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Geometry-guided Cross-view Diffusion for One-to-many Cross-view Image
Synthesis

Supplementary Material

A. Overview743

In this supplementary material, we provide the following744
relevant details that could not be included in the main paper:745
1. More details on LDM and ControlNet Implementation746
2. Additional details of the Geometry Projection Module.747
3. Extended explanation of North-Aligned and Camera-748

Aligned setting of Ablation Study.749
4. Extended Ablation Results750
5. Additional Quantitative and Qualitative Results.751
6. Visualization of Failure Cases752

B. Additional Details of LDM and ControlNet753

implementation on Cross-view Diffusion754

B.1. Diffusion Models755

Preliminary. Diffusion models [7, 36, 37] are a class of756
latent variable models that have been proven to be superior757
to GANs in both unconditional and conditional image syn-758
thesis tasks [3]. It is capable of learning a data distribution759
from an isotropic Gaussian distribution by reversing a dif-760
fusion process.761

Consider a forward diffusion process fixed to a Markov762
Chain that gradually adds Gaussian noise for a large number763
of timesteps T. The noising operator at each timestep t ∈764
{1, . . . , T} is defined as765

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (5)766

By which we can compute the approximate posterior767
q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1) from x0 in the inter-768

ested data distribution according to a variance schedule769
β1, . . . , βT [7].770

The reverse process is defined as a Markov Chain that771
performs sampling from xT to x0. With each denois-772
ing step being expressed as a learned Gaussian transition773
parametrized by θ to approximate intractable true denoising774
distribution q(xt−1|xt):775

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (6)776

Ho et al. [7] observe that the mean µθ(xt, t) of the de-777
noising model can be represented by a noise estimator net-778
work ϵθ(xt, t) to predict ϵ from xt, then sample xt−1:779

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, (7)780

where z ∼ N (0,1) and ᾱ =
∏t

s=1(1− βs).781

Training of the denoiser network ϵθ is performed with 782
denoising score matching over multiple noise scales in- 783
dexed by t [38]: 784

LDM := Ex,ϵ∼N (0,I),t

[
λt∥ϵ− ϵθ(xt, t)∥22

]
(8) 785

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ and λt = 786

β2
t

2σ2
t (1−βt)(1−ᾱt)

, practically setting λt = 1 for improved 787

sample quality [7]. 788

LDM Implementation. Incorporating our proposed 789
Geometry-Guided Cross-View Condition, our conditional 790
denoising step can be expressed as: 791

pθ(zt−1|zt, cGCC) := N (zt−1;µθ(zt, t, cGCC),Σθ(zt, t, cGCC)).
(9) 792

Due to the computation resource limitation, our imple- 793
mentation deviates from configuration of the original Stable 794
Diffusion model. We maintain th e four blocks architecture 795
of the LDM U-Net, but changed each block out channel size 796
to [240, 480, 960, 960], and also decreased the cross atten- 797
tion feature dimension from 1024 to 768. 798

ControlNet Implementation. As mentioned in Section 799
4 in the main paper, we have implemented a ControlNet 800
[52] version of our Cross-view diffusion pipeline for the ef- 801
fectiveness of our proposed Geometry-guided Cross-view 802
Condition. Varying from the visual token sequence in the 803
LDM [3] version, we pixel-wisely align our condition with 804
the encoded image latent and input it to the ControlNet 805
module by reshaping the input tensor (see Fig. 2). The 806
ControlNet module is a trainable copy of the encoder sec- 807
tion of the LDM UNet, connected to the decoder section by 808
zero convolution layers, whereas the LDM parameters are 809
frozen. 810

The pipeline is built upon pretrained Stable Diffusion 811
2.1 model [27], where the prompt input to the LDM Model 812
should be text embedding. During the training of the Con- 813
trolNet Module, we set the text prompt to be an empty string 814
to assure our generation results are unaffected by the text 815
conditioning. In the future, we might explore the effect of 816
combining both ControlNet and text conditions. 817

C. Additional details of the Geometry Projec- 818

tion Module 819

Geometric Projection Derivation for Ground Camera with 820
Pin-hole Model 821
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In this paper, we consider the 3-DoF (Degree of Free-822
dom) ground camera pose for the KITTI [5] dataset, i.e.,823
the 1-DoF azimuth angle ϕ ∈ [−π, π] and 2-DoF transla-824
tion along the latitude and longitude directions. Let R =825 ( cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

)
and t = [tx, 0, tz]

T be the relative rotation826

and translation from real ground camera coordinate system827
to the world coordinate system and K be the ground camera828
intrinsics.829

The back-projection from a pixel on a pin-hole cam-830
era image plane to the world coordinate system can be ex-831
pressed as832

[x, y, z]T = wRK−1[ug, vg, 1]
T +Rt (10)833

where w is a scare factor.834
By combining Eq. (2) from Sec. 3.3 and Eq. (10) above, we835
can derive the mapping from a ground-view pixel (ug, vg)836
to a satellite pixel (us, vs) as837

us

vs
z

 =

 1
γ 0 0

0 1
γ 0

0 0 1

wRK−1

ug

vg
1

+Rt

+

u0
s

v0s
0

 .

(11)838
The above projection is defined on ground plane homogra-839
phy, w is therefore computed based on the assumption of840
fixed camera height yc. Similarly, we can derive the map-841
ping from an satellite pixel to a ground image pixel842

[
ug

vg

]
=

 fx
[(vs−v0

s)+tx] cos (−ϕ)−[(us−u0
s)+tz ] sin (−ϕ)

[(vs−v0
s)+tx] sin (−ϕ)+[(us−u0

s)+tz ] cos (−ϕ)

fy
h

γ
[
[(vs−v0

s)+tx] sin (−ϕ)+[(us−u0)+tz ] cos (−ϕ)
]
 +

[
u0
g

v0g

]
,

(12)843
where fx and fy denote the ground camera focal length844
along u and v directions, respectively, h is the height of845
pixel (us, vs) above the ground plane.846

D. Extended Explanation of North-Aligned847

and Camera-Aligned setting848

Figure 6. Example of Camera-Aligned and North-Aligned sam-
ples, the red arrows in the satellite views indicate the orientation
of the ground camera.

As mentioned in Sec. 4.4 in the main paper, we presented 849
ablation study results for camera-aligned and north-aligned 850
setup on the KITTI dataset. As illustrated in Fig. 6, under 851
the Camera-Aligned setting, the orientation of the ground- 852
view image is always aligned in the same direction on the 853
satellite view. When the satellite images are North-aligned, 854
the orientation relationship between the satellite images and 855
the ground-view image changes between pairs, which yields 856
pose ambiguity between the cross-view image pairs that 857
hinders the models’ learning ability as reported in the Tab. 1 858
of the main paper. However, our experiment show that the 859
model with projected feature condition suffers less perfor- 860
mance drop under the North-aligned setting comparing to 861
the image condition, which can effectively mitigate the in- 862
fluence of pose ambiguity. 863

E. Further Ablation results on the Generative 864

Ability of Models 865

In Fig. 7, we show the qualitative ablation on the Grd2Sat 866
task with generated samples from both LDM and Con- 867
trolNet Models. As stated in the main paper, the genera- 868
tive ability for the Grd2Sat is limited by the variability of 869
the data itself, therefore, we do not see much diversity in 870
the generated samples compared to the samples from the 871
Sat2Grd task. 872

F. Additional Qualitative and Quantitative Re- 873

sults 874

In Fig. 8, we include qualitative comparisons of Grd2Sat 875
results with existing methods on the CVUSA dataset. In 876
Tab. 5, we conduct another evaluation with the sky regions 877
excluded, evaluating only the shared region between the 878
ground-view and satellite-view on the ground-level. Our 879
results outperform Sat2Density in all metrics, showing that 880
we are able to generate more geometrically and semanti- 881
cally aligned images with diversity.

Table 5. Overall Evaluation without sky region, on CVUSA, best
in bold

Method PSNR↑ SSIM↑ Palex ↓ Psqueeze ↓
Sat2Density 14.528 0.2389 0.3958 0.3084
Ours(LDM) 14.791 0.2908 0.3867 0.3074

Ours(CtrlNet) 14.879 0.2725 0.3861 0.3090

882

G. Visualization of Failure Cases 883

In Fig. 9, we show some typical failure cases from 884
Grd2Sat, on both CVUSA and CVACT datasets. The first 885
two rows are samples from CVUSA, and last two rows are 886
samples from CVACT. 887
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Figure 7. Ablation for sample generated by our LDM model and our ControlNet model given the same condition, on Grd2Sat task.

Figure 8. Qualitative comparisons of our results on the Grd2Sat task, on CVUSA dataset.

In the first two rows, samples generated by our LDM888
model failed to reconstruct the true street structure, this889
might due to the model failed to pick up structural infor-890

mation from the given condition. As summarized in the 891
main paper, our ControlNet version generally outperforms 892
our LDM version in the Grd2Sat task, this might due to 893
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Figure 9. Some Failure cases on Grd2Sat task, on both CVUSA and CVACT datasets. We mainly visualize failure cases in Grd2Sat, as it
is a much challenging task to learn and recover geometric and textural information by geometric projected feature alone, due to presence
of limited range of sight (row 4), occlusion (row 2 and 4) and shape ambiguity (row 1 and 3).

the stronger supervision from features that are pixel-aligned894
with the image latent. The samples generated in the third895
row failed to recover the shape of the round building, where896
the building shape can not be recognized simply by project-897
ing the ground-view panorama. In the fourth row, the sam-898
ples failed to generate the correct road structure at end of the899
road and also the car park behind the pedestrian walkway900
due to limited range of sight and occlusion in the ground-901
view.902
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