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A PROOF OF PROPOSITION 1

For the initial iteration ¢ = 0 with the initial Hessian approximation By, curvature pair {sg, ro} and
scaling factor 1)1, consider the corrected Hessian approximation

B. =41 B1 = 91 BFGS(By, 8o, 1) (1
Define the corrected initial Hessian approximation as By = ¢1 By and the scaled gradient variation

as ¥y = ¥1ro. By performing the BFGS update on B with {s0,To}, we have

T R TRT o T 9 TRT
rory  Bososy By Yirerg 11 Bosoesy By

]~31:BFGS Bo,So,f‘o :B0+~ = =y1Bg + 2)
( ) Tgso  sg Bosy Y1rg so V18] Bosy
rord Bosos] Bl rors  Boses] Bl
=By P00 1B Bo _ (g, 4 Tofo Bosoto Bo )
rg So sg Bos: rg So sg Bos;

= 1 BFGS(By, s0,10) = ¢1B1 = B1.

This indicates that scaling the Hessian approximation matrix B is equivalent to scaling the initial
Hessian approximation B and the gradient variation r(. Thus, the proposition conclusion holds for
the initial iteration ¢t = 1.

For any iteration ¢ > 1 with the initial Hessian approximation By, stored curvature pair {s,,, ru}f;IO
and the scaling factor ¢;, consider the corrected Hessian approximation

B; = ¢;B; = ¢, _1BFGS(B;_1,8;_1,1_1), ..., B1 = BFGS(By, g, o). (3)
Define the corrected initial Hessian approximation as By = ¢, By and the scaled gradient variations

as r, = yyr, foru = 0,...,¢t — 1. By performing the BFGS updates on B, with {su, fu}f;lo, we
have

B, = BFGS(B,_1,8;1,f-1), ..., B1 = BFGS(By,so, To). 4)
We now use induction to prove the following statement
By, = ¢;By, forallk=1,...,¢t. (5)

For the initial iteration k = 1, by performing the BFGS update on B, with {so,To}, we have

rorg  Bosesg BJ

rJ so sg Boso

B,=BFGS(By,s,F0) =4 (Bo + ) =1¢BFGS(Bg,s0,r0) =%:B1.  (6)
Thus, equationholds for k = 1. Assume equationholds for iteratign k—12>1,ie., Bk_l =
1+B_1, and consider iteration k. By performing the BFGS update on By, _; with {sy_1,Tr_1}, we
have

realio; BroiSe-18i Bl

By =BFGS(Bi1, 511, F11) =¥ (Bra 1 -2k “H-uB, 0
r,_1Sk—1 Sp_1Br—1Sk—1

where Bj,_; = ¢;Bj,_1 is used in the second equality. By combining equation EI and equation
we prove equation [5|by induction. Thus, we get

B; = :B; = B,. )
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This indicates that scaling the Hessian approximation matrix B, is equivalent to scaling the initial
Hessian approximation B and the gradient variations {ru}z_:lo.

We conclude that at each iteration ¢, scaling the Hessian approximation matrix B, by 1, is equivalent
to scaling the initial Hessian approximation By and the gradient variations {ru}z;lo by ;. There-
fore, we can incorporate the correction strategy into the displacement step by scaling the gradient
variations and maintain the remaining unchanged, which completes the proof.

B PROOF OF PROPOSITION 2

We need the following lemmas to complete the proof.

Lemma 1. If LG-BFGS and greedy BFGS perform the greedy selection from the same subset
{e;}I_, of size T and have the same initial settings, the iterates {xy,.}+ generated by LG-BFGS
equal to the iterates {xq .}, generated by greedy BFGS.

Proof. We start by noting that greedy BFGS updates the variable with (1) and the Hessian inverse
approximation with (3). This is equivalent to updating the variable and the Hessian inverse ap-
proximation from the initial Hessian inverse approximation H with all historical curvature pairs
{sk, rk}};}) at each iteration ¢. In this context, we can prove the lemma by proving the iterate
xr,; generated by LG-BFGS equal to the iterate X ; generated from the initial Hessian inverse

approximation Hy with all historical curvature pairs {sg, rk}fc;lo for any iteration ¢t > O

Specifically, we use induction to prove the lemma. At the initial iteration ¢ = 0, this conclusion
holds because LG-BFGS and greedy BFGS have the same initial setting X7, o = X¢,0. Assume that
the conclusion holds at iteration ¢ — 1 > 0, i.e., the iterate x, ;1 generated by LG-BFGS with the
limited-memory curvature pairs P;_; equal to the iterate X ;1 generated by greedy BFGS with

all historical curvature pairs {s, ry }1_5 as

XL,t—1 = XG,t—1- &)

Consider iteration ¢ with the new curvature pair {s;_1,r;_1}. Greedy BFGS updates the historical
curvature pairs by adding the new curvature pair {s;_1,r;_;} directly and form the new historical
curvature pairs {sg, rk}z_:lo. LG-BFGS updates the curvature pairs by incorporating the information
{st—1,r¢—1} into P;_; and form the new curvature pairs P;. From Theorem 3.2 in (Berahas et al.,
2022), if the Hessian inverse approximation generated from Hy with P;_; equal to that generated
from Hy with {sy, rk}’,;;%, the Hessian inverse approximation generated from H with P, equal to
that generated from Hy with {sy, rk}}i—:%. By using this result and equation@ we get

XLt = XG,t- (10)

By combining equation [J]and equation[T0} we prove by induction that x1, ; = X ; for any iteration
t > 0, which completes the proof. O

Lemma 2 (Lemma 4.3 in (Rodomanov & Nesterov, 2021)). Let x be a decision variable and B the
Hessian approximation satisfying

V2f(x) 2 B=nV?f(x) (11)
for some n > 1. Let also x4 be the updated decision variable as
x, =x—-B7'Vf(x) (12)
and A ¢(x) be such that Ay (x)Car < 2. Then, it holds that
A (X)C}w
A(x)Cpr\m— 1+ 205
0= —xloaso0 <0s) and s < (14 LI T2y 0.y

Lemma 3 (Lemma 4.4 in (Rodomanov & Nesterov,,2021)). Let x be a decision variable and B the
Hessian approximation satisfying

V2 f(x) < B < nV3f(x) (14)

'Without loss of generality, we assume {}5 = 0, > = 0 and [[’ = 1ifb < a.
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for some n > 1. Let also x be the updated decision variable [cf. equation and ¢ = ||x4 —
X||v2 ¢(x) be the weighted update difference. Then, it holds that

V2f(xs) 2 (1+Cy¢)B =B (15)

and the Hessian approximation B updated by the BFGS on B with the curvature pair {s,r}
satisfies

V?f(x4) 2 BFGS(B,s,r) 2 (1 + Cune)’ V2 f(xy). (16)

Proof of Proposition 2. From Lemmal[I] we know that the iterates generated by LG-BFGS is equiv-

alent to the iterates generated by greedy BFGS, if both perform greedy selection in the same subset

{e;}7_; of memory size 7. In this context, we can prove the linear convergence of the iterates gener-

ated by LG-BFGS by proving the linear convergence of the iterates generated by the corresponding
greedy BFGS, alternatively.

We start by defining the concise notation A\; = A (x¢), ¢y = || X141 — X¢|| w2 f(x,) and
L

R (17)
I
for convenience of expression. We use induction to prove the following statement
V(i) X By 2V f (x1), (18)
< (1= 57" (19)
for any iteration ¢ > 0. For the initial iteration ¢ = 0 with the initial condition, we have
v? < B, < Lv? =V 20
f(x0) = 02 f(x0) =m0V~ f(x0) (20)
and
Ao < (1= £9)0% = . @1
- 2L

Thus, equation [I8]and equation|[I9]hold for ¢ = 0.

Assume that for iteration ¢ — 1 > 0, we have

V2 f(xx) < By, < e V2 f(x1), (22)
e < (1 %)’% (23)

forall 0 < k < ¢t — 1, and consider iteration ¢. By using Lemma [2 with the condition equation
we have

At—1Cm

A Oy =1 — (1 — ==5—

A < (1+ -1 M) ( 2 )Atl. (24)
2 Mt—1

By using the fact C'yyAi—1 < CayAg < 1 from the initial condition and the inequality 1 — x > e 2
forany 0 < x < 1/2, we have

t

1— Ae—1Cm e~ M—-1Cm

—> : (25)
N—1 MNt—1
By substituting the representation of 7;_1 into equation[25] we get
1— Ae—1Cm
2 > e~ OmAt—1—2Cn SiZa M > e~ 2Cm SEb A ﬁ (26)
Nt—1 L L

The term 2C) 22;10 Ak in equation [26|can be bounded as
t—1 t—1

TN 4L 3
2C N <20 1— )N < —Cpurog<In- 27
MkZ:O MkZ:O( 2L) 0~ mAo < In g 27
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where the condition equation 23]is used in the second inequality and the initial condition is used in
the last inequality. By substituting equation[27)into equation [26] we have

1 _ At—1Cm
-2 > 27“ (28)
Me—1 3L

From the condition equation [23|and the initial condition, we get
In3
A—1Cm < ACwm cmpp o p
2 - 2 — 8L T 16L
where the inequality In(1 4+ x) < « for any > 0 is used in the last inequality. By substituting
equation [29) and equation 28] into equation [24] we have

V() B (- s () @

where the condition equation [23]is used in the last inequality. By using Lemma [3| with the condition
equation22] we have

(29)

V2 f(xt) 2By = (1+ ¢ 1Cum) 1 V2 f (1), 31)
By using the result ¢y < ;7 from Lemma and the inequality (1 + z) < e?* we get
B; < (14 M_1Cum)2 -1 V2 f(xe) = 294 =1 V2 f(x411). (32)

By further substituting the representation of 7, into equation[32] we have
-1, L
V2f(x¢) = By 2 2™ Ziso MV f(xe) = 0V f(x4). (33)
I

By combining equation 20 equation [21] equation [30] and equation 33| we prove equation [I§] and
equation [I9)by induction, which completes the proof. O

C PROOF OF PROPOSITION 3

We need the following lemma to complete the proof.

Lemma 4 (Lemma 2.4 in (Rodomanov & Nesterov,2021)). Consider two positive definite matrices
A = D. For any vector s € R, it holds that

s'(D—-A)s
sTAs
where BFGS(B, s, As) is the BEGS update on B with the curvature pair {s, As}.

o(A,D) — o(A,BFGS(D, s, As)) > (34)

Proof of Proposition 3. From Lemma we know that V2f(x,) < B. Let By = BFGS(B,s,r)
be the updated Hessian approximation matrix, where {s,r} are the curvature pair selected greedily
from the subset {e; }7_, i.e.,

s'Bs
S = argmax

sl o} 8 V2f(xs)s’ (35)

Denote by oy, (B ), 0x, (B) and o(B) the concise notation of (V2 f(x),By), 0(V2f(x4), B)
and o(V? f(x), B). By using Lemma@with A = V2f(x,)and D = B, we have

s' (B - V2f(x4))s

<. (B) — 0x, (B}) > 36
U+( ) U+( +)— STvzf(X+)S (36)
By substituting equation [35]into equation 36 we have
. T(B — V2 S
0 (B) — 0. (B,) > mas °\ focr))e (37

Ti<i<r e V2f(x4)e;
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LetE =B — V2 f(x4) be the approximation error matrix. From Assumption 1, we have

pI < V2f(xy) X L1 (38)
where I is the identity matrix. Substituting equation [38]into equation [37] yields
R 1
>
0%, (B) —0x, (By) > 7 hax e, ! Be;. (39)
Let ((e;) be the relative condition number of the basis vector e; w.r.t. E fori = 1,...,7. From the

definition of the relative condition number [Def. 1], we have

1
The. — _—
e, Ee; (o) 1<?<de Eel (40)

By substituting equation 0] into equation [39] we have

A 1 1
Ox; (B) =0, (By) 2 L1<?<Xr(ﬁ(e)1g1?<xde Ee1) “h
1 1
= E P = T 5 E i
Lminy<;<, B(e;) 112?<de e Lﬂ, 121?<Xd i Hei
where (3, is the minimal relative condition number of the subset {e;}7_; w.rt. E. Since
max;<;<qe, Ee; > e/ Ee, foralli =1,...,d, we get
: T
0x, (B)—0x, (By) > Lﬂdze EeZ_LﬁdZTr e E) 42)

where Tr(-, -) represents the trace operation. From the linearity of the trace operation, we get

R 1
Ox. (B) =0, (By) 2 —md Zez )= L E) 2 S (VR (x) T ) @3)

where the condition equation is used in the last inequality. From the definition o (B) =
Tr(V2f(x4 )~ L E), we have

0x,(By) < (1 - )ox, (B). (44)

e
BrLd
We then characterize the relationship between oy, (B) and 0x(B). We can represent oy N (B) by
definition as

0%, (B) = Tr(V2f(x1) 7'B) —d = (1 + ¢Cn) Tt (V2 f(x4)"'B) —d (45)
where B = (1 + ¢Chr)B is used in the last equality. Since 1 + ¢Cps > 1, we can upper bound
equation 3] as

0%, (B) < (1+¢Cu)*Tr(V2f(x4) 7' B) —d = (1 +¢Car)*(0x(B) +d) —d.  (46)
Expanding the terms in equation [46] yields

0x,(B) < (1+ ¢Cwnr)0x(B) + d((1 + ¢Car)* — 1) 47)

= (1+ 9Ch )20 (B) +2d6C (1+ ¢CM)

2
2d¢OM )
14 ¢Cuy '
By substituting equation 7] into equation [#4] we complete the proof

<+ ¢CM)2<GX(B) n

me(B2) < (1= ) (1 6Ch)? (on(B) + 5200 ).

BrdL @9
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D PROOF OF THEOREM 1

From Lemmal(I] we know that the iterates generated by LG-BFGS is equivalent to the iterates gener-
ated by greedy BFGS, if both perform greedy selection in the same subset {e; }7_; of memory size
7. In this context, we can prove the superlinear convergence of the iterates generated by LG-BFGS
by proving the superlinear convergence of the iterates generated by the corresponding greedy BFGS,
alternatively.

Denote by A; and o the concise notation of A ¢ (x;) and o(V?f(x;), B;). We start by noting that
Ot = TI‘(VQf(Xt)_lBt) —d= Tr(sz(Xt)_l(Bt - v2f(Xt)) (49)

where B, —V? f(x;) is positive semidefinite from Proposition 2 [cf. equation. Since the maximal
eigenvalue of V2 f(x;) ™! (B; — V2f(x)) is bounded by the trace of V2 f(x;)~*(B; — V[ (xy),
i.e., the sum of eigenvalues of V2 f(x;) "1 (B; — V2 f(x;), we have

V2 f(xe) 7 (Be = V2 f(x0)) = Te(V2f(xe) T (By — V2 f(x4)) 1L (50)
By multiplying positive definite matrix V2 f(x;) on both sides of equation |50, we have
B, < (14 T(V2f(x) " (By = V2f(x0)) ) V2 (x) = (1 +0)V2f(x)  (5D)
and
V2 f(x) 2By 2 (14 00) V2 f(x0). (52)

By using Lemma 2] with the condition equation [52] we have

AtCM) ot + )‘th

2 1+O’t

Aes1 < (1 + A < (1 + Ath) (crt v QdCMAt))\t. (53)

Consider the term o, + 2dCys\; in the bound of equation We use induction to prove the
following statement

oy +2dCy A < @y (54
for any iteration ¢t > 0, where
t
L H 2(2d+1)Car 521 A dL
P, = 1—-——)e R p— 55
r =111 ﬁk,TdL) p &)

k=1
For the initial iteration ¢ = 0, it holds that
o0 +2dC g = Tr(V2f(x0) "'Bg) — d + 2dCr o
L vnr 1 L (56)
< ETr(V F(%0) " V2 f(x0)) — d + 2dChs Ao = (; - 1)d+ 2dChr o

where the initial condition of By is used in the second inequality. By substituting the initial condition
of \¢ into equation [56] we get
L dIn2 dL
+2dChro < (2 —1)d+ oo <=2 57
o0 MAo p 20d+1) = 1 (57)
Thus, equationholds for ¢ = 0. Assume that equationholds for iteration ¢ > 0, i.e.,
o +2dCy A < @y (53)

and consider iteration ¢ + 1. By substituting equation 58] into equation [53|and using the inequality
1+ 2 <e”, we have

2 Cm

)<I>t)\t < TP\, < MM PN, (59)

MC
A1 < <1+ tZM
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By using Lemma[2]that ¢, < ); and Proposition 3, we have

ora1 < (1 - m) (1+ @OM)Z(@ n %) (60)
< (1 - m) (14 MCar)? (m + %)
<(1- m)(l + MCw)? (o0 + 240, Cr ) < (1 m)e%’m@t

where f(;1+1,, is the minimal condition number of the subset {e;}7_, at iteration ¢ + 1 and the
inequality (1 + x)? < €27 is used in the last inequality. Since 1 — u/(Bi41,-dL) > 1/2 with d > 2,
combining equation [59)and equation [60] yields

Ot+1 + 2dCM)\t+1 S (1 - ﬁ)GQCMMq)t + 2dCA{€20M)\‘(Pt)\t (61)
t+1,7
1% 20Mm A o 2CMA
<(1l-———+ MAL D 1— ———)4dC MAt P\
> ( Bt-‘,-l,q—dL)e t +( 6t+177—dL) ME tN\t
—(1- ﬁ)e%‘mt(l + 4dChr ) @y
t+1,7

By using the inequality 1 + = < e” and substituting the representation of @, into equation [61] we
get

Trsr + 2dCy A < (1— ﬁ)ewwdﬂ)&@t S (62)
+1,7

Thus, equation [54] holds for ¢ + 1. By combining equation [57] equation [58| and equation [62] we
prove equation [54]by induction.

By substituting equation [54]and the representation of ®, into equation[59] we have

)\t+1 < e?)\tCM DN, < 62(2d+1)AtCM DN\ = H (I)t+1)\t~ (63)
( - 5t+1,dL)
By using Proposition 2, we get
t+1 @ dL
P _ 1— 2(2d+1)Car 3k _o A 64
t+1 kl;[l( deL)@ p (64)

t+1 k
B 2edrou T, (1- 4 ) A 9L
< 1 k=0 2L
- kl;[l ( Bk,TdL)e 1%

From the fact that ZZ:O (1- %)k < 2L/ and the initial condition, we have
t+1 t+1
K m2 L H 2dL
< - — = - —
o< [LO-g e r =11 0=, ©
Substituting equation [63]into equation [63]yields
t
W 2dL
M < [T (- )= A (66)
b1 ﬂk,TdL 1%
Let ¢ be such that
to
W 2dL
H (1- ) — <1 (67)
k1 Bk,‘rdL 14
and we have
t+to t+to
L 2dL w
Atttor1 < H (1751@ dL)TAH—tO < H (1*m))\t+to (68)
k=1 T k=to+1 T
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for any ¢ > 0. By using equation [68]recursively, we get

t+to t+to

12 —k
)\t+tg+1 é H (]_—m))\ttho S . S H (l_mﬁ)ﬂrto*%l )\to. (69)
k=to+1 ’ k=to+1 ,

By further using Proposition 2, we complete the proof

t+to
I t+to+1—k o\ to
e < [T (-5 (1-57) o (70)
k=to+1 ’
E PROOF OF THEOREM 2
We start by noting that for any vector e; and matrix E, we have
M < el Ee; <\ (1)

where \; and \; are the minimal and maximal eigenvalues of E. From Definition 1, the relative
condition number of e; w.r.t. E is bounded as

T
maxi<g<d € Eek >\d

< —= 72

e,;'—Eei -\ s (72)

Blei) =

where 3 is the condition number of E. By using equation [72]together with the corollary condition,
we have

Bt < Cp (73)
or
ﬁt,'r = lfgﬂiiélTﬁ(ei) <B < Cﬁ (74

where [; is the condition number of the approximation error matrix at iteration ¢. By further using
equation[73|or equation [74]in the result of Theorem 1, we have

I t(t41) " to
/\t+t0+1S(1*m) 2 (1*ﬁ> Ao (75)

which completes the proof.

F BOUND ON CONDITION NUMBER f;

We establish an upper bound on the condition number 3, of the error matrix B, —V? f(x¢41) with a
minor modification in the correction strategy in Section 3.1. Specifically, we consider the correction
strategy on the Hessian approximation By as

B;=(1+(4:Car + 6:)) By (76)

where 6; = ¢'6g > 0 with g a positive constant and 0 < ¢ < 1 a contraction factor. Since
(14+¢:Car)By = V2 f(x441) from equationand B; = V2f(x;) from equationin Appendix
B, we obtain

By — V2 f(xp41) = 6By = 6, V2 f(xy). (77
By using Assumption 1 with LI = V2 f(x;) = ulin equation we get
B — V2f(x¢41) = ppl. (78)
From equation [18]in Appendix [B] we have
B < n:V"f(x:) (79)
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where 7, is now defined as
= e20n Sizb vz sishe L (80)
I

with the modified correction strategy [cf. equationn Since both {/\f}t and {5f}f are decreasing
geometric sequences, 7; is upper bounded by a constant C,,. By using this fact in equation [79and
the latter in equation[76 we have

B, < (1+(6:Cr + 6))Cy V2 f (%) < (14+(XNoCs + d0)) Cy LI (81)

where \; < Ao, 0; < 6o and uI < V2f(x;) < LI are used in the second inequality. By using
equation and equation we can bound the condition number 3; of B; — V2 f(x;1) as

< (24 (XoCr + 00)) Cy L
- q*dop
at iteration ¢, where Ag and d¢ are initial constants. We remark that the upper bound in equation
is the worst-case analysis because it holds for the condition number f3;, i.e., the minimal relative

condition number 3; ; with memory size 7 = 1 [Def. 1]. Therefore, it is important to note that this
bound may not be tight and the actual value of 3; - could be smaller.

=Cip (82)

By following similar steps as in the proofs of Proposition 2 - Theorem 2, we can establish an explicit
convergence rate of LG-BFGS as

t+to

Af(Xigtg41) < H ( ﬁdL)tHOHu(l—QML)tU)\f(Xo) (83)

u=to+1

where the modified correction strategy may require a slightly more accurate initialization to derive
this rate. Since this upper bound C4 4 is not constant but increases with iteration ¢ [cf. equation[82]],

the convergence rate in equation mls slower than that in Theorem 2. Specifically, we can represent
Cy 5 in equation 82 as the form of

Crp=Cpq™" (84)
where Cs is a constant. By substituting equation [84]into equation [83] we get
t+to t+to+1—u t
u KO
)\f Xt+t0+1 < H (1—m ) (1_E> )\f(XO) (85)
u=to+1
We can approximate equation [85]as
t+to
:U’ u)t+t0+17u< ,U )to
1—— 1——] A 86
11 ( ol 57 ) M(xo) (86)
u=to+1
=0 L ol (o 1—w)g ( U )to
~ 1—2=) M
e 57 ) Ar(xo)
to+1 t—1 u t t
_ a0 (t—u)g ( M)O —Ct( H)O
= Cpak 0 1——1] A < 1——] A
‘ o) Aol se o) Mo

where C' = ¢'*11/(CpdL) is a constant. By combining equation and the result in Proposition
2, we have

Af(Xitto+1) < min {eiCt(l - %)tox\f(xo), (1 — %)t+to+1)\f(xo)}. 87

This can be considered as an improved linear rate depending on specific problem settings.
G ADDITIONAL EXPERIMENTS

We consider four datasets: svmguide3, connect-4, protein and mnist for classification problem, de-
tails of which are summarized in Table |I} With the local nature of superlinear convergence results
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Table 1: Details of datasets: svmguide3, connect-4, protein and mnist.

Dataset Number of samples N Feature dimension d  Regularization parameters p
Svmguide3 1243 21 10~4
Connect-4 67557 126 1074
Protein 17766 357 1074
Mnist 60000 780 106
0 0
10 "‘\\ — LG-BFGS with initial k=25 10 T — LG-BFGS with initial k =150
<
‘}\‘\ — LG-BFGS with initial k =20 \\s‘\\ — LG-BFGS with initial k =125
“\\‘\ — LG-BFGS with initial k=15 N \\ — LG-BFGS with initial k =100
\
105} “\\‘\ LG-BFGS with initial k =10 5 \\‘\ N LG-BFGS with initial k =75
-
A(e) LRY LG-BFGS with initial k =5 10 "\ M LG-BFGS with inital k=50
.
eI As() W
LY X (@o) Yy \\
1 YA kY \
10| LY  \ \
10 [RRENY \ S \,
v 10710 A
VW N \\
“\ \ Y .
\ \\‘\ Y S N
0 50 100 150 200 0 100 200 300 400
Number of iterations ¢ Number of iterations ¢
(a) Svmguide3 dataset (b) Connect-4 dataset
0. 0 in
107 ~3 ":\ ~ — LG-BFGS with initial k=300] 10 "'i“\**;:~-\ — LG-BFGS with initial k =700]
NS — LG-BFGS with inital k =250 "o . S |— LG-BFGS with intial k600
\\ o s |—LGBFGS with inital k=200 \\ N, LG-BFGS with nitial k =500
‘\ ‘\ \\ LG-BFGS with initial k0=150 ‘\ \\\ LG-BFGS with initial k0=400
10°5F \ \ LG-BFGS with initial k=100 10 N %\ LG-BFGS with initial k=300
. & A Y T
A (1) N \\\ ‘\‘ Az () A} \ \
s (o) \‘ .\ A (o) \‘ \ N\
\ p3 Y \)
10 AN 10 Vo \
10710¢ N\, N 10 \ \
0 \ \ \
\ N LY % \
y ‘\ \ \ [y X
\ K v \
X ‘\ \ \ \ ‘
\ AN [} Y \
0 100 200 300 400 0 200 400 600 800
Number of iterations t Number of iterations ¢
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Figure 1: Performance of LG-BFGS with different initialization on four datasets.

for quasi-Newton methods, we construct a setup with a warm start for all methods, i.e., the initial-
ization is close to the solution by performing greedy BFGS for kj iterations. This has the practical
effect of reducing the superlinear phase triggering time — see (Jin et al.l |2022) for further details.
Also worth mentioning is that we found it is better not to apply the correction strategy in LG-BFGS
and greedy BFGS methods in practice following (Rodomanov & Nesterov, 2021} Lin et al., 2021}
Jin et al.|, 2022), i.e., simply set T, r, in step 2 of Algorithm 1 for the displacement step of
LG-BFGS and B, = B, in the Hessian approximation update of greedy BFGS.

Fig. [T]evaluates LG-BFGS with different initialization. We see that the performance of LG-BFGS
increases with the improvement of initialization in all experiments. This relationship is expected
because (i) the superlinear convergence of LG-BFGS is a local result; and (ii) the subset {e;}7_;
being selected from good initialization roughly ensures the update progress of the Hessian approxi-
mation associated with the sparse subspace, i.e., the minimal relative condition number 3, w.r.t. the

approximation error matrix in (17) is small. These aspects manifest in the improved convergence of
LG-BFGS, which corroborate our theoretical findings in Section 4.

Fig. 2] shows the convergence of LG-BFGS, L-BFGS, greedy BFGS and GD as a function of imple-
mentation time. For greedy BFGS, it has the fastest convergence rate (per iteration) but requires the
most computational cost, which slows its convergence in datasets of connect-4, protein and mnist.
For L-BFGS, it requires the lowest computational cost but has the slowest convergence rate, which
exhibits bad performance with small memory sizes in datasets of svmguide3 and mnist. LG-BFGS
strikes a balance between convergence rate of greedy BFGS and computational cost of L-BFGS,
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Figure 2: Performance of LG-BFGS, L-BFGS, and greedy BFGS over implementation time on four datasets.
We consider different memory sizes for LG-BFGS and L-BFGS.

i.e., it requires less computational cost than the former and obtains a faster convergence rate than

(¢) Protein dataset

100

200

Implementation time

(d) Mnist dataset

the latter, corresponding to our discussions in Section 5. A final comment is that LG-BFGS and
L-BFGS require less storage memory O(7d) than that required by greedy BFGS O(d?).
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