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1. Problem Statement
Inverse cumulative distribution functions (in-

verse CDFs), also known as quantile functions, typ-
ically lack closed-form analytical solutions for many
important probability distributions, including the
normal distribution. Approximating inverse CDFs is
an inverse problem that plays a critical role in uncer-
tainty quantification and statistical inference. Tra-
ditional approaches are often non-parametric, rely-
ing on numerical integration and interpolation to
build approximate solutions. This paper presents
two novel parametric methods that aim to provide
more accurate approximations compared to non-
parametric methods.

2. Methods:
We propose using a composite approximation

function formed by combining a logit function with
a neural network. We present two ways to train
the neural network: Inverse Transport Map Learn-
ing (ITML) and Inverse Physics-informed Learning
(IPIL). The ITML approach exploits the fact that
when the reference distribution is chosen as a uni-
form distribution U(0, 1), the associated transport
mapexactly represents the inverseCDF, enabling the
approximation function to be constructed without
numerical integration. The IPIL approach formu-
lates the inverse CDF approximation as a differen-
tial equation solving problem and leverages physics-
informed neural networks to obtain the solution. Al-
though IPIL still requires numerical integration, it
avoids the use of interpolation.

3. Experiments:
We conduct validation experiments on standard

normal, Beta, Gamma distributions, and a non-
normalized abstract distribution. Experimental re-
sults show that our proposed parametric methods
achieve higher accuracy in inverse CDF approxi-
mation compared to existing non-parametric meth-
ods. The associated code and datasets are pub-
licly available at: https://github.com/wuwudawen/
IP-Inverse-CDF.

4. RelatedWork
The approximation methods proposed in this pa-

per build upon two lines of research, transportmaps
and physics-informed neural networks. Below is a
brief overview of these two areas.

TransportMaps Transportmaps are used for sam-
pling and estimating PDFs of unknown probability
distributions by constructing a coupling between a
reference and target distribution. Triangular maps
(Knothe–Rosenblatt rearrangement) offer computa-
tional efficiency through their simplified Jacobian
determinant calculation [1]. Applications include
Bayesian inference [2] andoptimizedproposal distri-
butions in MCMC [3]. Unlike MCMC, transport maps
can directly estimate unknown PDFs without requir-
ing kernel density estimation. In machine learning,
normalizing flows represent a neural network-based
implementation of transport maps used in genera-
tive AI [4].

Physics-informed Neural Networks Deep learn-
ing for solving differential equations emerged in the
1990s [5], with recent advances in Physics-informed
Neural Networks (PINNs)[6]. PINNs’ loss functions
combine PDE residuals computed via automatic dif-
ferentiation with supervised boundary condition er-
rors. Their flexible architecture enables applica-
tions across physics and engineering problems[7].
Various PINN variants incorporate either machine
learning techniques [8] or finite element meth-
ods [9] to improve accuracy. Theoretical studies have
addressed existence theorems and stability prob-
lems [10].
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