
A Concentration Results

Lemma 7 (DKW Inequality [11]). Given i.i.d. samples X1, . . . , XT from a distribution F (cdf), let
F̂T (x) =

1
T

PT
t=1 [Xt  x]. Then,

P
✓
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���F̂T (x)� F (x)
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A.1 Proof of Lemma 1

Lemma 1 (Martingale Version of DKW Inequality). Given a sequence of random variables
Y1, . . . , YT , let Ft = �(Y1, . . . , Yt), t = 1, . . . , T be the filtration representing the information
in the first t variables. Let Ft(y) := Pr(Yt  y|Ft�1), and F̄T (y) :=

1
T

PT
t=1 [Yt  y]. Then,

P
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�����F̄T (y)�
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Proof. This follows from sequential uniform convergence, see Lemma 10,11 in [19], and the fact
that indicator functions have fat-shattering dimension 1.

A more convenient way to use Lemma 1 is the following corollary:
Corollary 1. Given a sequence of random variables Y1, . . . , YT , let Ft = �(Y1, . . . , Yt), t =
1, . . . , T be the filtration representing the information in the first t variables. Suppose

Ft(y) = Pr(Yt  y|Ft�1), and let F̄T (y) := 1
T

PT
t=1 [Yt  y]. If ↵ � 16

q
log( 128et

� )
T , then

with probability 1� �
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x

�����F̄T (x)�
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T
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t=1

Ft(x)
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Proof.
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B Proof of Theorem 2

B.1 Proof of Lemma 2

We first state two helper claims. The first one states that for any fixed greedy allocation policy �, if
the two distributions of valuations are similar, then the final allocation sizes for each receiver will
also be close.
Claim 1. Fix a greedy allocation policy �. Let G = G1

⌦ . . . ⌦ Gn, and F = F 1
⌦ . . . ⌦ Fn

be two distributions over [0, x̄]n where the marginals in each coordinate are independent. Suppose
supx |F

i(x)�Gi(x)|  � 8i. Then
X

j

(pj(F ,�)� pj(G,�))+ =
X

j

(pj(G,�)� pj(F ,�))+  n�.
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Next we show that if the allocation sizes are similar for two different greedy allocation policies, then
the corresponding allocation decisions (domain partitions) are also similar.
Claim 2. Let �0,� be any two fixed greedy allocation policies, and F a distribution over [0, x̄]n. For
all j, let ⌦0

j = Lj(�0), and ⌦j = Lj(�). Suppose
P

j(pj(F ,�0)� pj(F ,�))+ =
P

j(pj(F ,�)�

pj(F ,�0))+  �. Then
P(⌦0

j \ ⌦j)  � 8j

Using these two Claims, we can now prove Lemma 2. The proofs for these two helper Claims follow
after the proof of Lemma 2.

Proof of Lemma 2. Claim 1 shows that
X

j

(pj(F ,�)� pj(G,�))+ =
X

j

(pj(G,�)� pj(F ,�))+  n�

Note that by definition of �⇤ (due to the constraint Pr(⌦j) = p⇤j in problem (1)), we have pj(G,�) =
p⇤j = pj(F ,�⇤) for all j. This means that

X

j

(pj(F ,�)� pj(F ,�⇤))+ =
X

j

(pj(F ,�⇤)� pj(F ,�))+  n�

Now we can apply Claim 2 and conclude that

P(⌦⇤
j \ ⌦j)  n� 8j, and P(⌦j \ ⌦

⇤
j )  n� 8j, (8)

where ⌦j = Lj(�) and ⌦⇤
j = Lj(�⇤). Therefore,

EX⇠F [ui(X,X,�)]� EX⇠F [ui[X,X,�⇤]]

=

Z

X2⌦i

Xi dF (X)�

Z

X2⌦⇤
i

Xi dF (X)



Z

X2⌦i\⌦⇤
i

Xi dF (X)

n�x̄

Using the same steps as above we can also show that

EX⇠F [ui(X,X,�⇤)]� EX⇠F [ui[X,X,�]]  n�x̄.

B.1.1 Proof of Claim 1

We first show variant of Claim 1 where the two distributions only differ in one coordinate:
Claim 3. Fix a greedy allocation policy �. Let G = G1

⌦G2 . . .⌦Gn, and F = F 1
⌦F 2 . . .⌦Fn

be two distributions over [0, x̄]n where the marginals in each coordinate are independent. Assume that
G and F differ only in one coordinate, w.l.o.g. say coordinate i. Then, if supx |F i(x)�Gi(x)|  �,

X

j

(pj(F ,�)� pj(G,�))+ =
X

j

(pj(G,�)� pj(F ,�))+  �.

Proof. We start with the distribution G = F 1
· · ·F i�1

⌦Gi
⌦ F i+1

· · ·Fn and replace Gi with a
distribution F i to construct F = F 1

⌦ F 2
· · ·⌦ Fn. We will construct F i in such a way that it is at

most � away from Gi and the changes in the allocation proportions are maximized. Note that sinceP
i pi(F ,�) = 1 and

P
i pi(G,�) = 1, we know that

LHS(F ) :=
X

j

(pj(F ,�)� pj(G,�))+ =
X

j

(pj(G,�)� pj(F ,�))+ := RHS(F )

is always true for any F ,G,�. This means that we can focus on either maximizing either the LHS
or the RHS of the above equation. There are two types of F i that we can use. One is such that
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pi(F ,�) � pi(G,�) � 0 and the other is pi(F ,�) � pi(G,�) < 0. We can therefore bound the
above quantity under these two scenarios separately:

max
F i:pi(F ,�)�pi(G,�)�0

RHS(F ) () max
F i:pi(F ,�)�pi(G,�)�0

X

j 6=i

(pj(G,�)� pj(F ,�))+ (9)

max
F i:pi(F ,�)�pi(G,�)<0

LHS(F ) () max
F i:pi(F ,�)�pi(G,�)<0

X

j 6=i

(pj(F ,�)� pj(G,�))+ (10)

Therefore for the rest of the proof we can focus on bounding the right hand side of (9) and (10).

Bounding the RHS of (9) Let F̃ (x) := (Gi(x) � �)+ 8x < x̄, F̃ (x̄) := 1. We claim that the
F i that maximizes

P
j 6=i(pj(G,�) � pj(F ,�))+, while being at most � away, is F̃ . To see this,

consider a different distribution F 0 on the support [0, x̄] such that supx |F 0(x)�Gi(x)|  �. We
know that F 0(x) � F̃ (x).

Later in Claim 4, we show that for any two distributions G and F , we can sample X ⇠ F using Y
sampled from G by performing the following transformation:

F�1(Gu(Y ))

where Gu is the random variable defined for distribution G in (19) and F�1 := inf{x 2 R : F (x) �
p} denotes the generalized inverse, sometimes also referred to as the quantile function. This is
essentially the inverse CDF method applied to a general distribution (instead of a uniformly sampled
variable). In particular, let Giu be the following random function:

Giu(y) =

⇢
Gi(y) if Gi(y) = Gi(y�)
Uniform[Gi(y�), Gi(y)] if Gi(y) > Gi(y�)

Now, denote by F̃ ,F 0, the joint distribution that we get from G on replacing Gi with F̃ and F 0,
respectively. Then, the winning probabilities for the agents in these two cases are:

pi(F̃ ,�) =

Z x̄

0

Y

j 6=i

F j(x̃+ �i � �j)dF̃ (x̃)

=

Z x̄

0
EGiu(x)

2

4
Y

j 6=i

F j(F̃�1(Giu(x)) + �i � �j)

3

5 dGi(x), (11)

pj(F̃ ,�) =

Z

x
F̃ (x+ �j � �i)

Y

k 62{i,j}

F k(x+ �j � �k)dF
j(x), 8j 6= i (12)

pi(F
0,�) =

Z

x
EGiu(x)

2

4
Y

j 6=i

F j(F 0�1(Giu(x)) + �i � �j)

3

5 dGi(x), (13)

pj(F
0,�) =

Z

x
F 0(x+ �j � �i)

Y

k 62{i,j}

F k(x+ �j � �k)dF
j(x), 8j 6= i (14)

Since F̃ (x)  F 0(x)8x 2 [0, x̄] by construction, F̃�1(p) � F 0�1(p)8p 2 [0, 1]. It’s easy to see that
(11) � (13), and (12)  (14). Using this we have

X

j 6=i

(pj(G,�)� pj(F̃ ,�))+ �

X

j 6=i

(pj(G,�)� pj(F
0,�))+.

and substituting F 0 by Gi and again using (11) � (13), and (12)  (14), we get

pj(G,�)� pj(F̃ ,�) � 0 8j 6= i,

pi(G,�)� pi(F̃ ,�)  0
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This shows that F̃ is the maximizer of the RHS of (9) among all distributions that are at most � away
from Gi. Using this we have

max
F i:pi(F ,�)�pi(G,�)�0

X

j 6=i

(pj(G,�)� pj(F ,�))+

=
X

j 6=i

(pj(G,�)� pj(F̃ ,�))+

=pi(F̃ ,�)� pi(G,�)

=

Z x̄

0

Y

j 6=i

F j (x+ �i � �j) dF̃ (x)�

Z x̄

0

Y

j 6=i

F j(x+ �i � �j)dG
i(x)

=

Z x̄

x�

Y

j 6=i

F j (x+ �i � �j) dG
i(x) +

Y

j 6=i

F j (x̄+ �i � �j)��

Z x̄

0

Y

j 6=i

F j(x+ �i � �j)dG
i(x)

�

Bounding the RHS of (10) Let F̂ (x) := min(Gi(x) +�, 1). Then we can use the same steps as
above for LHS to show that F̂ (x) maximizes

P
j 6=i(pj(F̂ ,�)� pj(G,�))+, and that

pj(G,�)� pj(F̂ ,�)  0 8j 6= i

pi(G,�)� pi(F̂ ,�) � 0

This shows that F̂ is the maximizer of the RHS of (10).From there, we have

max
F i:pi(F ,�)�pi(G,�)<0

X

j 6=i

(pj(F ,�)� pj(G,�))+

=
X

j

(pj(F̂ ,�)� pj(G,�))+

=pi(G,�)� pi(F̂ ,�)

=

Z x̄

0

Y

j 6=i

F j(x+ �i � �j)dG
i(x)�

Z x̄

0

Y

j 6=i

F j (x+ �i � �j) dF̂ (x)

=

Z x̄

0

Y

j 6=i

F j(x+ �i � �j)dG
i(x)��

Y

j 6=i

F j (�i � �j)�

Z x�

0

Y

j 6=i

F j (x+ �i � �j) dF (x)

=

Z x̄

0

Y

j 6=i

F j(x+ �i � �j)dG
i(x)�

Z x�

0

Y

j 6=i

F j (x+ �i � �j) dF (x)

�

where x� = F�1(1��).

Using Claim 3 we can now easily prove the original Claim 1.

Proof of Claim 1. First we construct the following sequence of distributions where for any two
adjacent distributions they only differ on one coordinate.

G0 = G = G1
⌦ . . .⌦Gn,

G1 = F 1
⌦G2

⌦ . . .⌦Gn,

G2 = F 1
⌦ F 2

⌦G3
⌦ . . .⌦Gn,

. . .

Gn = F .

16



Then we can decompose the difference between p(F ,�) and p⇤ into a sum of differences:

||p(F ,�)� p(G,�)||1 = ||p(Gn,�)� p(G0,�)||1



nX

i=1

||p(Gi,�)� p(Gi�1,�)||1

 2n�

where the last step follows from Claim 3. Since
P

j(pj(F ,�) � pj(G,�))+ =
P

j(pj(G,�) �

pj(F ,�))+ = 1
2 ||p(F ,�)� p(G,�)||1, we have
X

j

(pj(F ,�)� pj(G,�))+ =
X

j

(pj(G,�)� pj(F ,�))+  n�

B.1.2 Proof of Claim 2

Proof. WLOG, assume that �1��0
1 � �2��0

2 . . . � �n��0
n. Let Qjk = ⌦j\⌦0

k be the “error flow”
of items from j to k. It is easy to see that for k < j, Xj +�j > Xk+�k =) Xj +�0

j > Xk+�0
k.

Therefore Qjk = ; for k < j. Then it follows that

⌦0
j \ ⌦j ✓

[

i:i<j

Qij ✓

[

i:i<j

[

k:k�j

Qik.

The right hand side above is the net outflow from the set {i : i < j}. However, we know that each
individual agents’ net in flow is pj(F ,�0)� pj(F ,�), so we can bound the RHS by

P

0

@
[

i:i<j

[

k:k�j

Qik

1

A 

X

i:i<j

pj(F ,�0)� pj(F ,�)  �

B.2 Proof of Theorem 2

Proof. Fix an epoch k, let � =
q

1
2n(Lk�1) log(

2
� ), �̂ = �⇤(F̂Lk�1).

(Lemma 7) sup
x

|F̂Lk�1(x)� F (x)|  � w.p. 1� �/2

(Lemma 2) =) E[ui(X,X,�⇤)]� E[ui(X,X, �̂)]  n�x̄ 8i w.p. 1� �/2
(15)

(Chernoff bound) =) E[ui(X,X,�⇤)](Lk+1 � Lk)�

Lk+1�1X

t=Lk

ui(Xt,Xt, �̂)]

n�x̄(Lk+1 � Lk) + x̄

r
(Lk+1 � Lk)

2
log(

2

�
) w.p. 1� �

=

r
2kn log(

2

�
)x̄+

r
2k�1 log(

2

�
)x̄ w.p. 1� �

(16)

The above bounds the regret in one epoch if the algorithm does not terminate before the epoch ends.
It remains to show that the algorithm with high probability does not terminate too early. This involves
showing that with high probability, no agent hits their capacity constraint p⇤jT significantly earlier
than T , and that the detection algorithm does not falsely trigger.

Continuing from (16), for any time step T 0
 T , we have
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TE [ui(X,X,�⇤)]�
T 0X

t=1

ui(Xt,Xt,�kt)



log2 T 0
X

k=0

2

4(Lk+1 � Lk)E[ui(X,X,�⇤)]�

Lk+1�1X

t=Lk

ui(Xt,Xt,�k)]

3

5

+ (T � T 0)E [ui(X,X,�⇤)]

=

log2 TX

k=1

r
n2k log(

2

�
)x̄+

r
2k

2
log(

2

�
)x̄+ (T � T 0)x̄ w.p 1� � log2 T

2

r
n log(

2

�
)x̄

log2 TX

k=1

p

2k + (T � T 0)x̄ w.p 1� � log2 T


2
p
2

p
2� 1

r
nT log(

2

�
)x̄+ (T � T 0)x̄ w.p 1� � log2 T (17)

where the second inequality follows from(16) and union bound. Now, since there are at most
log2(T ) epochs for any T 0

 T , above holds for all epochs and therefore for all T 0 with probability

1� � log2(T ). Now we show that with high probability, for all T 0
 T �

2
p
2p

2�1

q
nT log( 2� ) and for

any fixed agent i, the constraint of total allocation to agent i to be less than p⇤i T will be satisfied.
Note that a byproduct of applying Lemma 2 in (15) is that |pi(F ,�k) � p⇤i |  n�Lk�1 (See (8)).
Fix a time step ⌧ ,

⌧X

t=1

[argmax
j

Xj + �ktj = i]

(Chernoff) 

log2 ⌧X

k=1

(Lk+1 � Lk)pi(F ,�k) +

r
(Lk+1 � Lk)

2
log(

2

�
) w.p. 1� � log2 ⌧



log2 ⌧X

k=1

(Lk+1 � Lk)(p
⇤
i + n�Lk�1) +

r
(Lk+1 � Lk)

2
log(

2

�
) w.p. 1� � log2 ⌧

(Lk = 2k) p⇤i ⌧ +

log2 ⌧X

k=1

 r
n2k log(

2

�
) +

r
2k�1 log(

2

�
)

!
w.p. 1� � log2 ⌧

p⇤i ⌧ +
2
p
2

p
2� 1

r
n⌧ log(

2

�
) w.p. 1� � log2 ⌧

This means that for all ⌧  T �
2
p
2p

2�1

q
nT log( 2� ), with probability 1� � log2 T ,

⌧X

t=1

[argmax
j

Xj + �ktj = i]  p⇤i T,

Combining above with (17), we have that with probability 1 � 2� log2 T , for any fixed i, if the
algorithm terminates at T 0 due to allocation limit reached for agent i, then T 0

�
2
p
2p

2�1

q
nT log( 2� ),

so that

TE [ui(X,X,�⇤)]�
T 0X

t=1

ui(X,X,�kt) 
2
p
2

p
2� 1

r
nT log(

2

�
)x̄+

2
p
2

p
2� 1

r
nT log(

2

�
)x̄
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Finally, we also have to bound the probability that the detection algorithm falsely triggers. For a
given time t and for each i, let

F i
t (x) =

1

t

tX

t=1

[Xi,t  x]

F̃t(x) =
1

t(n� 1)

tX

t=1

X

j 6=i

[Xj,t  x]

be the empirical CDF for agent i and the rest of the agents. Since all agents are truthful, using
Lemma 7 we have that with probability 1� �,

sup
x

|F i
t (x)� F (x)| 

r
1

2t
log(

2

�
)

sup
x

|F̃t(x)� F (x)| 

s
1

2t(n� 1)
log(

2

�
)

This means that supx |F i
t (x) � F̃t(x)| 

q
1
t log(

2
� )  32

q
1
t log(

256et
� ) = �t/2, which means

that Algorithm 2 is not triggered by agent i. Using union bound, we know that with probability
1� �nT , the algorithm will not end early because of a false trigger (by any agent).

The result follows by replacing � with �
n(2 log2 T+T ) and take the union bound over all agents.

C Proof of Theorem 1

C.1 Proof of Lemma 3

Proof. Let ↵ = �
4 . We first check that the given condition on � satisfies

�
128et
↵

�
e�t↵2/128


�
2 and

that 2e�2t(n�1)↵2


�
2

✓
128et

↵

◆
e�t↵2/128


�

2

() ↵2
�

128 log( 256et� )

t
+

64

t
log(

1

↵2
)

(= ↵2
�

256 log( 256et� )

t

() � � 64

s
log( 256et� )

t

2e�2t(n�1)↵2


�

2

() ↵ �

s
1

2t(n� 1)
log(

4

�
)

(= � � 64

s
log( 256et� )

t

Let F̄t(x) =
1
t

Pt
s=1 [X̃i,s  x] be the empirical CDF of the samples collected from agent i. Let

F̃t(x) =
1

(n�1)t

Pt
s=1

P
j 6=i [X̃j,s  x] be the empirical CDF of all reported values from the other
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agents. Let F̄ (x) = 1
t

Pt
s=1 Fs(x), where Fs(x) = P(X̃i,s  x|Hs). Lemma 1 tells us that with

probability 1� �/2,

sup
x

|F̄t(x)� F̄ (x)| 
�

4
(18)

Since other agents are truthful, their reported values are independent, and we can use the regular
DKW inequality to bound the empirical distribution constructed from their values. Using Lemma 7
we can show that with probability 1� �/2,

sup
x

|F̃t(x)� F (x)| 
�

4
.

Using union bound, we can conclude that if supx |F̄ (x)� F (x)| � �, then with probability 1� �:

sup
x

|F̃t(x)� F̄t(x)| >
�

2

which means that Algorithm 2 would have returned Reject.

C.2 Proof of Lemma 4

First we state a technical result on monotone mapping between two distributions. Given a cumulative
distribution function F , we define the following random function:

Fu(y) =

⇢
F (y) if F (y) = F (y�)
Uniform[F (y�), F (y)] if F (y) > F (y�)

(19)

If F is a continuous distribution then Fu is deterministic and is the same as F . However if F contains
point masses, then at points where F jumps, Fu is uniformly sampled from the interval of that jump.
It is easy to see that Fu has the nice property that if Y ⇠ F , then Fu(Y ) ⇠ Uniform[0, 1].
Claim 4. Let G be any distribution (cdf) over X ✓ R, and F over Y ✓ R. Then there exists a unique
joint distribution r over X ⇥Y with marginals G,F such that the conditional distribution r(·|Y ) has
the following monotonicity property: define x̄r(·), xr(·) so that X 2 [xr(Y ), x̄r(Y )] almost surely,
i.e.,

x̄r(y) = inf{x : P(X > x|Y = y) = 0}

xr(y) = sup{x : P(X < x|Y = y) = 0},

then

x̄r(y1)  xr(y2) 8y1 < y2.

In particular, the random variable X|Y ⇠ r(·|Y ) can be sampled as G�1(Fu(Y )), where Fu is
the random function defined in (19) and G�1 := inf{x 2 R : G(x) � p} denotes the generalized
inverse, sometimes also referred to as the quantile function.

The proof of this Claim is in Appendix D.1. Using the above result, we derive the following key result
that will provide insight into a strategic agent’s best response to a greedy allocation strategy. Note
that given a particular marginal distribution G for the agent i’s reported values and the true value
distribution F , there are many potential joint distributions between the true and reported valuations.
In the following lemma, we show that the "best" joint distribution among these, in terms of agent i’s
utility maximization, is the one characterized in Claim 4.
Claim 5. Fix a greedy allocation policy �. Let X 2 [0, x̄]n be drawn from F ⌦ . . . ⌦ F . Fix
another distribution G over [0, x̄]. Given X , define X̃⇤ as follows: let X̃⇤

i = G�1(Fu(Xi)), and
X̃⇤

j = Xj 8j 6= i. Let R be the set of all joint distributions over [0, x̄]2 such that the marginals are
F and G; and for any r 2 R, given X define X̃r as follows: X̃r

i ⇠ r(·|Xi), and X̃r
j = Xj 8j 6= i.

Then
E[ui(X̃

⇤,X,�)] � max
r2R

E[ui(X̃
r,X,�)].
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Proof. First we show that for any joint distribution that is not monotone (i.e., does not have the
monotonicity property defined in Claim 4), there is a monotone one that obtains at least as much utility.
Suppose r is one such joint distribution that is not monotone, i.e., 9x1 < x2, s.t. x̄r(x1) > xr(x2)
(as defined in Claim 4). First recall that since Xj ⇠ F, 8j are independent, the expected utility can
be written as the following:

E[ui(X̃
r,X,�)] =

Z x̄

0

Z x̄r(x)

xr(x)
x
Y

j 6=i

F (x̃+ �i � �j)dr(x̃|x)dF (x)

Now consider a pair of values x̃1 > x̃2 such that (x̃1, x1) and (x̃2, x2) has a non-zero probability
density under distribution r . This pair exists because x̄r(x1) > xr(x2). Then using the fact that for
a, b, c, d > 0, a < b, c < d : ac+ bd > ad+ bc, we can see that:

x1

Y
F (x̃1+�i��j)+x2

Y
F (x̃2+�i��j) < x1

Y
F (x̃2+�i��j)+x2

Y
F (x̃1+�i��j)

This means that if we exchanged the probability mass between the two conditionals of x1, x2, the
utility would be at least as much as before, if not higher. This means that at least one monotone joint
distribution belongs in the set of utility maximizing joint distributions. Since Claim 4 showed that the
distribution of (G�1(Fu(X)), X) is the unique joint distribution that is monotone, we conclude that
X̃⇤ as defined in the lemma statement is indeed utility maximizing.

Proof of Lemma 4

Proof. Let G(x) := (F (x) � �)+8x < x̄, G(x̄) := 1 be the distribution whose CDF is shifted
down from F by �. Let r̃ be the utility maximizing joint distribution from Claim 5. Let r̂, F̂ be a
different pair of joint and marginal distribution such that supx |F (x)� F̂ (x)|  �. We know that
F̂ (x) � G(x) for all x. Agent i’s utilities for using r̂ and r̃ respectively, are:

Er̂[ui(X̂,X,�)] =

Z x̄

0
x

Z x̄r̂(x)

xr̂(x)

Y

j 6=i

F (x̂+ �i � �j)dr̂(x̂|x)dF (x)

=

Z x̄

0
xEFu(x)

2

4
Y

j 6=i

F
⇣
F̂�1(Fu(x)) + �i � �j

⌘
3

5 dF (x) (20)

and

Er̃[ui(X̃,X,�)] =

Z
xEFu(x)

2

4
Y

j 6=i

F
�
G�1(Fu(x)) + �i � �j

�
3

5 dF (x) (21)

respectively. Since F̂ (x) � G(x), we know F̂�1(p)  G�1(p). Clearly (20)  (21). We conclude
that given a greedy allocation policy �, true valuation Xi,t and truthful agents j 6= i (with X̃j,t =
Xj,t), reporting X̃i,t ⇠ r̃(·|Xi,t) is a strategy for agent i that maximizes E[ui(X̃t,Xt,�)] subject to
the marginal distribution constraint supx |F (x)� Fr(x)|  �. That is,

Er[ui(X̃t,Xt,�)]  Er̃[ui(X̃t,Xt,�)] 8r s.t. sup
x

|Fr(x)� F (x)|  �

It remains to bound the difference Er̃[ui(X̃,X,�)] � E[ui(X,X,�)]. First note that G�1(p) =
F�1(p+�). Then we have that

Er[ui(X̃,X,�)]� E[ui(X,X,�)] (22)

=

Z x̄

0
x

0

@EFu(x)

2

4
Y

j 6=i

F
�
F�1(Fu(x) +�) + �i � �j

�
3

5�

Y

j 6=i

F (x+ �i � �j)

1

A dF (x)

x̄

Z x̄

0

0

@EFu(x)

2

4
Y

j 6=i

F
�
F�1(Fu(x) +�) + �i � �j

�
3

5�

Y

j 6=i

F (x+ �i � �j)

1

A dF (x) (23)
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where the inequality follows from the fact that F�1(Fu(x) +�) � x w.p.1 for all x. To bound the
remaining expression in the integral, we can use the fact that since the marginal distribution of x̃
under the joint distribution r̃(x̃, x) is G, we have

Z x̄

0

Z x̄

0

Y

j 6=i

F (x̃+ �i � �j) dr̃(x̃|x)dF (x)

=

Z x̄

0

Y

j 6=i

F (x+ �i � �j) dG(x)

=

Z x̄

x�

Y

j 6=i

F (x+ �i � �j) dF (x) +
Y

j 6=i

F (x̄+ �i � �j)�



Z x̄

x�

Y

j 6=i

F (x+ �i � �j) dF (x) +� (24)

where x� := F�1(�). Similarly,
Z x̄

0

Y

j 6=i

F (x+ �i � �j) dF (x)

=

Z x�

0

Y

j 6=i

F (x+ �i � �j) dF (x) +

Z x̄

x�

Y

j 6=i

F (x+ �i � �j) dF (x)

�

Z x̄

x�

Y

j 6=i

F (x+ �i � �j) dF (x) (25)

Plugging (24) and (25) back to (23), we can now bound the expression in (22), and thereby the profit
from strategizing, by x̄�.

C.3 Proof of Lemma 5

Proof. Let F̄ be the average distribution that agent i reported from up to round T 0: F̄ = 1
T 0

PT 0

t=1 Ft,
where Ft is the reported value distribution of agent i in time t: Ft(x) := P(X̃i,t  x|Ht). Since the
the detection algorithm has not been triggered, we can conclude using Lemma 3 that with probability
1� �,

sup
x

|F̄ (x)� F (x)| < � := 64

s
log( 256eT

0

� )

T 0 ,

and sup
x

|F̄T 0(x)� F̄ (x)| <
�

4
= 16

s
log( 256eT

0

� )

T 0 .

The second inequality holds because the proof of Lemma 3 uses the second inequality to show the
first (see Equation 18). Combining the above two steps, we have

sup
x

|F̄T 0(x)� F (x)| <
�

4
= 80

s
log( 256eT

0

� )

T 0 w.p. 1� �. (26)

This shows that if the detection algorithm has not been triggered, the empirical CDF of strategic
agent’s reported values are close to the true CDF. Let F̃T 0(x) = 1

(n�1)T 0

PT 0

t=1

P
j 6=i [Xj,t  x] be

the emipircal distriution from all agents other than i. We know from Lemma 7 that

sup
x

|F̃T 0(x)� F (x)| 

s
1

2(n� 1)T 0 log(
2

�
) w.p. 1� �. (27)
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Combining (26) and (27), we can now bound the error in the combined estimation, F̂T 0 =
1

nT 0

PT 0

t=1

Pn
j=1 [Xt

j  x]:

sup
x

|F̂T 0(x)� F (x)|

=sup
x

|
1

n
F̄T 0(x) +

n� 1

n
F̃T 0(x)� F (x)|

=sup
x

|
1

n
F̄T 0(x)�

1

n
F (x) +

n� 1

n
F̃T 0(x)�

n� 1

n
F (x)|

 sup
x

|
1

n
F̄T 0(x)�

1

n
F (x)|+ sup

x
|
n� 1

n
F̃T 0(x)�

n� 1

n
F (x)|

80

s
log( 256eT

0

� )

nT 0 +

r
1

2nT 0 log(
2

�
) w.p. 1� 2�

81

s
log( 256eT

0

� )

nT 0 w.p. 1� 2� (28)

Let F̂T 0 = F̂T 0 ⌦ . . .⌦ F̂T 0 , and � = �⇤(F̂T 0), and �T 0 = 81

q
log( 256eT 0

� )
nT 0 . Applying Lemma 2 to

(28) we have

sup
x

|F̂T 0(x)� F (x)|  �T 0 w.p. 1� 2�

(Lemma 2) =) E[ui(X,X,�)]� E[ui(X,X,�⇤)]  n�T 0 x̄

C.4 Proof of Lemma 6

Proof. Let Ft, t = 1, . . . , T be the distributions that agent i reports from in each round given the
history, i.e. X̃i,t|Ht ⇠ Ft. First we try to bound the utility that the strategic agent can get from a
single epoch. Fix an epoch k. Suppose T 0 is the time when either detection algorithm is triggered, or
the first time some receiver hits his allocation budget of p⇤jT . Let ⌧ = min(T 0, Lk+1 � 1). We now
define three distributions:

F̄ 1 =
1

Lk � 1

Lk�1X

t=1

Ft

F̄ 2 =
1

⌧ � 1

⌧�1X

t=1

Ft

F̄ 3 =
1

⌧ � Lk

⌧�1X

t=Lk

Ft

These are the average distributions that agent i reported from, averaged across three time periods:
[1, Lk), [1, ⌧) and [Lk, ⌧). In particular, F̄ 3 is the average distribution that the strategic agent reports
from in epoch k. From Lemma 3 we know that with probability 1� 2�:

sup
x

|F̄ 1(x)� F (x)| 64

s
log( 256e(Lk�1)

� )

n(Lk � 1)

sup
x

|F̄ 2(x)� F (x)| 64

s
log( 256e(⌧�1)

� )

n(⌧ � 1)
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which together means that

sup
x

|F̄ 2(x)� F (x)| = sup
x

|
Lk

⌧
(F̄ 1(x)� F (x)) +

⌧ � Lk

⌧
(F̄ 3(x)� F (x))|

=) sup
x

|F̄ 2(x)� F (x)| � sup
x

|
⌧ � Lk

⌧
(F̄ 3(x)� F (x))|� sup

x
|
Lk

⌧
(F̄ 1(x)� F (x))|

=) sup
x

|F̄ 3(x)� F (x)|  �̄k := min

0

@ 128⌧

⌧ � Lk

s
log( 256e(⌧�1)

� )

n(⌧ � 1)
, 1

1

A

Note that the last step also uses the fact that the difference between two CDFs cannot be bigger than
1. Let r be any joint distribution for agent i’s reported and true valuation (x̃, x) such that the marginal
for the reported valuation is equal to F̄ 3, i.e.,

X̄i,t ⇠ r(·|Xi,t), Xi,t ⇠ F =) Fr(x) := P(X̄i,t  x) = F̄ 3

Let X̄ denote the reported value vector when i is the only strategic agent and uses r(·|Xi) to pick his

reported value: X̄j = Xj 8j 6= i, X̄i ⇠ r(·|Xi). Let �Lk�1 = 81

r
log(

256e(Lk�1)
� )

n(Lk�1) . Using this, we
have

(Lemma 5) =) E[ui(X,X,�)]� E[ui(X,X,�⇤)]  n�Lk�1x̄

(Lemma 4) =) E[ui(X̄,X,�)]� E[ui(X,X,�⇤)]  n�Lk�1x̄+ �̄kx̄

(Corollary 1) =)
⌧�1X

t=Lk

ui(X̃t,Xt, �̃kt)� (⌧ � Lk)E[ui(X,X,�⇤)]

 (n�Lk�1 + �̄k)x̄(⌧ � Lk) + 16

r
(⌧ � Lk) log(

128e(⌧ � Lk)

�
)x̄ w.p. 1� �

 81

s
n(⌧ � Lk)2

2(Lk � 1)
log(

256eLk

�
)x̄+ 144

r
2⌧ log(

256e⌧

�
)x̄ w.p. 1� �

(29)

The above is a high probability bound on how much an agent can get in one epoch. We can now
bound the strategic agent’s utility over the full horizon.

T 0X

t=1

ui(X̃t,Xt, �̃kt)� T 0E [ui(X,X,�⇤)]



log2 T 0�1X

k=0

2

4
Lk+1�1X

t=Lk

ui(X̃t,Xt,�)� (Lk+1 � Lk)E[ui(X,X,�⇤)]

3

5

(Using (29)) x̄(L1 � 1) +

log2 T 0�1X

k=0

 
81

s
n(Lk+1 � Lk)2

2(Lk � 1)
log(

256e(Lk � 1)

�
)x̄

+ 144

r
2Lk+1 log(

256eLk+1

�
)x̄

!
w.p 1� � log2 T

(Lk = 2k) x̄+

log2 T 0�1X

k=0

285

r
n2k log(

256eT 0

�
)x̄ w.p 1� � log2 T



 
285

p
2

p
2� 1

r
nT 0 log(

256e

�
) + 1

!
x̄ w.p 1� � log2 T

The result follows by replacing the original � with �
log2 T .
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D Auxiliary Proofs

D.1 Proof of Claim 4

Claim 4. Let G be any distribution (cdf) over X ✓ R, and F over Y ✓ R. Then there exists a unique
joint distribution r over X ⇥Y with marginals G,F such that the conditional distribution r(·|Y ) has
the following monotonicity property: define x̄r(·), xr(·) so that X 2 [xr(Y ), x̄r(Y )] almost surely,
i.e.,

x̄r(y) = inf{x : P(X > x|Y = y) = 0}

xr(y) = sup{x : P(X < x|Y = y) = 0},

then

x̄r(y1)  xr(y2) 8y1 < y2.

In particular, the random variable X|Y ⇠ r(·|Y ) can be sampled as G�1(Fu(Y )), where Fu is
the random function defined in (19) and G�1 := inf{x 2 R : G(x) � p} denotes the generalized
inverse, sometimes also referred to as the quantile function.

Proof. We first prove existence by constructing a joint distribution with the desired marginals and
monotonicity, then we show uniqueness.

Existence. We will construct the joint distribution by defining the conditional distribution of X
given Y = y for every y. Note that if F is a continuous distribution, then we can easily construct
r(·|Y = y) using the inverse-CDF method:

X|y = G�1(F (y))

where G�1 := inf{x 2 R : G(x) � p} is the generalized inverse. This works because F (Y ) ⇠ Uni-
form[0,1]. If F contains point masses, then F (Y ) is no longer uniformly distributed, and the
inverse-CDF method does not work. To resolve this, we construct a different random variable Fu(y)
for each value y. For a given sample y, If F (y) 6= F (y�), let Fu(y) ⇠ Uniform[F (y�), F (y)].
Otherwise, let Fu(y) = F (y). Now we let

X|y = G�1(Fu(y))

To see that X sampled using this process has the marginal distribution G, we just need to show
that Fu(Y ) is uniformly distributed. For a given p, if 9y s.t. F (y) = p, then P(Fu(Y )  p) =
P(F (Y )  p) = P(Y  y) = p. Otherwise that means 9y s.t. p1 := F (y�)  p and p2 := F (y) >
p.

P(Fu(Y )  p)

=P(Y < y) + P(Fu(y)  p|Y = y)P(Y = y)

=p1 +
p� p1
p2 � p1

(p2 � p1)

=p

This construction also satisfies monotonicity, since if y1 < y2, then Fu(y1)  F (y1) w.p.1. and
Fu(y2) � F (y1) w.p.1.

Uniqueness Now we show uniqueness. For a given (x, y) pair, suppose x < x̄r(y). Then from
monotonicity we know xr(y

0) � x̄r(y) > x for all y0 > y, which implies that

Pr(X  x, Y  y) = G(x).

If x � x̄r(y), then from monotonicity we know x̄r(y0)  x̄r(y)  x for all y0 < y, which implies
that

Pr(X  x, Y  y) = F (y)

Since G and F are fixed, we have shown that all joint distributions r with monotonicity and the
required marginals are the same.
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