Illustration of the idea of mission phases for Mission1. “A” marks light red anomalous fragments and “V” marks blue 

validation fragments. 
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TABLE 20 

STATISTICS OF TRAINING, VALIDATION, AND TEST SETS FOR DIFFERENT PHASES OF MISSION1 CONSIDERING THE FULL SET (TOP PANEL) AND THE LIGHTWEIGHT SUBSET OF 

CHANNELS (BOTTOM PANEL) 

Mission1 – the 

lightweight subset 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
Test 

Train Val Train Val Train Val Train Val Train Val 

Data points 1,125,600 314,399 3,900,977 997,530 8,900,105 1,479,360 19,171,279 1,463,274 39,774,080 1,479,370 40,925,288 

  Telecommands’ executions 7,769 15,918 94,426 45,194 271,882 13,295 414,927 9,001 764,648 60,157 769,917 

  Duration (anonymised) 9 weeks 3 weeks 8 months 2 months 18 months 3 months 39 months 3 months 81 months 3 months 84 months 

  Annotated points [%] 1.41 17.29 2.76 1.49 3.24 0.02 1.84 0.11 1.74 1.23 1.81 

Annotated events 1 1 6 3 17 2 28 1 52 3 65 

  Anomalies 0 1 3 1 5 0 10 0 22 2 29 

  Rare nominal events 1 0 3 2 9 2 14 1 26 1 36 

  Communication gaps 0 0 0 0 3 0 4 0 4 0 0 

  Univariate / Multivariate 0 / 1 0 / 1 0 / 6 0 / 3 0 / 14 0 / 2 0 / 24 0 / 1 0 / 48 0 / 3 1 / 64 

  Global / Local 1 / 0 1 / 0 4 / 2 2 / 1 11 / 3 1 / 1 18 / 6 1 / 0 39 / 9 3 / 0 40 / 25 

  Point / Subsequence 0 / 1 0 / 1 0 / 6 0 / 3 0 / 14 0 / 2 0 / 24 0 / 1 1 / 47 2 / 1 9 / 56 

 Distinct event classes 1 1 5 2 10 2 15 1 17 2 13 

Mission1 - the full set 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Test 

Train Val Train Val Train Val Train Val Train Val 

Data points 8,954,221 2,176,171 29,416,435 7,890,008 68,888,013 10,761,293 144,775,815 10,273,971 305,515,601 10,741,556 428,599,738 

  Annotated points [%] 2.11 10.62 1.87 1.52 1.96 0.93 1.32 0.03 1.33 1.62 2.25 

Annotated events 5 4 20 8 54 4 73 1 104 5 91 

  Anomalies 4 1 13 2 27 2 40 0 59 4 55 

  Rare nominal events 1 3 7 6 24 2 29 1 41 1 36 

  Communication gaps 0 0 0 0 3 0 4 0 4 0 0 

  Univariate / Multivariate 3 / 2 3 / 1 11 / 9 5 / 3 31 / 20 0 / 4 31 / 38 0 / 1 31 / 69 0 / 5 1 / 90 

  Global / Local 3 / 2 4 / 0 11 / 9 5 / 3 36 / 15 1 / 3 44 / 25 1 / 0 67 / 33 3 / 2 43 / 48 

  Point / Subsequence 0 / 5 0 / 4 0 / 20 0 / 8 0 / 51 0 / 4 1 / 68 0 / 1 2 / 98 2 / 3 9 / 82 

 Distinct event classes 3 2 6 3 11 3 16 1 18 3 17 
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TABLE 21 

STATISTICS OF TRAINING, VALIDATION, AND TEST SETS FOR DIFFERENT PHASES OF MISSION2 CONSIDERING THE FULL SET (TOP PANEL) AND THE LIGHTWEIGHT SUBSET OF 

CHANNELS (BOTTOM PANEL). THERE ARE NO COMMUNICATION GAPS AND ALL EVENTS ARE OF SUBSEQUENCE TYPE, SO THESE STATISTICS ARE OMITTED. 

Mission2 – the 

lightweight subset 

Phase 1 Phase 2 Phase 3 Phase 4 
Test 

Train Val Train Val Train Val Train Val 

Data points 1,457,269 506,869 7,741,250 2,032,657 15,714,523 3,867,017 34,998,975 5,830,297 46,153,954 

  Telecommands’ executions 34,185 11,694 179,930 48,313 372,643 93,496 815,370 130,968 1,077,677 

  Duration (anonymised) 3 weeks 1 week 4 months 1 month 8 months 2 months 18 months 3 months 21 months 

  Annotated points [%] 0.83 0.49 2.62 2.02 1.94 3.10 3.74 1.02 2.02 

Annotated events 14 4 83 19 140 27 246 27 349 

  Anomalies 0 0 2 2 11 2 18 0 4 

  Rare nominal events 14 4 81 17 129 25 228 27 345 

  Univariate / Multivariate 0 / 14 0 / 4 0 / 83 0 / 19 0 / 140 0 / 27 1 / 245 0 / 27 1 / 348 

  Global / Local 12 / 2 3 / 1 67 / 16 17 / 2 119 / 21 24 / 3 214 / 32 26 / 1 333 / 16 

 Distinct event classes 3 3 12 6 15 9 21 5 22 

Mission2 – the full set 
Phase 1 Phase 2 Phase 3 Phase 4 

Test 

Train Val Train Val Train Val Train Val 

Data points 13,914,918 4,841,396 74,356,579 19,067,743 151,093,710 37,624,768 338,658,318 56,746,734 444,603,954 

  Annotated points [%] 0.20 0.12 0.64 0.51 0.50 0.59 0.66 0.21 0.54 

Annotated events 14 4 85 22 146 28 256 27 361 

  Anomalies 0 0 4 5 16 3 25 0 9 

  Rare nominal events 14 4 81 17 130 25 231 27 352 

  Univariate / Multivariate 0 / 14 0 / 4 1 / 84 2 / 20 3 / 143 1 / 27 5 / 251 0 / 27 4 / 357 

  Global / Local 12 / 2 3 / 1 67 / 18 17 / 5 120 / 26 24 / 4 217 / 39 26 / 1 340 / 21 

 Distinct event classes 3 3 14 8 18 10 24 5 26 
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TABLE 22 

THE EFFECT OF MISSION PHASE ON THE CORRECTED EVENT-WISE F0.5-SCORE FOR SELECTED ALGORITHMS TRAINED AND TESTED ON THE LIGHTWEIGHT SUBSETS OF CHANNELS 

FROM MISSIONS IN ESA-ADB. BOLDFACED RESULTS INDICATE THE BEST VALUES AMONG ALL PHASES. 

 Mission1 – trained and tested on lightweight subset of channels 41-46 

Phase PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

1 

< 0.001 
< 0.001 

0.041 
< 0.001 

0.007 0.059 0.227 

2 0.037 0.012 0.058 0.311 

3 0.104 0.007 0.085 0.122 0.776 

4 0.217 0.009 0.030 0.309 0.776 

5 0.001 0.253 0.003 0.075 0.178 0.786 

 Mission2 – trained and tested on lightweight subset of channels 18-28 

Phase PCC HBOS iForest 
Window 

iForest 
KNN 

Global 

STD3 

Global 

STD5 

DC-VAE-

ESA STD3 

DC-VAE-

ESA STD5 

Teleman-

ESA 

Teleman-

ESA-Pruned 

1 < 0.001 < 0.001 0.006 0.020 

< 0.001 

< 0.001 < 0.001 
< 0.001 

< 0.001 0.234 0.622 

2 0.062 0.007 0.456 0.901 0.001 0.011 0.001 0.259 0.757 

3 0.013 0.040 0.585 0.947 0.006 0.014 0.001 0.009 0.253 0.731 

4 0.036 0.068 0.609 0.949 0.001 0.007 0.075 0.003 0.079 0.224 0.842 
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4.5. Computational resources and limitations 

Experiments were run on three different machines:  

1. Nvidia Tesla T4 GPU (16 GB VRAM), Intel Xeon Gold 5222 CPU 3.80 GHz, and 64 GB RAM, (for CPU-intensive 

and memory-intensive algorithms) 

2. Nvidia 3060 RTX GPU (6 GB VRAM), Intel i7-10870H CPU 2.20 GHz, and 32 GB RAM 

3. Nvidia 3090 RTX GPU (24 GB VRAM), Intel i7-8700H CPU 3.20 GHz, and 32 GB RAM (for GPU-intensive 

algorithms) 

Given the limited resources, there are limits to the amount of time and memory that each algorithm can run. The algorithm is 

rejected with an out-of-memory error if Machine 1 goes out of RAM. Algorithms are rejected with an out-of-time error if it takes 

more than 5 days to train or test a CPU-intensive algorithm on Machine 1, or a GPU-intensive algorithm on Machine 3. 

4.6. Processing times 

Algorithms for satellite telemetry monitoring must not only be accurate but also fast enough to run in real-time on 

computational resources available to mission control and, in the extreme case, on board satellites. We measured the times of 

training (Table 23) and execution (Table 24) of algorithms on our hardware resources (listed in Appendix Section 4.5). These 

numbers are not directly comparable because the algorithms were run in parallel processes on different machines. They give a 

rough approximation of the computational burden of each algorithm based on a single run in ESA-ADB. The training and 

execution times do not include resampling which was done once as an intermediate step before all experiments. The resampling 

of the test sets took about 1.5 hours for Mission1 and around 1 hour for Mission2, both on Machine 2. 

The deep learning-based Telemanom has the longest training and execution times (excluding the execution time of KNN for 

channels 18-28 of Mission2), but it is still fast enough to provide real-time anomaly detection in both missions using the 

proposed resampling (0.033 Hz for Mission1, 0.056 Hz for Mission2). The total execution time (including resampling) for the 

full Mission1 test set is 3.5h which is just 0.02% of the test set duration, for Mission2 it is 4.5h and 0.08%, respectively. Thus, 

real-time execution should be possible even for sampling rates higher than 30 Hz. Moreover, in our previous works, we have 

shown that Telemanom can be run in real-time on-board the OPS-SAT satellite with a limited number of channels [55]. The 

important advantage of simple algorithms is that they are very fast and their training and execution times do not grow 

significantly with the number of channels, so it may be feasible to retrain them frequently during a mission. 

TABLE 23 

TRAINING TIMES (IN SECONDS) OF ALGORITHMS USED IN ESA-ADB 

Algorithm 
Mission1 train set Mission2 train set 

channels 41-46 Full channels 18-28 Full 

PCC 90 143 63 75 

HBOS 110 111 66 68 

iForest 655 714 345 308 

Windowed iForest 2833 (0.8h) Out-of-memory 1998 (0.6h) 14585 (4h) 

KNN 3844 (1h) Out-of-memory 4754 (1.5h) Out-of-memory 

GlobalSTD 101 108 60 90 

DC-VAE-ESA 13466 (3.7h) 18210 (5h) 12440 (3.5h) 4679 (1.3h) 

Telemanom-ESA 13115 (3.6h) 30451 (8.5h) 19725 (5.5h) 12328 (3.5h) 

 

TABLE 24 

EXECUTION TIMES (IN SECONDS) OF ALGORITHMS USED IN ESA-ADB 

Algorithm 
Mission1 test set Mission2 test set 

channels 41-46 Full channels 18-28 Full 

PCC 124 141 73 76 

HBOS 135 137 74 76 

iForest 393 369 199 174 

Windowed iForest 586 Out-of-memory 381 939 

KNN 1233 Out-of-memory 21673 (6h) Out-of-memory 

GlobalSTD 178 182 95 289 

DC-VAE-ESA 5251 (1.5h) 6010 (1.7h) 3068 (0.9h) 7900 (2.2h) 

Telemanom-ESA 6931 (1.9h) 7271 (2h) 4666 (1.3h) 11078 (3.1h) 
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