
A Network Configurations in Sec. 5.1

In Sec. 5.1, we conduct experiments on LineMOD dataset [3] to confirm the advantages of our
SS-Conv in terms of accuracy and efficiency, compared to other convolutions. The experiments
are performed on a plain architecture, as shown in Fig. 1; we use a global average pooling layer
to aggregate the backbone features, and regress the rotation r and the translation t by two separate
MLPs. Illustrations of Plain12, Plain24 and ResNet50 are shown in Fig. 2 respectively, where
network specifics are also given. For Plain12 and Plain24, the channels of the two MLPs in Fig. 1 are
both (256, 128, 6) and (256, 128, 3), respectively, while for ResNet50, they are set as (1024, 128, 6)
and (1024, 128, 3). Note that for the rotation branch, a 6D representation of rotation is generated and
then transformed into a 3× 3 rotation matrix r following [11].

MLP 𝒓
Backbone

MLP 𝒕
Global Avg. Pool

Figure 1: An illustration of the architecture used in Sec. 5.1 for instance-level 6D pose estimation.

B Experimental Details on Focused Tasks

B.1 Instance-level 6D Object Pose Estimation

Network Specifics We add a sparse average pooling on top of Plain24 (c.f. Fig. 2) to form the
backbone for rotation-equivariant feature learning, which consists of a total of 4 pooling layers. The
kernel size, stride, padding of the additional average pooling are 3 × 3 × 3, 2, and 1, respectively.
We use the backbone features {(Hni ,Fni)}4i=1 outputted by the 4 pooling layers for interpolation of
point-wise features of the observed points in the first stage, and transform them into {(H ′

ni
,F

′

ni
)}4i=1

with four Feature-Steering modules for the second-stage predictions. The Feature-Steering module
is introduced in Sec. 4.1.1, and we supplement a more concrete illustration in Fig. 3, facilitating
a better understanding. In each Feature-Steering module, we use two SS-Convs to enhance the
feature representations; the kernel sizes, strides, paddings of both SS-Convs are set as 3× 3× 3, 1, 1,
respectively, and their output channels are kept consistent with the input ones. For both two stages,
the output channels of the MLPs for regression of rotations are set as (256, 128, 6), while those for
translations are (256, 128, 3).

Training Objective Given a point cloudQ = {qi}Mi=1 sampled from the CAD model of an asymmet-
ric object with M points, we train the network in an end-to-end fashion by optimizing the following
problem:

minL =
1

M

M∑
i=1

∥∥(r1qi + t1)− (r̂qi + t̂)
∥∥+ λ

∥∥(r1(r2qi + t2) + t1)− (r̂qi + t̂)
∥∥ , (1)

where (r̂, t̂), (r1, t1), and (r2, t2) are the poses of ground truth, the first stage, and the second stage,
respectively. For a symmetric object, we consider using Chamfer Distance to compute the distance
between two point clouds in the optimization following [8]:

minL =
1

M

M∑
i=1

min
j

∥∥(r1qi + t1)− (r̂qj + t̂)
∥∥+ min

j
λ
∥∥(r1(r2qi + t2) + t1)− (r̂qj + t̂)

∥∥ .
(2)

The balanced parameter λ is empirically set as 1.

Training and Testing Strategies We use ADAM to optimize the network, with an initial learning
rate of 0.01; the learning rate is halved every 1, 500 iterations, until a total of 30, 000 ones. We firstly
compute the geometric center t0 = 1

M

∑M
i=1 pi of the observed point cloud P = {pi}Mi=1, and center

the point cloud by subtracting each individual point pi from t0. The input data is then voxelized into
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Figure 2: Illustrations of different backbones. "SS-Conv" denotes a submanifold sparse steerable
convolution, while "SS-Conv *" denotes a general one. For each SS-Conv, the number of output
channels is

∑3
i=0mi(2i+ 1), defined by a tuple (m0,m1,m2,m3), where mi denotes the number

of irreducible features of order i; we only use irreducible features whose orders are smaller than 4 in
the three backbones. The strides and paddings of 3× 3× 3 SS-Convs are all set as 1, while those of
the first 5× 5× 5 SS-Conv in ResNet50 are 1 and 2, respectively. We use sparse average pooling to
reduce the spatial size of features; the kernel sizes, strides, paddings of the pooling layers are set as
3× 3× 3, 2 and 1, respectively.
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Figure 3: An illustration of Feature-Steering module introduced in Sec. 4.1.1.

Table 1: Robust evaluation of our method on LineMOD dataset [3] for instance-level 6D object pose
estimation. The experiments are repeatedly conducted 5 times, and the evaluation metric is ADD(S).

Trial 1 2 3 4 5 MEAN STD

ape 97.42 97.80 97.71 97.42 98.18 97.71 0.080
bench. 99.32 99.03 99.51 99.03 99.12 99.20 0.036
camera 99.50 99.80 99.60 99.50 99.70 99.62 0.013
can 99.60 99.31 99.70 99.21 99.60 99.48 0.036
cat 99.80 99.80 99.50 99.70 99.60 99.68 0.014
driller 99.60 99.50 99.00 99.30 99.50 99.38 0.045
duck 97.84 97.46 97.46 97.18 97.46 97.48 0.044
egg. 99.90 99.90 99.90 99.81 100.0 99.90 0.004
glue 99.60 99.61 99.80 99.51 99.42 99.59 0.016
hole. 99.40 99.23 99.71 99.14 99.04 99.31 0.055
iron 99.20 98.87 99.48 99.79 99.79 99.43 0.126
lamp 99.70 99.80 99.52 99.71 99.80 99.71 0.011
phone 99.23 99.13 98.84 99.13 99.23 99.11 0.020

MEAN 99.23 99.17 99.20 99.10 99.26 99.19 0.003

a cube with 64× 64× 64 grids, covering a total area of 0.32× 0.32× 0.32m3. The training batch
size is set as 64. For testing, we use the predicted masks provided in [10] to segment out the objects
of interest for fair comparisons, and repeat the second stage twice for a refined pose; the predicted
translation adding the geometric center t0 gives the final translation.

Error Bars The quantitative results of repeated experiments on LineMOD dataset are reported in
Table 1. As shown in the table, the results of all 5 trials are of similar qualities across different object
instances, showing the stability of our method. We report the results of the first trial in our paper.

Visualization In Fig. 4, we visualize the qualitative results of our proposed method for instance-level
6D pose estimation on LineMOD dataset [3].

B.2 Category-level 6D Object Pose and Size Estimation

Network Architecture As introduced in Sec. 4.2, the network configurations of the category-level
pose estimation are the same as those of the instance-level one, except for two adaptive modifications.
Firstly, in each stage, we add two regression branches for 3D sizes s ∈ R3 and a transformed point
cloud Q in the canonical space of the observed P = {pi}Mi=1, as illustrated in Fig. 5, where the
specifics of the MLPs for regression are also given; for the 3D size s, we regress the object scale
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Figure 4: Qualitative results for instance-level 6D pose estimation on LineMOD dataset [3]. The
sampled points (in blue) of object models are transformed by the predicted/ground truth poses and
projected back to 2D images.
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Figure 5: Illustrations of the regression branches in both two stages for category-level 6D object pose
and size estimation.

s = ‖s‖ in the first stage, and regress the aspect ratio s/ ‖s‖ in the second one. Secondly, in each
Feature-Steering module, the real world coordinates are also scaled with the predicted s by dividing
it in the rigid transformation.

Training Objective Given the ground truth (r̂, t̂, ŝ), we optimize the following problem:

L = (‖r1 − r̂‖+
∥∥t1 − t̂∥∥+ |s1 − ‖ŝ‖ |+

1

M

M∑
i=1

∥∥∥∥q1i − 1

‖ŝ‖
r̂T (pi − t̂)

∥∥∥∥)

+ λ(‖r1r2 − r̂‖+
∥∥s1r1t2 + t1 − t̂

∥∥+ ‖s1s2 − ŝ‖+
1

M

M∑
i=1

∥∥∥∥q2i − 1

‖ŝ‖
r̂T (pi − t̂)

∥∥∥∥), (3)

where Q1 = {q1i}Mi=1 and Q2 = {q2i}Mi=1 are the predicted canonical point clouds in the first and
second stages, respectively. We empirically set the balanced parameters as λ = 1.

Note that for symmetric objects along y-axis, we map r̂ to a canonical rotation r̂θ following [6, 4],
where

θ =

[
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

]
,

s.t. θ = arctan 2 (r̂13 − r̂31, r̂11 + r̂33) .

(4)

r̂11, r̂13, r̂31, and r̂33 are the elements of r̂.

Training and Testing Strategies We use ADAM to train the network with a total of 100, 000
iterations. The learning rate is initialized as 0.01 and halved every 10, 000 iterations. A MaskRCNN
[2] is employed to segment out the objects of interest as the inputs, each of which is centered and
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Figure 6: Qualitative results on REAL275 dataset [9] for category-level 6D pose and size estimation.
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Figure 7: An illustration of the architecture for category-level 6D object pose tracking.

voxelized into 64 × 64 × 64 grids; the volume of these grids is 0.96 × 0.96 × 0.96m3. The other
training and testing settings are the same as those of instance-level task on LineMOD dataset.

Visualization The qualitative results on REAL275 dataset [9] are visualized in Fig. 6.

B.3 Category-level 6D Object Pose Tracking

Problem Definition Given a sequence of RGB-D images (I0, I1, ...) containing the object of interest,
along with the initial 6D object pose (r0, t0) in I0, the target of pose tracking is to estimate the small
change (∆ri,∆ti) of poses in every adjacent frames (Ii−1, Ii), such that the object pose in Ii could
be obtained based on that in Ii−1: (ri, ti) = (ri−1∆ri, ri−1∆ti + ti−1).

Data Processing For an RGB-D image Ii, we firstly convert the depth image into a point cloud,
which is then transformed with (ri−1, ti−1) and scaled by dividing the object scale ‖s‖. The points
within a bounding box, which is centered at the origin with the size of 1.5s, are cropped out as the
input point cloud, denoted as P = {pj}Mj=1; each input point pj is equipped with the point coordinate
and RGB values. The input data is voxelized into 64× 64× 64 grids in our experiments.

Network Architecture The network architecture is illustrated in Fig. 7. Specifically, we use Plain24
as backbone to extract SE(3)-equivariant features, which are aggregated by a global average pool
and fed into two separate MLPs for regression of ∆r and ∆t, respectively. Following [1], we also
employ an auxiliary network for point-wise supervisions, visualized within a black dashed box in Fig.
7. In the auxiliary network, we interpolate the point-wise features of the observed P based on the
output features of three pooling layers in Plain24, and use an MLP and a sigmoid function to obtain
C = {cj}Mj=1 for point-wise binary segmentation, where cj denotes the foreground probability of pj .
The auxiliary network could be detached after training.
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Training Objective Given the ground truths of (∆r̂,∆t̂) and Ĉ = {ĉj}Mj=1, we optimize the
following problem:

L = λ1 ‖∆r −∆r̂‖+ λ2
∥∥∆t−∆t̂

∥∥+ λ3Lseg, (5)

where we set the balanced parameters λ1, λ2, λ3 as 10, 1, 2, respectively. We use a focal loss [5] for
the auxiliary network, which can be formulated as follows:

Lseg =
1

Mpos

M∑
j=1

−αŝj(1− sj)γ log(sj)− α(1− ŝj)sγj log(1− sj), (6)

where we empirically set α = 0.25 and γ = 2.

Training and Testing Strategies Following [7], we train networks individually for different cate-
gories. The networks are optimized using ADAM for a total of 30, 000 iterations. The learning rate
is initially set as 0.001 and halved after 20, 000 iterations, while the training batch size is set as 32.
During test, the auxiliary network is detached for efficiency.

Visualization We show the qualitative results of our method in the video, named "SS-Conv-
track.mp4".
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