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A APPENDIX

A.1 SUPPLEMENTARY RESULTS

Ablation studies raw results. We present the raw table form of the bar graph shown in Fig. 7. Upper
body per-joint MPJPE from Fig. 7 (a)-i is shown in Tab. 4 and the lower body (a)-ii is shown in Tab. 5.
Per-action MPJPE from Fig. 7 (b) and the standard deviation for our proposed work in Tab. 1 are
reported in Tab. 6. Mean MPJPE over 3 random seeds with standard deviation is reported.

Table 4: Ablation Studies Per-Joint Error for Upper Body Joints. Refers to Fig. 7 (a)-i.

Approach Head Neck Left arm Left fore arm Left hand Right arm Right fore arm Right hand

Tome et al. [21] 16.4± 0.6 3.7± 0.8 34.9± 3.7 59.4± 1.3 89.1± 8.3 32.6± 3.1 61.0± 0.4 86.7± 7.6

Tome et al. [21]
with ℓ1-norm 16.4± 1.1 2.4± 0.2 31.8± 3.0 55.0± 3.0 78.9± 5.1 31.3± 2.8 57.5± 3.2 76.5± 5.1

Temporal TFM 21.7± 3.4 11.2± 4.8 34.9± 1.9 55.6± 0.7 68.6± 1.1 37.8± 6.6 57.1± 3.1 68.2± 5.1

Direct 3D reg. 14.9± 0.4 7.0± 0.2 20.9± 0.6 38.6± 0.3 73.2± 0.7 21.0± 0.4 38.4± 0.0 69.3± 1.3

Spatial-only TFM 13.1± 1.4 7.4± 2.3 20.6± 2.9 40.1± 4.0 76.0± 4.1 19.7± 2.3 43.3± 2.7 80.6± 5.2

Ego-STAN
Avg (Ours) 10.6 ± 1.6 2.3± 0.2 18.3± 1.2 30.5 ± 1.6 60.2± 3.7 18.9± 1.2 34.1 ± 2.6 64.1± 3.8

Ego-STAN
Slice (Ours) 10.7± 0.5 2.4± 0.1 17.3 ± 0.3 32.3± 0.8 60.0± 3.3 17.6 ± 0.7 35.6± 2.5 65.9± 3.7

Ego-STAN
FMT (Ours) 11.4± 0.5 1.3 ± 0.2 17.7± 1.2 32.8± 4.1 53.1 ± 1.2 17.7± 1.0 34.9± 3.7 56.6 ± 1.8

Table 5: Ablation Studies Per-Joint Error for Lower Body Joints. Refers to Fig. 7 (a)-ii.

Approach Left up leg Left leg Left foot Left toe base Right up leg Right leg Right foot Right toe base

Tome et al. [21] 61.9± 7.5 79.2± 1.0 87.4± 1.7 98.3± 1.0 61.3± 9.4 82.3± 2.3 93.6± 2.2 103.9± 3.5

Tome et al. [21]
with ℓ1-norm 52.8± 4.2 76.5± 5.1 82.7± 6.1 90.5± 7.4 53.0± 2.6 77.5± 2.5 85.8± 2.4 93.0± 2.9

Temporal TFM 62.6± 2.0 65.7± 4.8 64.0± 5.9 72.6± 7.2 63.2± 4.7 68.1± 4.1 66.7± 5.4 73.3± 5.8

Direct 3D reg. 46.4± 1.9 60.2± 1.6 73.2± 1.8 81.2± 3.0 46.5± 1.9 61.2± 2.9 80.5± 2.9 86.2± 4.1

Spatial-only TFM 48.6± 1.6 61.8± 2.0 74.7± 5.0 80.7± 5.5 48.9± 1.8 61.9± 2.7 78.4± 6.4 84.2± 6.2

Ego-STAN
Avg (Ours) 40.1± 3.8 52.1± 3.0 57.6± 3.2 65.8± 3.6 40.6 ± 3.9 51.5± 4.0 60.2± 4.8 66.3± 4.7

Ego-STAN
Slice (Ours) 39.4 ± 1.1 51.9± 0.9 60.0± 1.6 64.4± 2.4 40.6 ± 1.2 52.8± 0.5 65.7± 1.2 68.9± 1.6

Ego-STAN
FMT (Ours) 41.9± 1.2 50.6 ± 1.2 54.1 ± 0.5 61.2 ± 1.9 41.7± 0.8 50.8 ± 1.4 57.5 ± 2.4 63.0 ± 1.5

Video qualitative analysis. The video files showing further qualitative comparisons (such as those
shown in Fig. 4) are attached in the supplementary materials. Here, we present randomly sampled
actions for the testset for a fair comparison with the dual-branch baseline [21].

A.2 EXPERIMENTAL DETAILS

A.2.1 XREGOPOSE DATASET

The xREgoPose synthetic dataset was designed to focus on scalability with augmentation of characters,
environments, and lightning conditions. It has a total of 383K images, which are split into three
sets: Train-set: 252K images; Test-set 115K images; and Validation-set: 16K images. The gender
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(a)-i

(a)-ii

(b)

Figure 7: Per-Joint and Per-Action MPJPE Bar Plot. As compared to the reproduced SOTA baseline [21],
Ego-STAN has significant improvements over heavily occluded joints (farthest from the camera), and challenging
actions (upper stretching and lower stretching). While the other seven actions are very close between the Ego-
STAN variants, Ego-STAN FMT exhibits superior performance. The results for the 8 incremental models in (a)-i
presents MPJPE for upper body joints, (a)-ii for lower body joints, and (b) for actions.
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Table 6: Ablation Studies Per-Action Error. Refers to Fig. 7 (b).

Approach Game. Gest. Greet. Lower Stretch. Pat. React. Talk. Upper Stretch. Walk.

Tome et al. [21] 62.5± 3.3 51.5± 2.2 53.3± 2.8 65.6± 4.2 56.4± 4.1 67.9± 7.3 48.7± 3.7 68.2± 3.7 68.0± 4.7

Tome et al. [21]
with ℓ1-norm 54.5± 2.8 45.9± 1.7 48.1± 2.2 59.8± 3.3 51.0± 0.4 57.4± 6.4 42.4± 2.0 63.5± 3.0 61.5± 3.8

Temporal TFM 53.3± 2.7 43.8± 1.0 43.7± 1.0 58.2± 3.4 40.7± 1.5 62.3± 1.7 41.0± 1.4 56.7± 3.0 57.3± 4.2

Direct 3D reg. 42.3± 1.1 39.3± 1.4 42.6± 1.7 48.0± 2.0 46.5± 0.9 40.2± 0.9 35.6± 1.1 55.6± 1.8 50.8± 2.3

Spatial-only TFM 42.1± 2.5 39.1± 3.9 40.9± 1.1 50.8± 3.6 46.9± 2.8 42.4± 4.4 35.0± 1.1 57.7± 3.0 51.4± 3.2

Ego-STAN
Avg (Ours) 31.7 ± 1.9 29.7 ± 2.1 33.1 ± 1.9 40.3± 2.6 27.7± 2.7 28.8 ± 2.1 27.5± 2.3 47.4± 2.2 42.0± 2.4

Ego-STAN
Slice (Ours) 32.9± 2.4 30.4± 1.6 34.8± 1.9 39.2± 1.0 26.7 ± 1.8 30.5± 1.4 27.4 ± 1.1 49.1± 0.7 40.7 ± 1.1

Ego-STAN
FMT (Ours) 33.1± 0.9 31.6± 0.7 36.9± 0.8 38.9 ± 0.9 29.2± 1.0 29.6± 0.8 29.7± 1.6 44.3 ± 0.6 40.9± 1.3

Table 7: Quantitative evaluation on Mo2Cap2 dataset. Ego-STAN outperforms the SOTA [21] demonstrating its
ability to generalize to real-world sequential views despite being trained on static views (no temporal component),
also highlighting the leverage provided by FMT. PA-MPJPE refers to procrustes aligned-MPJPE; details in
A.2.3.

Approach Error (PA-MPJPE) mm

Tome et al. [21] 114.1

Ego-STAN
FMT (Ours) 102.4

distribution for each set is the following: Train-set: 13M/11F, Test-set: 7M/5F and Validation-set:
3M/2F. The partitioning of the dataset based on actions and the details about the dataset setup can be
referred to [21].

Data Requirements. Note that Ego-STAN does not require any additional labeling than those
required by other pose estimation methods that leverage motion capture systems (whether ego-
centric or not). Specifically, there is no special labeling required for the occluded joints since the
subjects wear trackers for 3D pose coordinates, while the 3D coordinates to 2D image mapping is
accomplished using camera intrinsics. In other words, any appropriate motion capture data can be
used to render ego-centric views to generate training data for ego-pose estimation, which makes our
model and training data flexible and versatile.

Evaluation Metrics. The standard metric for 3D HPE is MPJPE (Mean Per Joint Position Error). It
is measured by taking the ℓ2-norm of the difference between predicted joint coordinates P̂(n)

j and the

ground truth coordinates P(n)
j and averaging across all frames and joints in the following way:

Eoverall(P, P̂) =
1
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J
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where N, and J are total number of frames, and number of joints respectively. Per-joint MPJPE only
averages across the number of frames and reports individual joints ℓ2-norm averages:

Eper-joint(P, P̂) =
1

N

NX

n=1




P(n) − P̂(n)




2

(Per-joint MPJPE)

For 2D HPE, Percentage of Correct Keypoint (PCK) is commonly used to measure the accuracy
of keypoint detection. It is measured by converting the heatmap prediction to coordinates and then
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Table 8: Standard deviation of Tab. 2 across 3 seeds (22, 42, and 102); here Sld: Shoulder, Elb: Elbow.

Approach (STD) Sld Elb Wrist Hip Knee Ankle Spine All
Sun [36] 0.104 0.070 0.061 0.039 0.021 0.023 0.032 0.026
Sun [36] + Ego-STAN 0.018 0.022 0.027 0.019 0.009 0.006 0.013 0.006

counting the number of correct keypoints respective to the number of total keypoints. PCK is normally
accompanied by an arbitrary normalized threshold that indicates the distance respective to the image
dimension that the predictions can be off from the label to be considered correct. Formally, given
prediction coordinates bC ∈ RJ×2 and label coordinates C ∈ RJ×2, with a threshold m, PCK with
respect to a single frame PCK(n) : n ∈ N where N is the total number of frames, is measured as
follows:

PCK(n) =
1

J

JX

j=1

1||bC(n)
j −C

(n)
j ||2 < m

(16)

Here the x and y coordinates of bC and C are normalized by the horizontal and vertical heatmap
dimensions. The PCK for the total set of frames PCKtotal is simply the average PCK of each frame:

PCKtotal =
1

N

NX

n=1

PCK(n) (17)

A.2.2 EXPERIMENTS ON HUMAN3.6M DATASET

The Human3.6M Dataset [16] is one of the largest and most popular benchmarks for 3D Human Pose
Estimation owing to its impressive arsenal of real-world images with individuals performing a variety
of activities in motion capture lab setting, which renders it practical for single-person 3D HPE tasks.
The images of this data-set are captured from an outside-in viewpoint with frames present from 4
different camera perspectives, thus enriching its viewpoint diversity. There are two popular protocols
when evaluating methods on the Human3.6M Dataset, with Protocol 1 training on subjects (S1, S5,
S6, S7, S8) and testing on subjects (S9, S11), whereas Protocol 2 trains on (S1, S5, S6, S7, S8, S9)
and tests on (S11) using procrustes-aligned poses. For the 3D HPE, we evaluate on both protocols
while sampling every 16 frames for training without any data augmentations. Seed 42 was used for
this experiment. For the 2D HPE, protocol 2 was used for train/test split while sampling every 16
frames. Similarly, no data augmentations were used for each approach. Average of seeds 42, 22, and
102 was reported.

Table 9: Per-Joint Error for Upper Body Joints on Human3.6M. P1 tests on subject (S9, S11) with MPJPE.
P2 tests on subject (S11) using procrustes-aligned MPJPE.

Approach Head Neck Left shoulder Left elbow Left wrist Right shoulder Right elbow Right wrist

P1 Tome et al. [21] 146.5 131.5 129.4 170.4 205.8 133.9 175.3 212.4

P1 Ego-STAN
FMT (Ours) 145.7 132.4 120.5 161.4 196.5 124.5 165.5 200.2

P2 Tome et al. [21] 53.9 45.7 54.3 115.9 136.4 47.7 111.0 132.6

P2 Ego-STAN
FMT (Ours) 48.1 42.3 42.3 95.8 126.7 38.9 92.2 129.7
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Table 10: Per-Joint Error for Lower Body Joints on Human3.6M. Same protocols as Tab. 9.

Approach Left hip Left Knee Left foot Right hip Right knee Right foot Thorax Spine

P1 Tome et al. [21] 41.3 125.7 170.3 42.6 126.0 187.3 118.1 74.2

P1 Ego-STAN
FMT (Ours) 30.4 95.5 134.1 30.3 96.0 127.1 113.7 63.5

P2 Tome et al. [21] 69.7 87.1 110.0 65.9 81.5 107.4 38.2 43.4

P2 Ego-STAN
FMT (Ours) 74.3 71.1 92.2 77.6 68.8 86.5 34.0 44.8

Table 11: Ego-STAN FMT overall MPJPE based on sequence length and number of frames skipped

MPJPE (mm) Sequence Length
3 5 7

Frames
Skipped

3 39.1 47.1 40.8
5 39.5 40.4 40.1
7 45.2 46.7 39.4

A.2.3 EXPERIMENTS ON MO2CAP2 DATASET

The Mo2Cap2 dataset was one of the first large HPE synthetic datasets with a cap-mounted fish-eye
egocentric camera [22]. The dataset consists of static images, and is not amenable for spatio-temporal
modeling. While a pioneer in the corpus of ego-centric data-sets, its limiting factors include the
quality of the synthetically generated images. Their evaluation set on the other hand, is composed
of two videos,supplemented with 3D pose labels, captured from an ego-centric viewpoint for both
in-door and out-door motion capture settings.

Since the pre-computed heatmaps that [21] use for 2D to 3D estimation are not publicly available and
the main goal of Ego-STAN is to create accurate feature maps, we setup out training pipeline similar
to [22]. We first train the image-to-2D heatmap module on the MPII [58] and LSP [59] dataset. Then,
we reduce the learning rate by a factor of 50 to the first 86% of the layers in resnet. The image-to-2D
module is trained for 50k iterations following by a 70k training iteration of 2D-to-3D module while
the image-to-2D module is frozen. Seed 42 was used for this experiment.

A.2.4 TRAINING AND REPRODUCIBILITY DETAILS.

The implementation is done with PyTorch Lightning with three random seeds 22, 42, and 102.

Data Augmentation. For data augmentations, we first crop each image between index 180 and
1120 on the x-axis to remove the dark background that is not needed. Then we resize each image to
368× 368 resolution. We attempted 9 distinct combinations of sequence length and sampling rate
(number of frames skipped) to identify and utilize the best one. As illustrated in Tab. 11, there was
no consistent pattern found in the experiments that displayed a trend favoring a certain number of
frames or sequence length. Our chosen model had a sequence length of 5 and skip rate of 5.

Learning parameters. AdamW with base learning rate of 1e−4 and weight decay of0.01 is chosen
as the optimizer for stable Transformer training.

Pre-training. Pre-trained ResNet-101 weights from ImageNet1K are loaded for initialization. The
remaining modules are initialized with Xavier initialization [60]. The first 100K iterations are only
trained on L2D while using linear warmup on the learning rate so that LR @ 100K = 1e−4. After
100K iterations, the whole model is trained with the objective function as the sum of the 2D and 3D
loss. We train our model with a maximum of 10 epochs with an early stopping patience of 7 on the
validation MPJPE.
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Compute Infrastructure. A batch size of 16 is fed to a single NVIDIA A100 GPU for acceler-
ated training with AMD Milan 7413 CPU available via the shared high performance computing
infrastructure.

Hyperparameters. The Transformer encoder in the spatio-temporal Transformer module has the
following hyperparameters: hidden dimension of 512, depth of 3, 8 heads, MLP dimension of 1024,
head dimension of 64, and 0.4 dropout. Deconvolution block in the heatmap reconstruction module is
comprised of 2 deconvolution layers with kernel size = 3 and stride = 2 where the channels decrease
from 2048 to 1024 and then from 1024 to 15. In the 3D pose estimator module, convolution block
has 3 layers of 2D convolution layers with kernel side = 4 and stride = 2. The channels increase from
15 to 64, 64 to 128, and finally from 128 to 512. The linear block that follows the convolution block
decreases the flattened features from the convolution block into the following dimensions: 18432,
2048, 512, and 48. All the layers in the 3D pose estimator and the heatmap reconstruction module
have PReLU [61] as an activation function. λθ = −10−2 and λL = 0.5 were used as weights for the
3D loss function in (15).

A.3 INTUITIVE EXPLANATION ON FEATURE MAP TOKEN.

We will summarize Sec. 3.1 and Sec. 3.2 with some notes. FMT begins as a set of randomly initialized
weights with the same dimensions as a single feature map (K ∈ R(H̃ × W̃ × C̃)). Then these
weights are concatenated and flattened to a sequence of T feature maps (T × H̃ × W̃ × C̃) returning
Fflat ∈ R(H̃W̃ (T+1)×C̃). Positional embedding is then added to Fflat to inject spatial and temporal
distinction and passed through the Transformer block to return Ftfm ∈ RH̃W̃ (T+1)×C̃ . What this
output implies is that all the tokens (H̃W̃ (T + 1)) are aggregated based on the normalized attention
matrices. Once we take the indices of the FMT (which are concatenated at the beginning), we are left
with FMT that has been aggregated with the feature maps that are distributed spatially and temporally.
Intuitively, the weights of FMT are updated so that it understands where to pay attention to, given a
sequence of feature maps from the CNN backbone. In other words, FMT learns how to position its
direction of the token vectors so that given a set of feature maps of certain visibility (occlusion), the
linear projections Q and K can determine the weight of the attention matrix for aggregation on the
past or the current frame.

A.4 MULTIPLY-ACCUMULATE COMPARISON

Multiply-accumulate (MAC) is measure to count the number of operations in a model. Tab. 12
compares the MACs between a popular outline-in pose estimation work [19], SOTA egocentric pose
estimation work [21] and Ego-STAN. The FLOPS will naturally increase since CNN will compute T
many times for T steps and the addition of a transformer network will increase the computations.
However, as demonstrated in Tab. 3, the number of parameters decrease with the introduction of
direct regression and the weight-sharing of Resnet.

Table 12: Comparison of MACs. Our proposed method Ego-STAN is compared against a popular outline-in
pose estimation method [19] and the SOTA egocentric pose estimation work [21]. Since Ego-STAN uses T of 5,
it is expected that Ego-STAN has roughly ×5 the MACs to the other two static models.

Approach MACs (G)

Martinez et. al. [19] 32.1

Tome et. al. [21] 31.7

Ego-STAN (Ours) T=1 38.4

Ego-STAN (Ours) T=5 165.0
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A.5 LEARNABLE POSITIONAL EMBEDDING

Detailed information on learnable position embeddings can be found in [47, 55].

B NOTATION

Numbers and Arrays

A A matrix

A A tensor

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

Indexing

Ai,: Row i of matrix A

A−i,: Row i from the bottom of matrix A

A:,i Column i of matrix A

Functions

||x||p Lp norm of x

||x|| L2 norm of x

1condition is 1 if the condition is true, 0 otherwise
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