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Geometry-guided Cross-view Diffusion for One-to-many Cross-view Image
Synthesis

Supplementary Material

A. Overview

In this supplementary material, we provide the following

relevant details that could not be included in the main paper:

1. More details on LDM and ControlNet Implementation

2. Additional details of the Geometry Projection Module.

3. Extended explanation of North-Aligned and Camera-
Aligned setting of Ablation Study.

4. Extended Ablation Results

5. Additional Quantitative and Qualitative Results.

6. Visualization of Failure Cases

B. Additional Details of LDM and ControlNet
implementation on Cross-view Diffusion

B.1. Diffusion Models

Preliminary. Diffusion models [7, 36, 37] are a class of
latent variable models that have been proven to be superior
to GANSs in both unconditional and conditional image syn-
thesis tasks [3]. It is capable of learning a data distribution
from an isotropic Gaussian distribution by reversing a dif-
fusion process.

Consider a forward diffusion process fixed to a Markov
Chain that gradually adds Gaussian noise for a large number
of timesteps T. The noising operator at each timestep ¢ €
{1,...,T} is defined as

(I(Xt|xt71) = N(Xt; v1- Bexi—1, 5t1)~ &)

By which we can compute the approximate posterior
q(x1.7|%x0) = Hthl q(x¢|x¢—1) from xq in the inter-
ested data distribution according to a variance schedule
Bi,..., Br 71

The reverse process is defined as a Markov Chain that
performs sampling from xr to xp. With each denois-
ing step being expressed as a learned Gaussian transition
parametrized by 6 to approximate intractable true denoising
distribution g(x;—1|x;):

po(xe—1|x¢) == N (x¢—1; po(x¢, 1), Bg(x4, ). (6)

Ho et al. [7] observe that the mean (X, t) of the de-
noising model can be represented by a noise estimator net-
work €g(x¢, t) to predict e from x;, then sample x;_1:

_ ! __ P
= (-

where z ~ NV(0,1) and @ = [T%_, (1 — Bs).

eo(xt, t)) +oz, (7)

Training of the denoiser network ey is performed with
denoising score matching over multiple noise scales in-
dexed by t [38]:

Lpu = Eycnon, | Mlle —eo(xi,t)5] ()
where x; = +ayxg + V1 —age and Ny =
2

m, practically setting \; = 1 for improved
sample quality [7].

LDM Implementation. Incorporating our proposed
Geometry-Guided Cross-View Condition, our conditional
denoising step can be expressed as:

3DV
#308

782
783
784

785

786
787
788

789
790
791

Po(2t—1|2e, caoc) = N(zi—1; po(2e, t, caoc), o(ze, t, caec))-

©)

Due to the computation resource limitation, our imple-

mentation deviates from configuration of the original Stable

Diffusion model. We maintain th e four blocks architecture

of the LDM U-Net, but changed each block out channel size

to [240, 480, 960, 960], and also decreased the cross atten-
tion feature dimension from 1024 to 768.

ControlNet Implementation. As mentioned in Section
4 in the main paper, we have implemented a ControlNet
[52] version of our Cross-view diffusion pipeline for the ef-
fectiveness of our proposed Geometry-guided Cross-view
Condition. Varying from the visual token sequence in the
LDM [3] version, we pixel-wisely align our condition with
the encoded image latent and input it to the ControlNet
module by reshaping the input tensor (see Fig. 2). The
ControlNet module is a trainable copy of the encoder sec-
tion of the LDM UNet, connected to the decoder section by
zero convolution layers, whereas the LDM parameters are
frozen.

The pipeline is built upon pretrained Stable Diffusion
2.1 model [27], where the prompt input to the LDM Model
should be text embedding. During the training of the Con-
trolNet Module, we set the text prompt to be an empty string
to assure our generation results are unaffected by the text
conditioning. In the future, we might explore the effect of
combining both ControlNet and text conditions.

C. Additional details of the Geometry Projec-
tion Module

Geometric Projection Derivation for Ground Camera with
Pin-hole Model
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In this paper, we consider the 3-DoF (Degree of Free-
dom) ground camera pose for the KITTI [5] dataset, i.e.,
the 1-DoF azimuth angle ¢ € [—m, 7| and 2-DoF transla-
tion along the latitude and longitude directions. Let R =

¢ 0 —sing . .
(COS 10 ) and t = [t;,0,t.]" be the relative rotation

sing 0 cos.(b .
and translation from real ground camera coordinate system

to the world coordinate system and K be the ground camera
intrinsics.

The back-projection from a pixel on a pin-hole cam-
era image plane to the world coordinate system can be ex-
pressed as

[z,y,2]T = wRK_l[ugmg7 17 + Rt (10)

where w is a scare factor.

By combining Eq. (2) from Sec. 3.3 and Eq. (10) above, we
can derive the mapping from a ground-view pixel (ug,v,)
to a satellite pixel (us, vs) as

Us % 0 0 Ug uS

vs| = |0 % 0| |wRK™ |vy| +Rt | + |00

z 0 0 1 1 0
1D

The above projection is defined on ground plane homogra-
phy, w is therefore computed based on the assumption of
fixed camera height y.. Similarly, we can derive the map-
ping from an satellite pixel to a ground image pixel

Vg b y §
12)
where f, and f, denote the ground camera focal length
along u and v directions, respectively, h is the height of

pixel (us,vs) above the ground plane.

f [(v57v2)+t¢]cos(7¢»)7[(u57u2)+tz]sin(f¢) 0
[ug} _ | =t ot e s <a) | {u ]

¥ [[(vs —v)+ta] sin (=) +[(vs —u®)+tz] cos (—¢)

D. Extended Explanation of North-Aligned
and Camera-Aligned setting

North-Aligned
Satellite Image

Camera-Aligned
Satellite Image

Ground-view Image

Figure 6. Example of Camera-Aligned and North-Aligned sam-
ples, the red arrows in the satellite views indicate the orientation
of the ground camera.

As mentioned in Sec. 4.4 in the main paper, we presented
ablation study results for camera-aligned and north-aligned
setup on the KITTT dataset. As illustrated in Fig. 6, under
the Camera-Aligned setting, the orientation of the ground-
view image is always aligned in the same direction on the
satellite view. When the satellite images are North-aligned,
the orientation relationship between the satellite images and
the ground-view image changes between pairs, which yields
pose ambiguity between the cross-view image pairs that
hinders the models’ learning ability as reported in the Tab. 1
of the main paper. However, our experiment show that the
model with projected feature condition suffers less perfor-
mance drop under the North-aligned setting comparing to
the image condition, which can effectively mitigate the in-
fluence of pose ambiguity.

E. Further Ablation results on the Generative
Ability of Models

In Fig. 7, we show the qualitative ablation on the Grd2Sat
task with generated samples from both LDM and Con-
trolNet Models. As stated in the main paper, the genera-
tive ability for the Grd2Sat is limited by the variability of
the data itself, therefore, we do not see much diversity in
the generated samples compared to the samples from the
Sat2Grd task.

F. Additional Qualitative and Quantitative Re-
sults

In Fig. 8, we include qualitative comparisons of Grd2Sat
results with existing methods on the CVUSA dataset. In
Tab. 5, we conduct another evaluation with the sky regions
excluded, evaluating only the shared region between the
ground-view and satellite-view on the ground-level. Our
results outperform Sat2Density in all metrics, showing that
we are able to generate more geometrically and semanti-
cally aligned images with diversity.

Table 5. Overall Evaluation without sky region, on CVUSA, best
in bold

Method PSNRT  SSIMT  Piex 4 Pyqueeze
Sat2Density 14.528 0.2389 0.3958 0.3084
Ours(LDM) 14.791  0.2908 0.3867 0.3074

Ours(CtrINet) 14.879 0.2725 0.3861 0.3090

G. Visualization of Failure Cases

In Fig. 9, we show some typical failure cases from
Grd2Sat, on both CVUSA and CVACT datasets. The first
two rows are samples from CVUSA, and last two rows are
samples from CVACT.
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Figure 8. Qualitative comparisons of our results on the Grd2Sat task, on CVUSA dataset.

In the first two rows, samples generated by our LDM mation from the given condition. As summarized in the
model failed to reconstruct the true street structure, this main paper, our ControlNet version generally outperforms
might due to the model failed to pick up structural infor- our LDM version in the Grd2Sat task, this might due to
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Ours (LDM)

Ours (CtrINet)

Condition Ground Truth

Figure 9. Some Failure cases on Grd2Sat task, on both CVUSA and CVACT datasets. We mainly visualize failure cases in Grd2Sat, as it
is a much challenging task to learn and recover geometric and textural information by geometric projected feature alone, due to presence
of limited range of sight (row 4), occlusion (row 2 and 4) and shape ambiguity (row 1 and 3).

the stronger supervision from features that are pixel-aligned
with the image latent. The samples generated in the third
row failed to recover the shape of the round building, where
the building shape can not be recognized simply by project-
ing the ground-view panorama. In the fourth row, the sam-
ples failed to generate the correct road structure at end of the
road and also the car park behind the pedestrian walkway
due to limited range of sight and occlusion in the ground-
view.
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