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A SUPPLEMENTARY MATERIAL

A.1 JD CONVERGENCE RATES

Proof of Theorem 3. Let z = (x, y) be the location of our current iterate. Let x+ = x− (1/β)∇f(x)
be our next iterate after a gradient step. By simply combining the β-smoothness with the definition
of x+, we have

f(x+, y) ≤ f(x, y)− 1

β
〈∇xf(x, y),∇xf(x, y)〉+

β

2
‖∇xf(x, y)‖2

≤ f(x, y)− 1

β
‖∇xf(x, y)‖2

For the descent guarantee of the gradientless step, we use a random direction and so let u be a
standard multivariate Gaussian. Then, 〈∇yf(x, y), u〉 is a 1-D Gaussian with variance ‖∇yf(x, y)‖2.
Therefore, E [|〈∇yf(x, y), u〉|] = c‖∇yf(x, y)‖ for some dimension-independent constant c. Since
u is symmetric, with probability at least 0.5, we have the following descent guarantee if we let
y+ = y − hu

E[f(x, y+)] ≤ f(x, y)−hE [|〈∇yf(x, y), u〉|]+β

2
h2E

[
‖u‖2

]
≤ f(x, y)−hc‖∇yf(x, y)‖+β

2
h2ny

Therefore, if we choose h = O( 1
nyβ
‖∇yf(x, y)‖),

E[f(x, y+)] ≤ f(x, y)− 1

γ
‖∇yf(x, y)‖2

where γ = Θ(nyβ). Note that since our gradientless step uses the binary radius search with minimum
radius r = ε√

nyβ
(see Theorem 13 of Golovin et al. (2019)), we can approximately find the optimal

radius as long as ‖∇yf(x, y)‖ ≥ ε, which allows us to deduce that our descent guarantee holds, up
to constants, with only O(poly log(n/ε)) extra iterations.

By combining the two guarantees together, since z+ = (x+, y) with probability p and z+ = (x, y+)
with remaining probability,

E[f(z+)] ≤ f(x, y)− p

β
‖∇xf(x, y)‖2 − 1− p

γ
‖∇yf(x, y)‖2

≤ f(x, y)− 1

2γ
(‖∇xf(x, y)‖2 + ‖∇yf(x, y)‖2)

≤ f(x, y)− 1

2γ
‖∇f(z)‖2

Note that the second line follows since 0.5 ≤ p ≤ ny

ny+1 and noting that pβ ≥
1
2γ .

Finally we claim that by strong convexity ‖∇f(z)‖2 ≥ α(f(z)− f(z∗)). This holds since

f(z)−f(z∗) ≤ ∇f(z)>(z−z∗)− α
2
‖z−z∗‖2 ≤ ‖∇f(z)‖‖z−z∗‖− α

2
‖z−z∗‖2 ≤ 1

2α
‖∇f(z)‖2

where the last line holds by AM-GM.

By combining the last two claims and applying standard calculations, we deduce our guarantee:

E
[
f(z+)

]
− f(z∗) ≤ f(z)− f(z∗)− α

2γ
‖∇f(z)‖2

≤
(

1− 1

Θ(κny)

)
(f(z)− f(z∗))
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Note that if ‖∇yf(x, y)‖ ≤ ε, then if ‖∇xf(x, y)‖ ≥ ε, we can use the fact that ‖∇xf(x, y)‖ ≥
1
2‖∇f(z)‖ to get a similar descent guarantee. Otherwise, both gradients are small, then we see that
‖∇f(z)‖ ≤ 2ε with strong convexity guarantees that f(z)− f(z∗) = O(ε2).

A.2 AJD CONVERGENCE RATES

To achieve acceleration, we first show an useful lemma.
Lemma 5. Let zk be the iterates of running Accelerated Joint Descent (Algorithm 2) and z be any
point. For all k ≥ 0,

E [fη(zk)]− fη(z) ≤
(

1− 1

8
√
κ(ny + 4)

)k
ξ0 + 8η2β2

√
κ(ny + 4)2

where ξ0 = α
2 ‖z0 − z‖

2 + fη(z0)− fη(z).

Proof of Lemma 5. Let zk = (xk, yk), vk be generated after k iterations. Then, we compute wk and
generate the stochastic gradient gη(wk) = 2g0.5η (wk). First, from Lemma 5 of Nesterov & Spokoiny
(2011), we can related the norm of gµ(z) to its expectation. Specifically,

E
[
‖gµ(x)‖2

]
=

4

2
‖∇xf(x, y)‖2 +

4

2
E

[∥∥∥∥f(x, y + ηu)− f(x, y)

η
u

∥∥∥∥2
]

≤ 2‖∇xfη(x, y)‖2 + 2
[
4(ny + 4)‖∇yfη(x, y)‖2 + 3η2β2(ny + 4)3

]
≤ 8(ny + 4)‖∇fη(x, y)‖2 + 6η2β2(ny + 4)3

By smoothness,

fη(zk+1) ≤ fη(wk)− h∇fη(wk)>gµ(wk) + β
h2

2
‖gµ(wk)‖2

By taking expectations,

E [fη(zk+1)] ≤ fη(wk)− h‖∇fη(wk)‖2 + β
h2

2
E
[
‖gµ(wk)‖2

]
≤ fη(wk)− h 1

8(ny + 4)

(
E
[
‖gµ(wk)‖2

]
− 6η2β2(ny + 4)3

)
+ β

h2

2
E
[
‖gµ(wk)‖2

]
= fη(wk)− 1

2
θE
[
‖gµ(wk)‖2

]
+ δη

where δη ≤ η2β2(ny + 4). Note the first line follows since E [gη] = ∇fη and the second line follows
from our derivations above and the third line follows from grouping terms and using−h2β+βh2/2 =
−θ/2 by definition.

For some z = (x, y), we define our potential function to be:

ξk+1(z) =
α

2
‖vk+1 − z‖2 + fη(zk+1)− fη(z)

By using the definition of vk+1 and expanding, we get

ξk+1(z) =
α

2
‖(1−a)vk+awk−z‖2−

θα

a
gη(wk)> [(1− a)vk + awk − z]+

θ2α

2a2
‖gη(wk)‖2+fη(zk+1)−fη(z)
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Now by taking expectations,

E [ξk+1(z)] ≤ α

2
‖(1− a)vk + awk − z‖2 − a∇fη(wk)> [(1− a)vk + awk − z]

+
θ

2
E
[
‖gη(wk)‖2

]
+ E [fη(zk+1)]− fη(z)

≤ α

2
‖(1− a)vk + awk − z‖2 − a∇fη(wk)> [(1− a)vk + awk − z]

+ fη(wk)− fη(z) + δη

≤ α

2
‖(1− a)vk + awk − z‖2 + δη

+ fη(wk) +∇fη(wk)> [az + (1− a)zk − wk]− fη(z)

≤ α

2
‖(1− a)vk + awk − z‖2 + δη

+ (1− a)(fη(zk)− fη(z))− aα

2
‖z − wk‖2

≤ α

2
(1− a)‖vk − z‖2 +

α

2
a‖wk − z‖2 + δη

+ (1− a)(fη(zk)− fη(z))− aα

2
‖z − wk‖2

= (1− a)ξk(z) + δη

The first line follows since θ = a2/α, the second line follows from our previous bound on
E [fη(zk+1)], the third line follows since avk = zk − (1 + a)wk, the fourth line follows by first
separating our expression into linear combinations and then applying strong convexity, and the fifth
line follows by convexity on the distance function. Finally, we get our result by definition of ξk(z)

Therefore, by using the tower property of expectations,

E [ξk(z)] ≤ (1− a)kξ0(z) +

k∑
i=1

(1− a)kδη

We conclude by noting a =
√
αθ = (8

√
κ(ny + 4))−1 and

∑
i(1− a)k ≤ a−1 = 8

√
κ(ny + 4).

Finally, we proceed with the proof of the accelerated convergence rate.

Proof of Theorem 4. First, we claim that |fη(z) − f(z)| ≤ η2

2 βny. Note that this follows from a
straightforward calculation:

|fη(z)− f(z)| ≤
∣∣∣∣∫ η∇yf>u+

η2

2
β‖u‖2 1

P
e−‖u‖

2/2 du

∣∣∣∣ ≤ η2

2
β

1

P

∫
‖u‖2e−‖u‖

2/2 du

The claim follows by evaluating the variance integral to be equal to ny .

Then, we simply combine our claim with Lemma 5 to derive our accelerated theorem and noting that
η2βny ≤ η2β2

√
κ(ny + 4)4
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A.3 EXPERIMENT PLOTS

Figure 4: Convergence plot for Joint Descent for the MNIST dataset for the learning rate and the
eLU coefficient. Note that the learning rate decreases as training converges.
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Figure 5: Convergence plot for Joint Descent on the Sphere and Ill-Conditioned Sphere with number
of training variables set to 30 and varying number of hyperparameters.

16



Under review as a conference paper at ICLR 2021

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

Acc Joint Descent on Sphere with Num Hyperparameters: 4

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 1

100

101

Acc Joint Descent on IllConditionedSphere with Num Hyperparameters: 4

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 9

10 7

10 5

10 3

10 1

101

Acc Joint Descent on Sphere with Num Hyperparameters: 8

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 1

100

101

Acc Joint Descent on IllConditionedSphere with Num Hyperparameters: 8

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

Acc Joint Descent on Sphere with Num Hyperparameters: 16

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 1

100

101

Acc Joint Descent on IllConditionedSphere with Num Hyperparameters: 16

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

Acc Joint Descent on Sphere with Num Hyperparameters: 32

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 1

100

101

Acc Joint Descent on IllConditionedSphere with Num Hyperparameters: 32

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

Acc Joint Descent on Sphere with Num Hyperparameters: 64

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

0 20 40 60 80 100
Iteration

100

101

Acc Joint Descent on IllConditionedSphere with Num Hyperparameters: 64

gradient_prob: 0.9
gradient_prob: 0.7
gradient_prob: 0.5
gradient_prob: 0.3
gradient_prob: 0.1
bayesian
zeroth-order

Figure 6: Convergence plot for Accelerated Joint Descent on the Sphere and Ill-Conditioned Sphere
with number of training variables set to 30 and varying number of hyperparameters.
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