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1 COMPARED METHODS

To demonstrate the superior performance of the proposed stGCL,
we have chosen six benchmark methods for comparative analy-
sis, including DeepST [6], GraphST [3], SCANPY [5], SCGDL [2],
SpaGCN [1], and Spatial- MGCN [4].

e We propose a stGCL for spatial transcriptomics data that end-
to-end combines the heterogeneity of genetic and spatial a
priori distributions to learn the intrinsic local organization
of cells, providing a novel perspective on the mechanism
of cellular interactions to address the coordination between
different views in tissue.

e DeepST [6] employs a denoising autoencoder network and
a variational graph autoencoder to derive latent embeddings
for individual spots.

o GraphST [3] combines GNNs with self-supervised contrastive
learning to capture information and distinctive representa-
tions of spots, revealing different cell types.

e SCANPY [5] is an extensible toolkit designed specifically for
analyzing single-cell gene expression data. It offers methods
for preprocessing, visualization, and clustering. This toolkit
offers researchers a comprehensive solution for managing
and scrutinizing single-cell RNA sequencing data.

e SCGDL [2] combines deep graph infomax (DGI) with resid-
ual gated graph convolutional neural network for spatial
domain identification.

e SpaGCN [1] effectively leverages GCN to combine gene
expression, spatial coordinates, and histological images for
spatial domain identification.

e Spatial-MGCN [4] employs an attention-driven multi-view
GCN to derive spatial and gene expression information for
spatial clustering.

2 DATA PREPARATION

To reduce technical noise in spatial transcriptomics data, we first
eliminate spots located outside the primary tissue regions. Subse-
quently, we employ the SCANPY [5] package to filter out genes
with low expression or variance and select the top 3000 genes with
high variability [18]. Finally, these genes are normalized utilizing a
scale factor [14]. The normalization function is defined as:
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where Xj; represents the raw expression value of the j-th gene in
the i-th spot.

3 ANALYZE OF SPATIAL TRANSCRIPTOMICS

We analyze the traditional fusion paradigm of spatial transcrip-
tomics from an information theory perspective.

Theorem 1. In the fusion of multiple views into a compact fusion
feature, the mapping to global spatial deflation strategy is better
expressed and more effective than direct fusion.

Proof. According to the fundamental principles of information
theory, let us consider two non-orthogonal modes X and Y with
sizes x and y, respectively, and an aggregate mode F of size f. When
f = x+y, amode Z can be learned that contains all information of
X and Y, that is,

I(F;X,Y) = H(X,Y) - H(X, Y|F),
)
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where I denotes mutual information and H denotes entropy. This
implies that Z has the same entropy as the joint distributions of X
and Y. The entropy of F is expressed as:

H(F) = HX)+H(Y)+H(A) > H(X)+H(Y) > I(F;X,Y) = H(X, Y),

®)
where H(A) represents the entropy of the association information
between X and Y.

Given the sparsity of gene data, the aggregation process should
satisfy f < x +y, aiming for a compact model that captures the
association and original representations of X and Y within a smaller
distribution. Typically, we observe that f = x = y in spatial tran-
scriptomics data. The mutual information learned, I(F; X) +I(F;Y),
represents the sum of information about X and Y that can be re-
covered in F. When f < x + y, the maximization tends to focus on
the shared information of X and Y, denoted as:

max{I(F; X) + I(F;Y)}, o)

while neglecting the orthogonal (independent, non-overlapping)
information components, leading to a biased representation of F
towards either X or Y. This results in an incoherent expression of
the aggregated modality.

Considering spatial and genetic data heterogeneity in spatial
transcriptomics, the joint entropy H(X,Y) is minimal and chal-
lenging to aggregate, complicating the development of a compact,
efficient, and effective representation. This complexity is partic-
ularly evident in multiple downstream tasks, where a task may
depend on the independent information components of X or Y,
potentially leading to a collapse of the learned modal aggregation
information. Consequently, the learned Z may need more capacity
to adequately express X and Y.

Inspired by archery, our method leverages the prior distributions
P(T|(X,Y)) of X and Y through an intermediate distribution T of
size t, where t > x + y > f. As illustrated in Equation 1,

H(T) =H(X)+H(Y)+ H(A), (5)

indicating that T captures information from both X and Y. The
information within T is subsequently subjected to low-pass filtering,
and T is compressed through a low-pass filter to obtain unbiased
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Figure 1: Identify spatial domains for comparison experiments between DLPFC and Human Breast Cancer datasets. The manual

annotation of the slice # 151507 in DLPFC.
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Figure 2: Identify spatial domains on Mouse Brain Anterior Tissue dataset. (a) Manual annotation layer structure and the
histopathological image for human breast cancer dataset. (b) Spatial domains are detected with stGCL and five methods.

estimates F of X and Y, where I(F;T). The refined entropies are
given by

H(F) = H(Xreﬁne) + H(Yreﬁne) + H(Areﬁne)> (6)

where Xiefine € X, Yiefine € Y, and Zyefne € Z. This strategy F
learns multi-view orthogonality and shared essential features by
aggregating X and Y through T rather than directly through F, thus
enabling the alignment mapping of X and Y to be found in F.

4 EXPERIMENTAL RESULTS

4.1 Experimental settings

We assess the clustering performance by utilizing the Adjusted Rand
Index (ARI) as a metric, which evaluates the similarity between
the predicted cluster labels and the ground truth cluster labels. A
higher ARI value signifies superior clustering performance. The

calculation is performed as follows:

RI - E[R]]

~ max(RI) — E[RI]’ @)

where E[RI] indicates the RI that would be achieved by random
labeling.

4.2 More Visualization

Due to page limitations, we have zoomed in on key visualization
images from the main text to demonstrate the superiority of our
stGCL.
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Figure 3: (a) A spot in spatial transcriptomics indicates multiple cellular genes. (b) Typical methods aggregate multi-modal data
into a compact universal distribution. (c) Our proposed mapping-to-expansion paradigm maximizes the preservation of the
original modal molecular information.
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Figure 4: (a) The visualization of raw expression of layer marker genes and expression after stGCL imputation. (b) The violin
plots of raw cortical marker gene expression and stGCL cortical marker gene expression. (c) The violin plot of cortical marker
gene expression imputed by stGCL.
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Figure 5: The Heatmap of the expression of the structural domains on the top 10 DEGs between Healthy 1 and DCIS/LCIS.
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Figure 6: The overall architecture of the proposed stCHG framework.
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Figure 7: Boxplots of ARI values for seven methods across 12 slices of DLPFC.
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