
Supplementary Material

These appendices contain supplementary material for the paper Black Box Probabilistic Numerics.

A Proof of Proposition 1

The equation of the straight line through two points (x1, y1) and (x2, y2) is given by

y � y1
x� x1

=
y2 � y1
x2 � x1

.

Substituting the points (h↵, q(h)) and ((�h)↵, q(�h)), and taking x = 0, we have

y = q(h)�
q(�h)� q(h)

�↵ � 1
.

By the assumption that q is of order ↵, we have the expansions q(h) = q⇤ + Ch↵ +O(h↵+1) and
q(�h) = q⇤+C(�h)↵+O(h↵+1), and then by substitution and straightforward cancellation we find

y = q⇤ +O(h↵+1).

Therefore the y-intercept of the line is an approximation of q⇤ of order ↵+ 1.

B Gaussian Processes for BBPN

This appendix contains full details of how analytic conditioning formulae are obtained and how
maximum likelihood estimates are calculated.

B.1 Conditioning Formulae

It will be convenient to introduce lexicographic ordering, where the indices

{(i, j) : j = 1, . . . ,mi, i = 1, . . . , n} (7)

are ordered first by i and then, for indices with the same i, by j. Let h(l) and t(l) denote, respectively,
the values of hi and ti,j corresponding to the l’th ordered pair (i, j) in (7). Let q represent a column
vector of length m :=

P
n

i=1 mi, with entries q l := q(h(l), t(l)) in lexicographic order.

From (5), the prior model for Q described in Section 3.3 has covariance function

kQ((h, t), (h
0, t0)) = �2[b(t) · b(t0) + ⇢GkG(t, t

0) + ⇢EkE((h, t), (h
0, t0))], (8)

where the additivity follows from the assumptions Q⇤
?? E and Z ?? G. Let KQ be an m ⇥ m

matrix and kQ(h, t) be an m⇥ 1 column vector with entries of the form

(KQ)l,l0 := kQ((h(l), t(l)), (h(l0), t(l0))) , (kQ(h, t))l := kQ((h(l), t(l)), (h, t)). (9)

Then standard Gaussian conditioning formulae (eg. Equation 2.19 in [57]) demonstrate that the
conditional process Q|D has mean and covariance functions

µQ|D(h, t) = kQ(h, t)
>K�1

Q
q (10)

kQ|D((h, t), (h0, t0)) = kQ((h, t), (h
0, t0))� kQ(h, t)

>K�1
Q

kQ(h
0, t0) (11)

The mean and covariance functions of the marginal process Q(0, ·)|D are extracted by setting h equal
to 0 in Equations (10) and (11).

B.2 Proof of Higher-Order Convergence Result in Section 3.3

For a scalar quantity of interest, the full covariance function in (5) is

kQ(h, h
0) = a1 + a2(hh

0)↵

✓
|h� h0

|

`h

◆

i

for certain positive constants a1 and a2. For � 2 [0, 1], denote

 h =

✓
(1� �)h

`h

◆
.

Then the conditional mean at h = 0, given the data Dh = {(h, q(h)), (�h, q(�h))}, is

E[Q(0)|Dh] =

✓
q(h)
q(�h)

◆> ✓
a1 + a2h2↵ a1 + a2�↵ hh2↵

a1 + a2�↵ hh2↵ a1 + a2�2↵h2↵

◆�1 ✓
a1
a1

◆

=
q(h)�↵(�↵ � h) + q(�h)(1� �↵ h)

a1a2(1� 2�↵ h + �2↵)h2↵ + a22�
2↵(1� 2

h
)h4↵

a1a2h
2↵

=
q(h)�↵(�↵ � h) + q(�h)(1� �↵ h)

a1(1� 2�↵ h + �2↵) + a2�2↵(1� 2
h
)h2↵

a1.

Inserting q(h) = q⇤+Ch↵+O(h↵+1) and q(�h) = q⇤+C�↵h↵+O(h↵+1) in the above equation
yields

��q⇤ � E[Q(0)|Dh]
�� = q⇤

�����1�
�↵(�↵ � h) + 1� �↵ h

a1(1� 2�↵ h + �2↵) + a2�2↵(1� 2
h
)h2↵

a1

�����

+

�����
�↵(�↵ � h) + �↵(1� �↵ h)

a1(1� 2�↵ h + �2↵) + a2�2↵(1� 2
h
)h2↵

�����|C| a1h
↵

+

�����
�↵(�↵ � h) + 1� �↵ h

a1(1� 2�↵ h + �2↵) + a2�2↵(1� 2
h
)h2↵

�����a1O(h↵+1)

 q⇤

�����
a2�2↵(1� 2

h
)

a1(1� 2�↵ H + �2↵) + a2�2↵(1� 2
h
)h2↵

�����h
2↵

+

�����
�↵(1 + �↵)

1� 2�↵ h + �2↵

�����|C| |1� h|h
↵

+O(h↵+1).

It follows from the Hölder assumption |1 � (")| L "� that |1 � h| = O(h�). Therefore the
second term, which dominates the right-hand side, is of order O(h↵+�). This concludes the proof.

B.3 Maximum Likelihood Estimation

The parameters ✓ of the covariance function kQ are estimated from data using maximum likelihood.
Recall that (with ↵ known) ✓ consists of the parameters �, ⇢G, ⇢E , `h, and the `t,i for i = 1, . . . , p.
This parameterisation is deliberately chosen to enable the maximum likelihood estimator �ML to be
computed as an explicit function of the remaining components of ✓. It is convenient to express

kQ((h, t), (h
0, t0)) = �2kQ((h, t), (h

0, t0))

where kQ((h, t), (h0, t0)) is (8) with � = 1. Analogously define KQ as in (9) but with � = 1. The
log-likelihood of observing the dataset D in (2) under the model for Q defined in (3) can then be
expressed as

L(✓) = �
m

2
log(2⇡)�m log � �

1

2
log |KQ|�

1

2�2
q>K

�1
Q

q, (12)

where we note that KQ does not depend on � but can depend on all the other components of ✓. In the
case of the overall amplitude parameter �, it is possible to obtain an analytic expression for the value
�ML by differentiating and setting @L/@� = 0 [74]. This gives

�2
ML =

q>K
�1
Q

q

m
(13)

ii

Figure 5: Comparison of stationary (4), on left, and non-stationary (16), on right, covariance
functions for the QR algorithm example detailed in Section 4.2.

Plugging � = �ML into (12) gives

L(✓|� = �ML) = �
m

2
log(q>K

�1
Q

q)�
1

2
log |KQ|+ C (14)

where C is a constant in ✓. From here, we employ numerical optimisation to maximise (14) over the
remaining 3 + p degrees of freedom in ✓.

It is important to ensure that numerical optimisation is successful, otherwise conclusions provided
by BBPN could be an artefact of failure of the numerical optimisation method. To this end, we
undertake robust gradient-based optimisation on (14), using MATLAB’s packaged fmincon routine.
This requires calculation of the gradients of (14) and explicit formulae will now be provided.

By differentiating (14) we have

@✓L(✓|� = �ML) =
m

2

q>K
�1
Q

(@✓KQ)K
�1
Q

q

q>K
�1
Q

q
�

1

2
tr
�
K

�1
Q

(@✓KQ)
�

(15)

Define the matrices

(B)l,l0 := b(t(l)) · b(t(l0)) , (KG)l,l0 := kG(t(l), t(l0)) , (KE)l,l0 := kE((h(l), t(l)), (h(l0), t(l0))).

Then KQ = B + ⇢GKG + ⇢EKE , and it follows that

@⇢GKQ = KG , @`hKQ = ⇢E@`hKE ,

@⇢EKQ = KE , @`t,iKQ = ⇢G@`t,iKG + ⇢E@`tKE

The low-level terms such as @`hKE can readily be computed by hand and will depend on the radial
basis functions �i and adopted in KG and KE . Note that if ↵ > 0 is treated as unknown and
appended to the parameter vector ✓, as in Section 4.2, a similar calculation can be performed to obtain
the gradient with respect to ↵ of (14).

The convergence of this gradient-based optimisation approach to a minimum of L(✓) is verified
empirically in Appendix C.3.2.

C Details of Empirical Assessment

This appendix contains full details for all experiments described in the main text.

C.1 Riemann Sum Illustration in Figure 1

Figure 1 considers the function f(x) = sin2(4⇡x) + exp(x)� 5
2x

4 + 1
2 cos(16⇡x) +

1
4 cos(20⇡x).

The quantity of interest q⇤ is the integral
R 1
0 f(x) dx, which has the exact value (e� 1) ⇡ 1.71828.

iii

Figure 6: Comparison of different parameterisations for h relative to the number of iterations
of the QR algorithm; h := �1/2 (left); h := �2 (right)

BBPN was applied to the method of Riemann sums. The convergence of this method is first order,
and we set ↵ = 1 accordingly. We choose a range of step-sizes h between 0.01 an 0.08, with the
Riemann sum approximations plotted in the left pane of Figure 1. Hyperparameters of the GP were
set using maximum likelihood approach, as described in Appendix B.3.

C.2 Sensitivity to Prior Specification

In this section we consider the effect of varying several of the choices made during the specification
of our prior model. The suitability of our non-stationary GP model is considered in Appendix C.2.2.
The effect of the choice of parametrisation for h is considered in Appendix C.2.2. The choice of
the kernel functions �i and is discussed in Appendix C.2.3. Finally, the nature and number of the
finite-dimensional basis terms bi is discussed in Appendix C.2.4. In each case we explore the impact
of these aspects of the prior specification by reproducing figures from the main text under different
settings within the GP model.

C.2.1 Stationary / Non-Stationary Error Model

Since the error E(h, t) is assumed to vanish in the limit h ! 0, and since its scale is assumed to
depend on the order ↵ of the underlying numerical method, we specified a non-stationary GP in (4).
For the QR algorithm example in Section 4.2, we now contrast this with the same analysis performed
with the stationary GP whose covariance function is

k̃E((h, t), (h
0, t0)) = (|h� h0

|/`h) · kG(t, t
0) (16)

i.e. setting ↵ = 0 in (4).

From Figure 5 (right), we see that the extrapolation is extremely poor when a stationary GP is used.
Moreover, the use of a stationary GP leads in this case to over-confident predictions, with the true
eigenvalues belonging outside of the ±2� credible intervals. This provides strong support for the use
of the non-stationary GP that we propose in the main text.

C.2.2 Parameterisation of h

The choice of parameterisation of h is also crucial to the operation of BBPN. While it is sometimes
the case that an ‘obvious’ parameterisation exists (such as the step-size in a time-stepping method,
where the order ↵ specifically refers to this quantity; or the overall tolerance level of a numerical
method) this is, unfortunately, not always true. If some heuristic reasoning for determining this
parameterisation is not available, we recommend some prior experimentation and comparison with
calibration metrics such as surprise, introduced in Section 4.

iv

Figure 7: Comparison of different kernel types for the radial basis functions �i and . Matérn
1/2 (left); Mateérn 3/2 (centre); and Gaussian (right).

For the QR algorithm example in Section 4.2, Figure 6 shows the effect of replacing the parame-
terisation h := �1 (as in Figure 3) with h := �1/2 and h := �2. Although BBPN continues to
work, to an extent, with these alternative parametrisations, its predictive performance is somewhat
diminished.

C.2.3 Choice of Radial Basis Functions �i and

For all simulations in this article we specified Matérn 1/2 kernels for �i and . The motivation for
this, stated in the preliminary notes in Section 4, is to impose the minimal continuity assumption on q
but not to assume additional levels of smoothness where this cannot be justified a priori.

Figure 7 shows the effect of specifying instead Matérn 3/2 or Gaussian kernels for �i and in the
Riemann sum test problem in Figure 1, contrasting with the Matérn 1/2 kernel used there. In all
cases, the same process of gradient-based optimisation was employed to automate the setting of
the kernel hyperparameters. The additional smoothness of the mean interpolant is clearly visible in
the higher Matérn and Gaussian cases, but note also the difference in scale of the ±2� region. In
particular, the use of smoother kernels is associated with higher confidence in the predictive output,
with the Gaussian kernel producing the largest value of the surprise S2 (though this was still within
the central 95% region for a �2 distribution, so we do not reject the hypothesis that the BBPN output
is calibrated). On balance we err on the side of caution and recommend the Matérn 1/2 kernel for
applications of BBPN.

C.2.4 Choice of Basis Functions bi

In this section we demonstrate the purpose of including basis functions bi in the model for G(t). To
do so, we plot the output of the BPPN procedure for the PDE example in Figure 4, since this example
has non-trivial ‘t’ domain (though the variable called t in the model definition in Section 3 is in fact
called x here). The effect of including a constant basis function (i.e. v = 1 and b1(t) = 1) is to allow
the model a non-zero mean in t. For this example, the dynamics are mostly above the 0 level and
even a simple global mean would be more likely between 1 and 2. Omitting the basis function (i.e.
v = 0), as shown in the bottom pane of Figure 8, inflates the covariance to compensate for this misfit,
and in this case results in an underconfident model.

In this example, it is unlikely that the additional inclusion of higher-order polynomial basis functions
would be of use. Indeed our experiments showed this. However the oscilliating nature of the dynamics
across the range of t suggests a Fourier basis may be an appropriate mean model. Ideas along these
lines are partially explored in [75], and a fuller investigation in the context of BBPN will be the
subject of future work.

v

Figure 8: Comparison of the inclusion and exclusion of the first polynomial basis function (top:
v = 1, bottom: v = 0) for the model in Section 4.3.

C.3 Ordinary Differential Equations

Here we provide full details for the ODE experiment in the main text. In Appendix C.3.1 we explain
how all the probabilistic ODE solvers that we considered in the main text were implemented. Then,
in Appendix C.3.2, we present evidence that the gradient-based optimisation approach we employed
to estimate the GP hyperparameters in BBPN has successfully converged.

C.3.1 Details of Implementation

In this section we describe in detail the sources and licences of the codes, as well as the settings used,
to perform the comparison experiments in Section 4.1. These codes are from different sources, span
several years in release date, and are coded in different languages. They also accept inputs and give
outputs in mutually inconsistent forms. This makes a ‘cloned-repository’ solution from which results
could be reproduced automatically impractical. In the interests of maximum possible transparency
we manually collect and present code sources and parameter values here in the hope that interested
readers will not find it difficult to reproduce our results locally if required. Recall that our simulations
consist of varying input h.

The one-step-ahead sampling model of Chkrebtii et al. [39] (labelled ‘Chkr.’ in Figure 2) was
run using MATLAB code from https://git.io/J33lL with nsolves = 100, N = d20/he,
nevalpoints = 1001 and the lambda and alpha hyperparameters left at their default values
(which depend on N, and therefore h). This software has no explicitly-stated licence.

The perturbed integrator approach of Conrad et al. [38] and Teymur et al. [41] (labelled ‘Conr. O1’
and ‘Teym. O2’ was run using MATLAB code provided to us by the authors of the latter paper and not,
as far as we are aware, publicly released.

The Gaussian filtering approach of Schober et al. [40], Tronarp et al. [47] and Bosch et al. [55]
(labelled ‘Scho. O1’, ‘Tron. O2’ and ‘Bosch O2’) was run by installing the Python package
probnum and using the function probsolve_ivp. ‘Scho. O1’ uses non-adaptive step-sizes and
takes algo_order = 1, and method = EK0; ‘Tron. O2’ uses non-adaptive step-sizes and takes
algo_order = 2, and method = EK1; while ‘Bosch O2’ uses adaptive step-sizes and takes
algo_order = 2, and method = EK1. In the latter case, h is taken as the relative tolerance rtol
instead of the step-size. This software is Copyright of the ProbNum Development Team and is
released under an MIT licence.

The reference solution used in calculating errors was calculated using MATLAB’s in-build ode45
function with tolerances set using odeset(‘RelTol’,3e-14,‘AbsTol’,1e-20)

It is difficult to fairly compare the wall-clock times of these codes, particularly since they are written
in different languages and are therefore run in different environments. For the example simulation in
Figure 2, none of the examples took more than a few seconds on a 2018 MacBook Pro, and some
were virtually instant. All publicly-available codes were downloaded or cloned on 22 April 2021.

vi

https://git.io/J33lL

Figure 9: Likelihood variation in the neighbourhoods of the maximum likelihood values found by
MATLAB’s ode45 optimiser. In each case, the remaining parameters were fixed at their maximum
likelihood value. The values determined by the optimiser are shown with a vertical orange line.

C.3.2 Parameter Identifiability

In order to assess the robustness of our gradient-based optimisation procedure for maximum likelihood
estimation, we consider again the Lotka–Volterra model. Here we will vary each parameter `t, `h,
⇢G and ⇢E in turn, holding all other parameters fixed at the values produced by the gradient-based
optimisation method. The resulting plots are given in Figure 9.

In this application, at least, we can be reasonably confident that the optimisation procedure has located
a global maximiser in 4D (though, strictly speaking, we cannot confirm this from the univariate plots
in Figure 9). In general, and as is common in GP modelling, model fit should always be assessed,
in order to be confident in the data-driven nature of the GP output, something particularly salient in
numerical applications where calibration is of paramount importance.

C.4 Eigenvalue Problems

In this section we provide certain further details for the eigenvalue problem presented in Section 4.2.
We first note that the matrix A defined there can be shown to have exact eigenvalues 4�2 cos(p⇡/(l+
1))� 2 cos(q⇡/(m+ 1)); p = 1, . . . , l; q = 1, . . . ,m. The knowledge of the true values is required
to facilitate the following analysis. For this section we take l = 3 and m = 5, as in the left-hand
panes of Figure 3.

In a similar manner to Figure 2, we plot in the left-hand pane of Figure 10 the (log-) error W for
several methods —the classic QR algorithm in green, then the traditional extrapolation methods
of Richardson and Bulirsch–Stoer (using the data obtained in the run of the QR algorithm) in red
and yellow respectively. From the definition of W , this ‘combined absolute error’ is formed by
considering the norm of the error vector of all eigenvalues. (The centre pane gives the (log-) maximum
relative error w, i.e. maxi[(�̂i � �i)/�i], where �̂ is the vector of true eigenvalues, and is provided
since this is a more familiar presentation of error in eigenvalue problems in numerical analysis.)

It is seen that polynomial and even rational function interpolation are not robust in this setting, and
give errors significantly larger than simply the most accurate single QR-produced estimate. BBPN
does not suffer the same issue, possibly because the nonparametric interpolant has favourable stability
properties, and it is somewhat competitive with the traditional QR algorithm, at the cost of additional
computation but with the additional richness of output that a PN method provides.

The right-hand pane shows the (log-squared-) surprise of individual eigenvalues of the 15 ⇥ 15
matrix, plotted over the 95% central probability region of a �2

1 random variable. This shows that
the predictions provided for the majority of the 15 eigenvalues are well-calibrated, but that a small
number of predictions are overconfident. This is a promising early result for a problem with no
previous PN method in existence, as well as one in which ↵ has to be inferred due to the absence of a
canonical parameterisation for h; see Appendix C.2.2.

vii

Figure 10: Eigenvalue Problems: Left: the combined absolute error W for the classic QR
algorithm (green), the traditional extrapolation methods of Richardson (red) and Bulirsh–Stoer
(yellow) using the data obtained in the run of the QR algorithm, and BBPN (blue). Centre: the
maximum relative error w for the same methods. Right: the surprise S of individual eigenvalues
of the 15⇥ 15 matrix, plotted over the 95% central probability region of a �2

1 random variable.

C.5 Kuramoto–Sivashinsky Equation (KSE)

In this section we provide further detail for the PDE problem presented in Section 4.3.

Numerical solutions to the Kuramoto–Sivashinsky equation (KSE) were computed on the spatial
grid x 2 {0, 0.001, 0.002, . . . , 1} and over time segments ti,j = jhi for j 2 {0, 1, . . . ,mj}, where
mj = b200/hie with b•e denoting the nearest integer function and hj the time-step parameter.
After transformation into Fourier space, solutions were computed using a fourth-order Runge–Kutta
numerical integrator ETDRK4 [73].

C.5.1 Fourier Transform to Employ the ETDRK4 Numerical Integration Scheme

We discretise the spatial domain using a Fourier spectral transformation. That is, we set

u(x, t) ⇡
X

k2⌦k

ũk(t) exp
ikx/L,

in (6), where ⌦k denotes the set of wave-numbers. Doing so returns the Fourier transformed KSE,

d

dt
ũk(t) +

✓
k4

L4
�

k2

L2

◆
ũk(t) +

ik

2L
ṽk(t) = 0, t > 0, (17)

where

ṽk(t) =
1

2⇡L

Z
⇡L

�⇡L

u2(x, t) exp�ikx/L dx ⇡
1

N

N�1X

l=0

u2(xl, t) exp
�ikxl/L

with N = 1/�x and �x denoting the spatial step-size, and on assuming that both the solution and
spatial derivative are periodic in x, i.e.,

u(x, t) = u(x+ 2⇡L, t) and
@

@x
u(x, t) =

@

@x
u(x+ 2⇡L, t), t � 0,

for some user defined length scale L (which we take to be L = 1/2⇡ in our simulation). See [73] for
a complete description of the fourth-order ETDRK4 scheme, as well as example MATLAB code used
to compute solutions to (17).

viii

	Introduction
	Turning Lead into Gold
	Methodology
	Notation and Setup
	Black Box Probabilistic Numerics
	Gaussian Process BBPN

	Experimental Assessment
	Ordinary Differential Equations
	Eigenvalue Problems
	Partial Differential Equations

	Discussion
	Proof of prop: richard
	Gaussian Processes for BBPN
	Conditioning Formulae
	Proof of Higher-Order Convergence Result in subsec: GPs
	Maximum Likelihood Estimation

	Details of Empirical Assessment
	Riemann Sum Illustration in fig:classical example
	Sensitivity to Prior Specification
	Stationary / Non-Stationary Error Model
	Parameterisation of h
	Choice of Radial Basis Functions i and
	Choice of Basis Functions bi

	Ordinary Differential Equations
	Details of Implementation
	Parameter Identifiability

	Eigenvalue Problems
	Kuramoto–Sivashinsky Equation (KSE)
	Fourier Transform to Employ the ETDRK4 Numerical Integration Scheme

