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A PROOF OF PROPOSITION 1

For the initial iteration t = 0 with the initial Hessian approximation B0, curvature pair {s0, r0} and
scaling factor ψ1, consider the corrected Hessian approximation

B̂1 = ψ1B1 = ψ1BFGS(B0, s0, r0). (1)

Define the corrected initial Hessian approximation as B̃0 = ψ1B0 and the scaled gradient variation
as r̃0 = ψ1r0. By performing the BFGS update on B̃0 with {s0, r̃0}, we have

B̃1=BFGS(B̃0, s0, r̃0) = B̃0+
r̃0r̃

⊤
0

r̃⊤0 s0
− B̃0s0s

⊤
0 B̃

⊤
0

s⊤0 B̃0st
= ψ1B0 +

ψ2
1r0r

⊤
0

ψ1r⊤0 s0
− ψ2

1B0s0s
⊤
0 B

⊤
0

ψ1s⊤0 B0st
(2)

=ψ1B0+
ψ1r0r

⊤
0

r⊤0 s0
−ψ1B0s0s

⊤
0 B

⊤
0

s⊤0 B0st
= ψ1

(
B0 +

r0r
⊤
0

r⊤0 s0
− B0s0s

⊤
0 B

⊤
0

s⊤0 B0st

)
= ψ1BFGS(B0, s0, r0) = ψ1B1 = B̂1.

This indicates that scaling the Hessian approximation matrix B1 is equivalent to scaling the initial
Hessian approximation B0 and the gradient variation r0. Thus, the proposition conclusion holds for
the initial iteration t = 1.

For any iteration t > 1 with the initial Hessian approximation B0, stored curvature pair {su, ru}t−1
u=0

and the scaling factor ψt, consider the corrected Hessian approximation

B̂t = ψtBt = ψt−1BFGS(Bt−1, st−1, rt−1), . . . , B1 = BFGS(B0, s0, r0). (3)

Define the corrected initial Hessian approximation as B̃0 = ψtB0 and the scaled gradient variations
as r̃u = ψtru for u = 0, . . . , t− 1. By performing the BFGS updates on B̂0 with {su, r̃u}t−1

u=0, we
have

B̃t = BFGS(B̃t−1, st−1, r̃t−1), . . . , B̃1 = BFGS(B̃0, s0, r̃0). (4)

We now use induction to prove the following statement

B̃k = ψtBk, for all k = 1, . . . , t. (5)

For the initial iteration k = 1, by performing the BFGS update on B̃0 with {s0, r̃0}, we have

B̃1=BFGS(B̃0,s0,r̃0)=ψt

(
B0+

r0r
⊤
0

r⊤0 s0
−B0s0s

⊤
0 B

⊤
0

s⊤0 B0s0

)
=ψtBFGS(B0,s0,r0)=ψtB1. (6)

Thus, equation 5 holds for k = 1. Assume equation 5 holds for iteration k − 1 ≥ 1, i.e., B̃k−1 =

ψtBk−1, and consider iteration k. By performing the BFGS update on B̃k−1 with {sk−1, r̃k−1}, we
have

B̃k=BFGS(B̃k−1, sk−1, r̃k−1)=ψt

(
Bk−1+

rk−1r
⊤
k−1

r⊤k−1sk−1
−
Bk−1sk−1s

⊤
k−1B

⊤
k−1

s⊤k−1Bk−1sk−1

)
=ψtBk (7)

where B̃k−1 = ψtBk−1 is used in the second equality. By combining equation 6 and equation 7,
we prove equation 5 by induction. Thus, we get

B̃t = ψtBt = B̂t. (8)
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This indicates that scaling the Hessian approximation matrix Bt is equivalent to scaling the initial
Hessian approximation B0 and the gradient variations {ru}t−1

u=0.

We conclude that at each iteration t, scaling the Hessian approximation matrix Bt by ψt is equivalent
to scaling the initial Hessian approximation B0 and the gradient variations {ru}t−1

u=0 by ψt. There-
fore, we can incorporate the correction strategy into the displacement step by scaling the gradient
variations and maintain the remaining unchanged, which completes the proof.

B PROOF OF PROPOSITION 2

We need the following lemmas to complete the proof.
Lemma 1. If LG-BFGS and greedy BFGS perform the greedy selection from the same subset
{ei}τi=1 of size τ and have the same initial settings, the iterates {xL,t}t generated by LG-BFGS
equal to the iterates {xG,t}t generated by greedy BFGS.

Proof. We start by noting that greedy BFGS updates the variable with (1) and the Hessian inverse
approximation with (3). This is equivalent to updating the variable and the Hessian inverse ap-
proximation from the initial Hessian inverse approximation H0 with all historical curvature pairs
{sk, rk}t−1

k=0 at each iteration t. In this context, we can prove the lemma by proving the iterate
xL,t generated by LG-BFGS equal to the iterate xG,t generated from the initial Hessian inverse
approximation H0 with all historical curvature pairs {sk, rk}t−1

k=0 for any iteration t ≥ 0.1

Specifically, we use induction to prove the lemma. At the initial iteration t = 0, this conclusion
holds because LG-BFGS and greedy BFGS have the same initial setting xL,0 = xG,0. Assume that
the conclusion holds at iteration t− 1 ≥ 0, i.e., the iterate xL,t−1 generated by LG-BFGS with the
limited-memory curvature pairs Pt−1 equal to the iterate xG,t−1 generated by greedy BFGS with
all historical curvature pairs {sk, rk}t−2

k=0 as

xL,t−1 = xG,t−1. (9)

Consider iteration t with the new curvature pair {st−1, rt−1}. Greedy BFGS updates the historical
curvature pairs by adding the new curvature pair {st−1, rt−1} directly and form the new historical
curvature pairs {sk, rk}t−1

k=0. LG-BFGS updates the curvature pairs by incorporating the information
{st−1, rt−1} into Pt−1 and form the new curvature pairs Pt. From Theorem 3.2 in (Berahas et al.,
2022), if the Hessian inverse approximation generated from H0 with Pt−1 equal to that generated
from H0 with {sk, rk}t−2

k=0, the Hessian inverse approximation generated from H0 with Pt equal to
that generated from H0 with {sk, rk}t−1

k=0. By using this result and equation 9, we get

xL,t = xG,t. (10)

By combining equation 9 and equation 10, we prove by induction that xL,t = xG,t for any iteration
t ≥ 0, which completes the proof.

Lemma 2 (Lemma 4.3 in (Rodomanov & Nesterov, 2021)). Let x be a decision variable and B the
Hessian approximation satisfying

∇2f(x) ⪯ B ⪯ η∇2f(x) (11)

for some η ≥ 1. Let also x+ be the updated decision variable as

x+ = x−B−1∇f(x) (12)

and λf (x) be such that λf (x)CM ≤ 2. Then, it holds that

ϕ=∥x+−x∥∇2f(x)≤λf (x) and λf (x+)≤
(
1+

λf (x)CM

2

)η − 1 +
λf (x)CM

2

η
λf (x). (13)

Lemma 3 (Lemma 4.4 in (Rodomanov & Nesterov, 2021)). Let x be a decision variable and B the
Hessian approximation satisfying

∇2f(x) ⪯ B ⪯ η∇2f(x) (14)

1Without loss of generality, we assume {}ba = ∅,
∑b

a = 0 and
∏b

a = 1 if b < a.
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for some η ≥ 1. Let also x+ be the updated decision variable [cf. equation 12] and ϕ = ∥x+ −
x∥∇2f(x) be the weighted update difference. Then, it holds that

∇2f(x+) ⪯ (1 + CMϕ)B = B̂ (15)

and the Hessian approximation B+ updated by the BFGS on B̂ with the curvature pair {s, r}
satisfies

∇2f(x+) ⪯ BFGS
(
B̂, s, r

)
⪯ η(1 + CMϕ)

2∇2f(x+). (16)

Proof of Proposition 2. From Lemma 1, we know that the iterates generated by LG-BFGS is equiv-
alent to the iterates generated by greedy BFGS, if both perform greedy selection in the same subset
{ei}τi=1 of memory size τ . In this context, we can prove the linear convergence of the iterates gener-
ated by LG-BFGS by proving the linear convergence of the iterates generated by the corresponding
greedy BFGS, alternatively.

We start by defining the concise notation λt = λf (xt), ϕt = ∥xt+1 − xt∥∇2f(xt) and

ηt = e2CM

∑t−1
k=0 λk

L

µ
(17)

for convenience of expression. We use induction to prove the following statement

∇2f(xt) ⪯ Bt ⪯ ηt∇2f(xt), (18)

λt ≤ (1− µ

2L
)tλ0 (19)

for any iteration t ≥ 0. For the initial iteration t = 0 with the initial condition, we have

∇2f(x0) ⪯ B0 ⪯ L

µ
∇2f(x0) = η0∇2f(x0) (20)

and

λ0 ≤ (1− µ

2L
)0λ0 = λ0. (21)

Thus, equation 18 and equation 19 hold for t = 0.

Assume that for iteration t− 1 ≥ 0, we have

∇2f(xk) ⪯ Bk ⪯ ηk∇2f(xk), (22)

λk ≤ (1− µ

2L
)kλ0 (23)

for all 0 ≤ k ≤ t − 1, and consider iteration t. By using Lemma 2 with the condition equation 22,
we have

λt ≤
(
1 +

λt−1CM

2

)ηt−1 −
(
1− λt−1CM

2

)
ηt−1

λt−1. (24)

By using the fact CMλt−1 ≤ CMλ0 ≤ 1 from the initial condition and the inequality 1− x ≥ e−2t

for any 0 ≤ x ≤ 1/2, we have

1− λt−1CM

2

ηt−1
≥ e−λt−1CM

ηt−1
. (25)

By substituting the representation of ηt−1 into equation 25, we get

1− λt−1CM

2

ηt−1
≥ e−CMλt−1−2CM

∑t−2
k=0 λk

µ

L
≥ e−2CM

∑t−1
k=0 λk

µ

L
. (26)

The term 2CM

∑t−1
k=0 λk in equation 26 can be bounded as

2CM

t−1∑
k=0

λi ≤ 2CM

t−1∑
k=0

(1− µ

2L
)kλ0 ≤ 4L

µ
CMλ0 ≤ ln

3

2
(27)
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where the condition equation 23 is used in the second inequality and the initial condition is used in
the last inequality. By substituting equation 27 into equation 26, we have

1− λt−1CM

2

ηt−1
≥ 2µ

3L
. (28)

From the condition equation 23 and the initial condition, we get

λt−1CM

2
≤ λ0CM

2
≤

ln 3
2 µ

8L
≤ µ

16L
(29)

where the inequality ln(1 + x) ≤ x for any x ≥ 0 is used in the last inequality. By substituting
equation 29 and equation 28 into equation 24, we have

λt ≤
(
1 +

µ

16L

)(
1− 2µ

3L

)
λt−1 ≤

(
1− µ

2L

)
λt−1 ≤

(
1− µ

2L

)t

λ0 (30)

where the condition equation 23 is used in the last inequality. By using Lemma 3 with the condition
equation 22, we have

∇2f(xt) ⪯ Bt ⪯ (1 + ϕt−1CM )2ηt−1∇2f(xt). (31)

By using the result ϕt−1 ≤ λt−1 from Lemma 2 and the inequality (1 + x) ≤ e2x, we get

Bt ⪯ (1 + λt−1CM )2ηt−1∇2f(xt) ⪯ e2CMλt−1ηt−1∇2f(xt+1). (32)

By further substituting the representation of ηt−1 into equation 32, we have

∇2f(xt) ⪯ Bt ⪯ e2CM

∑t−1
k=0 λk

L

µ
∇2f(xt) = ηt∇2f(xt). (33)

By combining equation 20, equation 21, equation 30 and equation 33, we prove equation 18 and
equation 19 by induction, which completes the proof.

C PROOF OF PROPOSITION 3

We need the following lemma to complete the proof.
Lemma 4 (Lemma 2.4 in (Rodomanov & Nesterov, 2021)). Consider two positive definite matrices
A ⪯ D. For any vector s ∈ Rd, it holds that

σ(A,D)− σ(A,BFGS(D, s,As)) ≥ s⊤(D−A)s

s⊤As
(34)

where BFGS(B, s,As) is the BFGS update on B with the curvature pair {s,As}.

Proof of Proposition 3. From Lemma 3, we know that ∇2f(x+) ⪯ B̂. Let B+ = BFGS(B̂, s, r)
be the updated Hessian approximation matrix, where {s, r} are the curvature pair selected greedily
from the subset {ei}τi=1, i.e.,

s = argmax
s∈{e1,...,eτ}

s⊤B̂s

s⊤∇2f(x+)s
. (35)

Denote by σx+
(B+), σx+

(B̂) and σ(B) the concise notation of σ(∇2f(x+),B+), σ(∇2f(x+), B̂)

and σ(∇2f(x),B). By using Lemma 4 with A = ∇2f(x+) and D = B̂, we have

σx+
(B̂)− σx+

(B+) ≥
s⊤

(
B̂−∇2f(x+)

)
s

s⊤∇2f(x+)s
. (36)

By substituting equation 35 into equation 36, we have

σx+
(B̂)− σx+

(B+) ≥ max
1≤i≤τ

e⊤i
(
B̂−∇2f(x+)

)
ei

e⊤i ∇2f(x+)ei
. (37)
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Let E = B̂−∇2f(x+) be the approximation error matrix. From Assumption 1, we have

µI ⪯ ∇2f(x+) ⪯ LI (38)

where I is the identity matrix. Substituting equation 38 into equation 37 yields

σx+
(B̂)− σx+

(B+) ≥
1

L
max
1≤i≤τ

e⊤i Eei. (39)

Let β(ei) be the relative condition number of the basis vector ei w.r.t. E for i = 1, . . . , τ . From the
definition of the relative condition number [Def. 1], we have

e⊤i Eei =
1

β(ei)
max
1≤i≤d

e⊤i Eei. (40)

By substituting equation 40 into equation 39, we have

σx+
(B̂)−σx+

(B+) ≥
1

L
max
1≤i≤τ

( 1

β(ei)
max
1≤i≤d

e⊤i Eei

)
(41)

=
1

Lmin1≤i≤τ β(ei)
max
1≤i≤d

e⊤i Eei =
1

Lβτ
max
1≤i≤d

e⊤i Eei

where βτ is the minimal relative condition number of the subset {ei}τi=1 w.r.t. E. Since
max1≤i≤d e

⊤
i Eei ≥ e⊤i Eei for all i = 1, . . . , d, we get

σx+
(B̂)−σx+

(B+) ≥
1

Lβτd

d∑
i=1

e⊤i Eei =
1

Lβτd

d∑
i=1

Tr(eie
⊤
i ,E) (42)

where Tr(·, ·) represents the trace operation. From the linearity of the trace operation, we get

σx+
(B̂)−σx+

(B+)≥
1

βτLd
Tr

( d∑
i=1

eie
⊤
i ,E

)
=

1

βτLd
Tr(I,E)≥ µ

βτLd
Tr(∇2f(x+)

−1,E) (43)

where the condition equation 38 is used in the last inequality. From the definition σx+
(B̂) =

Tr(∇2f(x+)
−1,E), we have

σx+
(B+) ≤ (1− µ

βτLd
)σx+

(B̂). (44)

We then characterize the relationship between σx+
(B̂) and σx(B). We can represent σx+

(B̂) by
definition as

σx+(B̂) = Tr
(
∇2f(x+)

−1B̂
)
− d = (1 + ϕCM )Tr

(
∇2f(x+)

−1B
)
− d (45)

where B̂ = (1 + ϕCM )B is used in the last equality. Since 1 + ϕCM ≥ 1, we can upper bound
equation 45 as

σx+
(B̂) ≤ (1 + ϕCM )2Tr

(
∇2f(x+)

−1B
)
− d = (1 + ϕCM )2(σx(B) + d)− d. (46)

Expanding the terms in equation 46 yields

σx+
(B̂) ≤ (1 + ϕCM )2σx(B) + d

(
(1 + ϕCM )2 − 1

)
(47)

= (1 + ϕCM )2σx(B) + 2dϕCM

(
1 +

ϕCM

2

)
≤ (1 + ϕCM )2

(
σx(B) +

2dϕCM

1 + ϕCM

)
.

By substituting equation 47 into equation 44, we complete the proof

σx+
(B+) ≤

(
1− µ

βτdL

)
(1 + ϕCM )2

(
σx(B) +

2dϕCM

1 + ϕCM

)
. (48)
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D PROOF OF THEOREM 1

From Lemma 1, we know that the iterates generated by LG-BFGS is equivalent to the iterates gener-
ated by greedy BFGS, if both perform greedy selection in the same subset {ei}τi=1 of memory size
τ . In this context, we can prove the superlinear convergence of the iterates generated by LG-BFGS
by proving the superlinear convergence of the iterates generated by the corresponding greedy BFGS,
alternatively.

Denote by λt and σt the concise notation of λf (xt) and σ(∇2f(xt),Bt). We start by noting that

σt = Tr(∇2f(xt)
−1Bt)− d = Tr

(
∇2f(xt)

−1(Bt −∇2f(xt)
)

(49)

where Bt−∇2f(xt) is positive semidefinite from Proposition 2 [cf. equation 18]. Since the maximal
eigenvalue of ∇2f(xt)

−1
(
Bt − ∇2f(xt)

)
is bounded by the trace of ∇2f(xt)

−1(Bt − ∇2f(xt),
i.e., the sum of eigenvalues of ∇2f(xt)

−1(Bt −∇2f(xt), we have

∇2f(xt)
−1

(
Bt −∇2f(xt)

)
⪯ Tr

(
∇2f(xt)

−1(Bt −∇2f(xt)
)
I. (50)

By multiplying positive definite matrix ∇2f(xt) on both sides of equation 50, we have

Bt ⪯
(
1 + Tr

(
∇2f(xt)

−1(Bt −∇2f(xt)
))

∇2f(xt) = (1 + σt)∇2f(xt) (51)

and

∇2f(xt) ⪯ Bt ⪯ (1 + σt)∇2f(xt). (52)

By using Lemma 2 with the condition equation 52, we have

λt+1 ≤
(
1 +

λtCM

2

)σt + λtCM

2

1 + σt
λt ≤

(
1 +

λtCM

2

)(
σt + 2dCMλt

)
λt. (53)

Consider the term σt + 2dCMλt in the bound of equation 53. We use induction to prove the
following statement

σt + 2dCMλt ≤ Φt (54)

for any iteration t ≥ 0, where

Φt :=

t∏
k=1

(
1− µ

βk,τdL

)
e2(2d+1)CM

∑t−1
k=0 λk

dL

µ
(55)

For the initial iteration t = 0, it holds that

σ0 + 2dCMλ0 = Tr(∇2f(x0)
−1B0)− d+ 2dCMλ0

≤ L

µ
Tr

(
∇2f(x0)

−1∇2f(x0)
)
− d+ 2dCMλ0 =

(L
µ
− 1

)
d+ 2dCMλ0

(56)

where the initial condition of B0 is used in the second inequality. By substituting the initial condition
of λ0 into equation 56, we get

σ0 + 2dCMλ0 ≤
(L
µ
− 1

)
d+

d ln 2

2(2d+ 1)
≤ dL

µ
. (57)

Thus, equation 54 holds for t = 0. Assume that equation 54 holds for iteration t ≥ 0, i.e.,

σt + 2dCMλt ≤ Φt (58)

and consider iteration t + 1. By substituting equation 58 into equation 53 and using the inequality
1 + x ≤ ex, we have

λt+1 ≤
(
1 +

λtCM

2

)
Φtλt ≤ e

λtCM
2 Φtλt ≤ e2λtCMΦtλt. (59)
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By using Lemma 2 that ϕt ≤ λt and Proposition 3, we have

σt+1 ≤
(
1− µ

βt+1,τdL

)
(1 + ϕtCM )2

(
σt +

2dϕtCM

1 + ϕtCM

)
(60)

≤
(
1− µ

βt+1,τdL

)
(1 + λtCM )2

(
σt +

2dϕtCM

1 + ϕtCM

)
≤

(
1− µ

βt+1,τdL

)
(1 + λtCM )2

(
σt + 2dϕtCM

)
≤

(
1− µ

βt+1,τdL

)
e2CMλtΦt

where βt+1,τ is the minimal condition number of the subset {ei}τi=1 at iteration t + 1 and the
inequality (1 + x)2 ≤ e2x is used in the last inequality. Since 1− µ/(βt+1,τdL) ≥ 1/2 with d ≥ 2,
combining equation 59 and equation 60 yields

σt+1 + 2dCMλt+1 ≤ (1− µ

βt+1,τdL
)e2CMλtΦt + 2dCMe

2CMλtΦtλt (61)

≤ (1− µ

βt+1,τdL
)e2CMλtΦt + (1− µ

βt+1,τdL
)4dCMe

2CMλtΦtλt

= (1− µ

βt+1,τdL
)e2CMλt(1 + 4dCMλt)Φt.

By using the inequality 1 + x ≤ ex and substituting the representation of Φt into equation 61, we
get

σt+1 + 2dCMλt+1 ≤ (1− µ

βt+1,τdL
)e2CM (2d+1)λtΦt = Φt+1. (62)

Thus, equation 54 holds for t + 1. By combining equation 57, equation 58 and equation 62, we
prove equation 54 by induction.

By substituting equation 54 and the representation of Φt into equation 59, we have

λt+1 ≤ e2λtCMΦtλt ≤ e2(2d+1)λtCMΦtλt =
1(

1− µ
βt+1,τdL

)Φt+1λt. (63)

By using Proposition 2, we get

Φt+1 =

t+1∏
k=1

(
1− µ

βk,τdL

)
e2(2d+1)CM

∑t
k=0 λk

dL

µ
(64)

≤
t+1∏
k=1

(
1− µ

βk,τdL

)
e2(2d+1)CM

∑t
k=0

(
1− µ

2L

)k
λ0
dL

µ

From the fact that
∑t

k=0

(
1− µ

2L

)k ≤ 2L/µ and the initial condition, we have

Φt+1 ≤
t+1∏
k=1

(
1− µ

βk,τdL

)
eln 2 dL

µ
=

t+1∏
k=1

(
1− µ

βk,τdL

)2dL
µ
. (65)

Substituting equation 65 into equation 63 yields

λt+1 ≤
t∏

k=1

(
1− µ

βk,τdL

)2dL
µ
λt. (66)

Let t0 be such that
t0∏

k=1

(
1− µ

βk,τdL

)2dL
µ

≤ 1 (67)

and we have

λt+t0+1 ≤
t+t0∏
k=1

(
1− µ

βk,τdL

)2dL
µ
λt+t0 ≤

t+t0∏
k=t0+1

(
1− µ

βk,τdL

)
λt+t0 (68)
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for any t ≥ 0. By using equation 68 recursively, we get

λt+t0+1 ≤
t+t0∏

k=t0+1

(
1− µ

βk,τdL

)
λt+t0 ≤ · · · ≤

t+t0∏
k=t0+1

(
1− µ

βk,τdL

)t+t0+1−k
λt0 . (69)

By further using Proposition 2, we complete the proof

λt+t0+1 ≤
t+t0∏

k=t0+1

(
1− µ

βk,τdL

)t+t0+1−k
(
1− µ

2L

)t0
λ0. (70)

E PROOF OF THEOREM 2

We start by noting that for any vector ei and matrix E, we have

λ1 ≤ e⊤i Eei ≤ λd (71)

where λ1 and λd are the minimal and maximal eigenvalues of E. From Definition 1, the relative
condition number of ei w.r.t. E is bounded as

β(ei) =
max1≤k≤d e

⊤
k Eek

e⊤i Eei
≤ λd
λ1

= β (72)

where β is the condition number of E. By using equation 72 together with the corollary condition,
we have

βt,τ ≤ Cβ (73)

or

βt,τ = min
1≤i≤τ

β(ei) ≤ βt ≤ Cβ (74)

where βt is the condition number of the approximation error matrix at iteration t. By further using
equation 73 or equation 74 in the result of Theorem 1, we have

λt+t0+1 ≤
(
1− µ

CβdL

) t(t+1)
2

(
1− µ

2L

)t0
λ0 (75)

which completes the proof.

F BOUND ON CONDITION NUMBER βt

We establish an upper bound on the condition number βt of the error matrix B̂t−∇2f(xt+1) with a
minor modification in the correction strategy in Section 3.1. Specifically, we consider the correction
strategy on the Hessian approximation Bt as

B̂t=
(
1+(ϕtCM + δt)

)
Bt (76)

where δt = qtδ0 > 0 with δ0 a positive constant and 0 < q < 1 a contraction factor. Since
(1+ϕtCM )Bt ⪰ ∇2f(xt+1) from equation 15 and Bt ⪰ ∇2f(xt) from equation 16 in Appendix
B, we obtain

B̂t −∇2f(xt+1) ⪰ δtBt ⪰ δt∇2f(xt). (77)

By using Assumption 1 with LI ⪰ ∇2f(xt) ⪰ µI in equation 77, we get

B̂t −∇2f(xt+1) ⪰ δtµI. (78)

From equation 18 in Appendix B, we have

Bt ⪯ ηt∇2f(xt) (79)

8
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where ηt is now defined as

ηt = e2CM

∑t−1
k=0 λk+2

∑t−1
k=0 δt

L

µ
(80)

with the modified correction strategy [cf. equation 76]. Since both {λt}t and {δt}t are decreasing
geometric sequences, ηt is upper bounded by a constant Cη . By using this fact in equation 79 and
the latter in equation 76, we have

B̂t ⪯
(
1+(ϕtCM + δt)

)
Cη∇2f(xt) ⪯

(
1+(λ0CM + δ0)

)
CηLI (81)

where λt ≤ λ0, δt ≤ δ0 and µI ⪯ ∇2f(xt) ⪯ LI are used in the second inequality. By using
equation 78 and equation 81, we can bound the condition number βt of B̂t −∇2f(xt+1) as

βt ≤
(
2+(λ0CM + δ0)

)
CηL

qtδ0µ
= Ct,β (82)

at iteration t, where λ0 and δ0 are initial constants. We remark that the upper bound in equation 82
is the worst-case analysis because it holds for the condition number βt, i.e., the minimal relative
condition number βt,1 with memory size τ = 1 [Def. 1]. Therefore, it is important to note that this
bound may not be tight and the actual value of βt,τ could be smaller.

By following similar steps as in the proofs of Proposition 2 - Theorem 2, we can establish an explicit
convergence rate of LG-BFGS as

λf (xt+t0+1) ≤
t+t0∏

u=t0+1

(
1− µ

Cu,βdL

)t+t0+1−u(
1− µ

2L

)t0
λf (x0) (83)

where the modified correction strategy may require a slightly more accurate initialization to derive
this rate. Since this upper bound Ct,β is not constant but increases with iteration t [cf. equation 82],
the convergence rate in equation 83 is slower than that in Theorem 2. Specifically, we can represent
Ct,β in equation 82 as the form of

Ct,β = Cβq
−t (84)

where Cβ is a constant. By substituting equation 84 into equation 83, we get

λf (xt+t0+1) ≤
t+t0∏

u=t0+1

(
1− µ

CβdL
qu

)t+t0+1−u(
1− µ

2L

)t0
λf (x0). (85)

We can approximate equation 85 as
t+t0∏

u=t0+1

(
1− µ

CβdL
qu

)t+t0+1−u(
1− µ

2L

)t0
λf (x0) (86)

≈ e
−

∑t+t0
u=t0+1

µ
CβdL (t+t0+1−u)qu

(
1− µ

2L

)t0
λf (x0)

= e
− qt0+1µ

CβdL

∑t−1
u=0(t−u)qu

(
1− µ

2L

)t0
λf (x0) ≤ e−Ct

(
1− µ

2L

)t0
λf (x0)

where C = qt0+1µ/(CβdL) is a constant. By combining equation 86 and the result in Proposition
2, we have

λf (xt+t0+1) ≤ min
{
e−Ct

(
1− µ

2L

)t0
λf (x0),

(
1− µ

2L

)t+t0+1

λf (x0)
}
. (87)

This can be considered as an improved linear rate depending on specific problem settings.

G ADDITIONAL EXPERIMENTS

We consider four datasets: svmguide3, connect-4, protein and mnist for classification problem, de-
tails of which are summarized in Table 1. With the local nature of superlinear convergence results

9
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Table 1: Details of datasets: svmguide3, connect-4, protein and mnist.

Dataset Number of samples N Feature dimension d Regularization parameters µ

Svmguide3 1243 21 10−4

Connect-4 67557 126 10−4

Protein 17766 357 10−4

Mnist 60000 780 10−6
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Figure 1: Performance of LG-BFGS with different initialization on four datasets.

for quasi-Newton methods, we construct a setup with a warm start for all methods, i.e., the initial-
ization is close to the solution by performing greedy BFGS for k0 iterations. This has the practical
effect of reducing the superlinear phase triggering time – see (Jin et al., 2022) for further details.
Also worth mentioning is that we found it is better not to apply the correction strategy in LG-BFGS
and greedy BFGS methods in practice following (Rodomanov & Nesterov, 2021; Lin et al., 2021;
Jin et al., 2022), i.e., simply set r̃u = ru in step 2 of Algorithm 1 for the displacement step of
LG-BFGS and B̂t = Bt in the Hessian approximation update of greedy BFGS.

Fig. 1 evaluates LG-BFGS with different initialization. We see that the performance of LG-BFGS
increases with the improvement of initialization in all experiments. This relationship is expected
because (i) the superlinear convergence of LG-BFGS is a local result; and (ii) the subset {ei}τi=1
being selected from good initialization roughly ensures the update progress of the Hessian approxi-
mation associated with the sparse subspace, i.e., the minimal relative condition number βτ w.r.t. the
approximation error matrix in (17) is small. These aspects manifest in the improved convergence of
LG-BFGS, which corroborate our theoretical findings in Section 4.

Fig. 2 shows the convergence of LG-BFGS, L-BFGS, greedy BFGS and GD as a function of imple-
mentation time. For greedy BFGS, it has the fastest convergence rate (per iteration) but requires the
most computational cost, which slows its convergence in datasets of connect-4, protein and mnist.
For L-BFGS, it requires the lowest computational cost but has the slowest convergence rate, which
exhibits bad performance with small memory sizes in datasets of svmguide3 and mnist. LG-BFGS
strikes a balance between convergence rate of greedy BFGS and computational cost of L-BFGS,

10
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(a) Svmguide3 dataset
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(c) Protein dataset
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Figure 2: Performance of LG-BFGS, L-BFGS, and greedy BFGS over implementation time on four datasets.
We consider different memory sizes for LG-BFGS and L-BFGS.

i.e., it requires less computational cost than the former and obtains a faster convergence rate than
the latter, corresponding to our discussions in Section 5. A final comment is that LG-BFGS and
L-BFGS require less storage memory O(τd) than that required by greedy BFGS O(d2).
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