
A Proofs645

A.1 Kernels & their linearizations for temporal encoders in Mnemosyne646

We tested different transformations ϕ and discovered that those leading to most accurate approxima-647

tion of the softmax-kernel lead to most effective memory mechanisms for Mnemosyne’s temporal648

encoders (see: Sec. 3.3). Our starting variant is the so-called FAVOR+ mechansim from [16], given649

as follows for Γ(z, r) def
= 1√

r
exp(−∥z∥2

2) and ω1, ..., ωr ∼ N (0, IN):650

ϕF+(z) = Γ(z, r)
(
exp(ω⊤

1 z), ..., exp(ω
⊤
r z)

)⊤
(9)

Random vectors ω1, ..., ωr form a block-orthogonal ensemble (see: [16]). We applied also its im-651

provement relying on the so-called hyperbolic cosine random features, where
∏

is the concatenation652

operator:653

ϕHF+(z) = Γ(z, r)

r
2∏

i=1

(exp(ω⊤
i z), exp(−ω⊤

i z))
⊤ (10)

Both randomized transformations provide unbiased estimation of the softmax-kernel, yet the latter654

one (that can be cast as modified ϕF+ via the antithetic Monte Carlo trick) has provably lower655

approximation variance.656

A.1.1 The curious case of linearization with bounded features657

The last variant for the efficient estimation of the softmax-kernel we applied, is a very recent658

mechanism FAVOR++ from [39], given as:659

ϕF++(z) =
D√
r

r∏
i=1

exp(−Â∥ωi∥22 +Bω⊤
i z+ C∥z∥2)⊤,

where we have: Â = −A, B =
√
1 + 4Â, C = − 1

2 , D = (1+ 4Â)
N
4 , A = 1− 1

ρ and ρ ∈ (0, 1) is660

a free parameter. As opposed to the previous variants, mechanism ϕF++(z) provides an estimation661

via bounded random variables (since Â > 0), leading to stronger concentration results (beyond662

second moment) and still unbiased approximation.663

The optimal choice of ρ depends on the kernel inputs. The formula for ρ optimizing the variance664

of the kernel matrix estimation K = [K(qi,kj)]i,j=1,...,M induced by the softmax-kernel K (in the665

bi-directional case) is not tractable. However choosing ρ by optimizing certain derivative of the666

variance-objective was showed to work well in several applications [39]:667

ρ∗ =

√
(2γ +N)2 + 8Nγ − 2γ −N

4γ
(11)

for γ = 1
M2

∑M
i=1

∑M
j=1 ∥qi + kj∥2. Since γ can be rewritten as: γ = 1

M2 (
∑M

i=1 ∥qi∥22 +668 ∑M
j=1 ∥kj∥22 + 2q⊤k) for q =

∑M
i=1 q

i and k =
∑M

j=1 k
j , computing ρ∗ in the bi-directional669

setting can be clearly done in time linear in M as a one-time procedure. Then the computation of670

hMne(M) follows. Compute-time per memory-vector remains OM (1).671

However Mnemosyne’s temporal encoder applied uni-directional attention. In the uni-directional672

case, we have: γt = 1
t

∑t
j=1 ∥qt + kj∥2 = 1

t (∥q
t∥22 +

∑t
j=1 ∥kj∥22 + 2(qt)⊤k(t)), where k(t) =673 ∑t

j=1 k
j for t = 1, ...,M . Instead of one γ, we now have M values γt since not all memories674

are known at once. We can still achieve O1(M) compute-time per γt, repeating the trick from the675

bi-directional case, but that would need to be followed by the re-computation of ϕ(kµ) (with new676

ρ-parameter) for µ = 1, ..., t which of course is not possible since vectors {k}tµ=1 are not explicitly677

stored (and for a good reason - computational benefits), see: Eq. 3.678

Thickening Mnemosyne’s memory: To obtain efficient uni-directional Mnemosyne’s memory679

cell also for the ϕF++-mechanism, we propose to "thicken" in that setting the hidden state from Eq.680

3, replacing hMne(t) = (Nt,Ψt) with HMne(t) = ({Nρ
t }ρ∈Ω, {Ψρ

t }ρ∈Ω,Σt,Λt), where we have:681

Σt =
∑t

j=1 k
j , Λt =

∑t
j=1 ∥kj∥22 and furthermore: Nρ

t , Ψρ
t correspond to versions of Nt and Ψt682

16

respectively, using parameter ρ to define mapping ϕ. The set Ω is obtained by discretizing interval683

(0, 1) into a fixed number of chunks c (and effectively quantizes ρ ∈ (0, 1)). The strategy is now684

clear: when the new pattern comes, we first update the entire thickened state, and then compute ρ∗.685

We finalize by finding ρ ∈ Ω closest to ρ∗ to transform an input and using for that the "slice" of the686

hidden state corresponding to ρ. We see that all these operations can be made efficiently with only687

c-multiplicative term (independent from the number of patterns M) in space and time complexity.688

FAVOR++ mechanism, as FAVOR+, can also be adapted to its hyperbolic cosine variant. In practice689

FAVOR+ mechanism worked similarly to FAVOR++, yet the proper adaptation of the latter one was690

important, since (see: Sec. 4), this variant provides strongest theoretical guarantees for the capacity691

of the entire compact associative memory model.692

A.2 The proof of the extended version of Theorem 4.3693

We start by providing an extended version of Theorem 4.3, enriched with the exact formula of the694

variance of ∆(Erand). We prove it below. We borrow the notation from Sec. A.1.695

Theorem A.1 (storage of compact associative memories). Denote by ξ1, ..., ξM ∈ {−1,+1}N the696

memory-vectors. Assume that the Hamming distance between any two memory-vectors is at least697

τN for some τ > 0. Take some 0 < ρ < τ
2 . Then the following is true for any memory-vector ξl for698

l = 1, ..., µ and any input ξ̂l ∈ B(ξl, ρN) as long as M ≤ exp(2N(τ − 2ρ)) 1−e−2

2e2 : the expected699

change of the energy of the compact associative memory system ∆(Erand) associated with flipping700

the value of the dimension of ξ̂l is positive if that operation increases the distance from its close701

neighbor ξl and is negative otherwise. Furthermore, the variance of ∆(Erand) is of the form:702

Var(∆(Erand)) =
1

r
(V1 + V2 − 2V3 − V4 − V5 + 2V6) (12)

where:703

V1 =
∑

µ1,µ2∈{1,...,M}

Ψ(ξµ1 + ξµ2 + 2ξ̂l), V2 =
∑

µ1,µ2∈{1,...,M}

Ψ(ξµ1 + ξµ2 + 2ξ̃l)

V3 =
∑

µ1,µ2∈{1,...,M}

Ψ(ξµ1 + ξµ2 + ξ̂l + ξ̃l) V4 =
∑

µ1,µ2∈{1,...,M}

exp((ξµ1)⊤ξ̂l) exp((ξµ2)⊤ξ̂l)

V5 =
∑

µ1,µ2∈{1,...,M}

exp((ξµ1)⊤ξ̃l) exp((ξµ2)⊤ξ̃l) V6 =
∑

µ1,µ2∈{1,...,M}

exp((ξµ1)⊤ξ̂l) exp((ξµ2)⊤ξ̃l)

(13)

for ξ̃l denoting ξ̂l with one of its dimensions flipped and:704

Ψ(x)
def
= D4 exp(−2N)(1 + 8Â)−

N
2 exp

(
B2

2(1− 8Â)
∥x∥2

)
(14)

Proof. Take a memory ξl ∈ {−1,+1}N and an input ξ̂l ∈ B(ξl, ρN). Denote by neg(ξ̂l, i) a vector705

obtained from ξ̂l by replacing ξ̂l(i) with −ξ̂l(i). Let us study the change of the energy of the system706

as we flip the value of the ith dimension of the input ξ̂l since the sign of this change solely determines707

the update that will be made. We have the following:708

∆(Erand) = E(neg(ξ̂l, i); ξ1, ..., ξM)− E(ξ̂i; ξ1, ..., ξM) = Esignal + Enoise, (15)

where:709

Esignal =
1

r

r∑
k=1

(W l
k − Zl

k), (16)

710

Enoise =
1

r

r∑
k=1

∑
µ∈{1,...,M}\{l}

(Wµ
k − Zµ

k), (17)

17

and furthermore: W i
k = aikbk, Zi

k = aikck for:711

aik = D exp(−N

2
) exp(Bω⊤

k ξ
i − Â∥ωk∥22),

bk = D exp(−N

2
) exp(Bω⊤

k ξ̂
l − Â∥ωk∥22),

ck = D exp(−N

2
) exp(Bω⊤

k neg(ξ̂
l, i)− Â∥ωk∥22).

(18)

If ω1, ..., ωr ∼ N (0, IN) then, from the fact that Erand is the unbiased estimation of Ereg, we get:712

E[Xk] = exp((ξl)⊤ξ̂l),

E[Yk] = exp((ξl)⊤neg(ξ̂l, i)),

E[Wµ
k] = exp((ξµ)⊤ξ̂l),

E[Zµ
k] = exp((ξµ)⊤neg(ξ̂l, i)),

(19)

This is a direct consequence of the OPRF-mechanism introduced in [39]. Variables: Xk, Yk, Wµ
k713

and Zµ
k for µ = 1, ...,M are simply unbiased estimators of the softmax-kernel values obtained via714

applying OPRF-mechanism. Let us now compute the expected change of the energy of the system:715

E[∆(Erand)] = E[Esignal] + E[Enoise], (20)
where:716

E[Esignal] =
1

r

r∑
k=1

(E[Xk]− E[Yk]) =
1

r

r∑
k=1

(
exp((ξl)⊤ξ̂l)− exp((ξl)⊤neg(ξ̂l, i))

)
(21)

and717

E[Enoise] =
1

r

r∑
k=1

∑
µ∈{1,...,M}\{l}

(E[Wµ
k]− E[Zµ

k]) =

1

r

r∑
k=1

∑
µ∈{1,...,M}\{l}

(
exp((ξµ)⊤ξ̂l)− exp((ξµ)⊤neg(ξ̂l, i))

) (22)

We will first upper bound |E[Enoise]|. We have:718

|E[Enoise]| ≤
1

r

r∑
k=1

∑
µ∈{1,...,M}\{l}

(
exp((ξµ)⊤ξ̂l) + exp((ξµ)⊤neg(ξ̂l, i))

)

≤
r∑

k=1

∑
µ∈{1,...,M}\{l}

(exp(N(1− 2(τ − ρ))) + exp(N(1− 2(τ − ρ) +
2

N
)))

≤ 2M exp(N(1− 2(τ − ρ) +
2

N
))

(23)

We will now consider two cases:719

Case 1: ξ̂l(i) = ξl(i):720

721

In this setting, flipping the value of the ith dimension of the input vector increases its722

distance from the close neighbor. Therefore in this case we would like the energy change of the723

system to be positive (so that the flip does not occur). From the Equation 21, we obtain:724

E[Esignal] ≥
1

r

r∑
k=1

(exp(N(1− 2ρ))− exp(N(1− 2ρ)− 2))) =

exp(N(1− 2ρ))(1− e−2)

(24)

18

Thus we obtain:725

E[∆(Erand)] ≥ exp(N(1− 2ρ))(1− e−2)− 2M exp(N(1− 2(τ − ρ) +
2

N
)) (25)

Therefore, if the following holds:726

M ≤ exp(2N(τ − 2ρ))
1− e−2

2e2
, (26)

then E[∆(Erand)] > 0.727

Case 2: ξ̂l(i) = −ξl(i):728

729

In this setting, flipping the value of the ith dimension of the input vector decreases its730

distance from the close neighbor. Therefore in this case we would like the energy change of the731

system to be negative (so that the flip does not occur). From the Equation 21, we obtain:732

E[Esignal] ≤
1

r

r∑
k=1

(exp(N(1− 2ρ))− exp(N(1− 2ρ) + 2))) =

exp(N(1− 2ρ))(1− e2)

(27)

Thus we obtain:733

E[∆(Erand)] ≤ exp(N(1− 2ρ))(1− e2) + 2M exp(N(1− 2(τ − ρ) +
2

N
)) (28)

Therefore, if the following holds:734

M ≤ exp(2N(τ − 2ρ))
e2 − 1

2e2
, (29)

then E[∆(Erand)] < 0. Note that the bound from Inequality 26 is stronger than the one from735

Inequality 29. That completes the proof of the first part of the theorem.736

Now we will compute the variance of ∆(Erand). Denote:737

Zk =
∑

µ∈{1,...,M}

(Wµ
k − Zµ

k) (30)

Note that if ω1, ..., ωr are chosen independently then Zk for k = 1, ..., r are independent. The738

following is true:739

Var(∆(Erand)) = Var(Esignal + Enoise) = Var

1

r

r∑
k=1

∑
µ∈{1,...,M}

(Wµ
k − Zµ

k)


= Var(

1

r

r∑
k=1

Zk) =
1

r2

r∑
k=1

Var(Zk) =
1

r2

r∑
k=1

Var

 ∑
µ∈{1,...,M}

(Wµ
k − Zµ

k)


=

1

r2

r∑
k=1

E


 ∑

µ∈{1,...,M}

(Wµ
k − Zµ

k)

2
−

E

 ∑
µ∈{1,...,M}

(Wµ
k − Zµ

k)

2


(31)

19

Therefore we have:740

Var(∆(Erand)) =
1

r2

r∑
k=1

 ∑
µ1,µ2∈{1,...,M}

E[Wµ1

k Wµ2

k] +
∑

µ1,µ2∈{1,...,M}

E[Zµ1

k Zµ2

k]


− 2

r2

r∑
k=1

∑
µ1,µ2∈{1,...,M}

E[Wµ1

k Zµ2

k]

− 1

r2

r∑
k=1

 ∑
µ1,µ2∈{1,...,M}

E[Wµ1

k]E[Wµ2

k] +
∑

µ1,µ2∈{1,...,M}

E[Zµ1

k]E[Zµ2

k]


− 2

r2

r∑
k=1

∑
µ1,µ2∈{1,...,M}

E[Wµ1

k]E[Zµ2

k]

(32)

Note that from the fact that our random feature map based estimators are unbiased, we get (as we741

already noted before in Equation 19 and put here again for Reader’s convenience):742

E[Wµ
k] = exp((ξµ)⊤ξ̂l),

E[Zµ
k] = exp((ξµ)⊤neg(ξ̂l, i)),

(33)

Let us now define:743

Ψ(x) = D4 exp(−2N) exp(Bω⊤x− 4Â∥ω∥22). (34)
Note that the following is true:744

E[Wµ1

k Wµ2

k] = Ψ(ξµ1 + ξµ2 + 2ξ̂l)

E[Zµ1

k Zµ2

k] = Ψ(ξµ1 + ξµ2 + 2neg(ξ̂l, i))

E[Wµ1

k Zµ2

k] = Ψ(ξµ1 + ξµ2 + ξ̂l + neg(ξ̂l, i))

(35)

Thus it remains to find closed-form formula for Ψ(x) for any given x ∈ RN .745

From the proof of Theorem 3.1 in [39], we get for A < 0:746

E[exp(A∥ω∥2 +Bω⊤x)] = (1− 2A)−
N
2 exp

(
B2

2(1− 2A)
∥x∥2

)
(36)

Thus we obtain:747

Ψ(x) = D4 exp(−2N)(1 + 8Â)−
N
2 exp

(
B2

2(1− 8Â)
∥x∥2

)
(37)

Plugging to Equation 32 formulae from Equation 33 and Equation 35 and utilizing Equation 37 for748

Ψ, we obtain the formula for the variance from the statement of the Theorem.749

B Experiment details750

B.1 Warm-up for Mnemosyne and other optimizers: additional results751

Preliminaries: At each timestep t, gradient ∇f(xt) is input to the optimizer. The gradient is pre-752

processed as proposed in [2]. Coordinate-wise Mnemosyne’s using two temporal encoders is applied.753

The Mnemosyne’s memory cell interfaces with the rest of the system similarly to any RNN-cell. Each754

cell uses exponential discount factor τ = 0.1, r = 16 random projections, 16 hidden dimensions and755

1 attention head. The memory cell output is fed to a fully connected layer, returning the update to be756

applied to the NN parameters of the optimizee.757

Meta-training: We refer to training optimizer’s parameters θ as meta-training to distinguish from the758

optimizee NN training. Mnemosyne’s optimizer is meta-trained on MNIST classification task with 3759

20

Figure 10: Validation loss curves when training MLP with Mnemosyne compared to other methods for MNIST
image classification. Optimization curves for 4 different MLP architectures in this order: (1 layer, 20 hidden dim,
sigmoid activation), (2 layers, 20 hidden dim, sigmoid activation), (1 layer, 40 hidden dim, sigmoid activation),
(1 layer, 20 hidden dim, relu activation) are shown.

small MLP and 3 small ViT models. The optimizee MLPs are sampled from this hyperparameter760

distribution: l ∈ [1, 2] hidden layers of size in range [20, 40] and sigmoid or relu activation function.761

The optimizee ViTs have l ∈ [1, 3] layers, h ∈ [1, 3] heads, with hidden dimension in range [16, 64],762

mlp dimension in range [16, 64] and head dimension in range [8, 16]. The optimizee task is to train763

the model for 100 steps on batches of 64 image-class examples.764

Hybrid loss function to improve generalization: To promote generalization, we use the random-765

scaling trick proposed by [42]. Mnemosyne’s optimizer is meta-trained by gradient descent using766

Adam optimizer with learning rate η = 3e−4 to minimize a combination of two loss functions. The767

first is the task loss given by the sum of optimizee losses in a truncated roll-out of 5 MNIST training768

steps. The other one is an imitation loss given by the mean squared error between Mnemosyne’s769

updates and expert-optimizer (Adam) updates for same inputs. Importantly, this imitation loss is770

different from the one proposed in [12] which uses off-policy expert roll-outs for imitation. In771

our case, we provide expert supervision for the on-policy updates. This mitigates the problem of772

divergence from expert’s trajectory, often observed in behaviour cloning. Our imitation loss acts as a773

regularizer which prevents Mnemosyne’s optimizer from over-fitting on the optimizee task that it is774

trained on. We emphasize that expert’s learning rate ηexp = 3e−2 was not obtained via any tuning775

process.776

Our optimizer model has minimal input feature engineering and our meta-training setup is significantly777

simpler than those considered in the literature [44, 12, 42, 65]. Even so, we can successfully apply778

Mnemosyne’s optimizer to a variety of tasks due to its efficient memory mechanism. Furthermore,779

Mnemosyne’s memory cells can be easily combined with any of the existing L2L methods that use780

LSTMs for memory-encoding.781

Results: After meta-training, Mnemosyne’s optimizer was tested on NN training tasks with different782

NN architectures and datasets. Recall that Mnemosyne only saw one ML task of MNIST classifier783

training for 100 steps during meta-training. Fig. 10 shows that Mnemosyne can optimize MLPs784

with different NN archtitectures and activation functions on MNIST image classifier training. Note785

that, Mnemosyne converges significantly faster than popular analytical optimizers, RMSprop and786

Adam while retaining similar asymptotic performance. Mnemosyne can train NNs for long horizons787

of thousands of steps while baseline LSTM optimizer [2] struggles to minimize classification loss788

beyond a few hundred steps.789

Transformers: The results were already presented in the main body of the paper (see: Sec. 5.1).790

We want to add that, as for experiments from Fig. 10, here Mnemosyne’s optimizer is faster than791

standard analytical optimizers and much more stable than LSTM optimizer. Fig. 11 shows the benefit792

of using expert imitation-loss for long-horizon stability of the Mnemosyne’s optimizer.793

Our results on training Transformers with Mnemosyne naturally lead to the question of the role that794

Transformer-based optimizers can play in training Transformers architectures. It is well known that795

Transformer training requires nontrivial optimization techniques [40], e.g. learning rate schedulers796

(for that reason SGD was replaced with Adam in Transformer-training). Furthermore, for larger797

architectures training is slow, often prohibitively (unless the model is trimmed down, for instance798

by replacing long-range attention modeling with local attention of the controllable attention radius).799

Attention-based optimizers can potentially address this problem, since they improve convergence800

(and thus effectively reduce training time) even if meta-trained on much simpler tasks as we show in801

Fig. 3.802

21

0 1000 2000 3000 4000 5000
Iterations

101

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

LSTM (trained with meta loss)
LSTM (trained with combined loss)
Mnemosyne (trained with meta loss)
Mnemosyne (trained with combined loss)

Figure 11: Impact of training the optimizer with combined meta loss and imitation loss can be seen in
generalization to a long horizon rollout. All variants were trained only on length 100 rollouts.

0 200 400 600 800 1000
Iterations

102

6 × 101

2 × 102

3 × 102

4 × 102

M
et

a
Lo

ss

Reg Att (h=1)
Reg Att (h=5)
Reg Att (h=10)
Reg Att (h=20)

Reg Att (h=50)
Reg Att (h=100)
Mnemosyne

0 50 100 150 200 250 300 350 400
Iterations

102

2 × 102

3 × 102

M
et

a
Lo

ss

Mnemosyne (FAVOR++)
Mnemosyne (FAVOR+)

0 200 400 600 800 1000
Iterations

102

103

M
et

a
Lo

ss

Regular Positive RFs
Hyperbolic RFs

Figure 12: Ablation Studies. Left: Comparison of the Mnemosyne’s linear CAM with regular attention memory
blocks with different history cache lengths (h). Middle: Meta-training curves of Mnemosyne optimizer with
FAVOR+ and FAVOR++ mechanism for CAM. Right: Meta-training curves of Mnemosyne optimizer with
different kernel transformation functions for CAM.

B.2 Mnemosyne’s CAM mechanism vs regular attention803

We have tried to use regular Transformer blocks to encode associative memory for Mnemosyne’s804

temporal module. For applying regular attention to online optimizer autoregressively, a limited-length805

cache of historical gradients has to be maintained. A self-attention map over the history sequence806

is generated and used to encode memory. Fig. 12 (left) shows the meta-training curves for regular807

attention optimizers with different history cache lengths. As we increase the cache length, the808

performance improves and the memory requirement scales quadratically. Due to this limitation, we809

could not implement a regular attention based optimizer with cache length more than 100. On the810

other hand, Performer’s memory cell defining CAM can attend to theoretically unbounded history811

and out-performs regular attention variants with fixed memory requirement.812

B.3 Different RF-mechanisms: detailed look813

Fig. 12 (middle) compares the performance of Mnemosyne’s optimizer applying FAVOR+ and814

FAVOR++ mechanisms in CAM. FAVOR++ mechanism provides strongest theoretical guarantees815

for the capacity of the associative memory model. It also leads initially to faster convergence, but816

asymptotically performs similarly as the FAVOR+ variant. Due to the simpler implementation of817

FAVOR+, we use it for all experiments with Mnemosyne’s optimizer.818

Optimizers with both regular positive and hyperbolic random features kernel learn similarly, but the819

latter has much lower variance (see: Fig. 12 (right)) and thus it became our default choice.820

22

Adam

Lo
ss

Lo
ss

Figure 13: Left: The comparison of Mnemosyne applying different discount factors with Adam optimizer in
meta-training (MLP optimization). Right: The comparison of Mnemosyne applying different number of random
features in the hyperbolic cosine random feature mechanism used in CAM.

Mnemosyne: k=2
Mnemosyne: k=6
Mnemosyne: k=8
Mnemosyne: k=11
Mnemosyne: k=20

Mnemosyne: k=2
Mnemosyne: k=6

Figure 14: Comparison of the meta-training loss for Mnemosyne variants applying different number of temporal
encoders k. Since several variants on the left figure performs similarly, on the right figure we highlight top two.
The meta-training is conducted on the MLP optimization tasks and MNIST data.

B.4 Ablations over different discount factors and number of RFs in CAM mechanism821

In Fig. 13, we present detailed ablation studies over discount factors τ as well as the number of822

random features applied by our default CAM mechanism leveraging hyperbolic cosine random823

features.824

B.5 Benchmarking different depths of the temporal module825

Finally, we run ablations over different number of temporal encoders in Mnemosyne’s temporal826

block. We noticed that modest increase of the number of encoders improves loss in meta-training and827

meta-training very deep variants is particularly challenging (as requiring much more data). Since in828

this paper we decided to use simple meta-training strategies and furthermore increasing the number of829

temporal encoders did not lead to substantial gains, we decided to choose shallow temporal encoders’830

architectures. The results are presented in Fig. 14.831

B.6 Compute Resources Used832

All Mnemosyne optimizer variants were trained and tested on a TPU pod containing 4 TPU v3 chips833

with JAX. Hundreds of rounds of training and inference were needed to compare different variations,834

tasks and meta-losses.835

B.7 Coordinate-wise Mnemosyne versus hard-coded optimizers for larger ViTs836

B.7.1 ViT last-layer fine-tuning837

In this study, we benchmarked Mnemosyne on different sizes of ViT architectures: ViT-Base, ViT-838

Large and ViT-Huge (ViT-B(x), ViT-L(x) and ViT-H(x) respectively, where x defines the patch size),839

see: Tab: 1. We used the coordinate-wise variant of the Mnemosyne. We run tests on the following840

datases: imagenet2012, places365 and caltech-birds-2011. We were optimizing the last layer of841

the ViT-architecture and used Adam expert with learning rate η = 3e−2 as a regularizer (see: our842

discussion above on meta-training). The learning rate was not tuned in any way. In fact (as we show843

below) Adam optimizer applying this learning rate is characterized by the sub-optimal performance.844

23

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#:~:text=TPU%20v3%20configurations%20provide%20significant,bound%20on%20TPU%20v3%20configurations.
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

imagenet2012
ViT-B(16)

imagenet2012
ViT-L(16)

imagenet2012
ViT-L(32)

imagenet2012
ViT-H(32)

calt.-birds-2011
ViT-H(32)

places365
ViT-H(32)

places365
ViT-B(16)

+ +

Figure 15: Coordinate-wise Mnemosyne across different ViT architectures and datasets, as described in Sec.
B.7.1. Mnemosyne matches or outperforms optimal Adam variants without any hyperparameter tuning.

Hybrid: +4.5%
Mnemosyne: +3.3%

Hybrid: +3.5%
Mnemosyne: +3.7%

imagenet2012
ViT-L(32)

imagenet2012
ViT-H(32)

places365
ViT-H(32)

+

Hybrid: +5.2%
Mnemosyne: +5.7%

calt.-birds-2011
ViT-H(32)

Hybrid: +2.3%
Mnemosyne: +1.6%

imagenet2012
ViT-B(16)

Hybrid: +4.0%
Mnemosyne: +3.4%

imagenet2012
ViT-L(16)

Hybrid: +4.0%
Mnemosyne: +4.0%

places365
ViT-B(16)

Hybrid: +6.4%
Mnemosyne: +6.5%

+

Figure 16: The results from Fig. 15, but narrowed down to the comparison between two Mnemosyne variants
and Adam optimizer applying learning used in meta-training of these variants of Mnemosyne. The expert
substantially underperforms in all the cases (we explicitly put the gains coming from the two variants of
Mnemosyne as compared to the expert variant). This shows that Mnemosyne does not learn to imitate the expert.

We tried two versions of Mnemosyne: (a) a variant that solely optimizes the last layer of ViT (reported845

in the main body) and (b) the hybrid variant, where Mnemosyne is used to optimize the weight-matrix846

of the last layer and Adam with learning rate η = e−3, to optimize the bias vector. That learning rate847

was also not tuned in any particular way and, as before, if applied purely within Adam, produces848

sub-optimal results. The purpose of that last experiment was to assess how efficient the strategy of849

optimizing jointly with Mnemosyne and a hand-designed optimizer is. The results are presented in850

Fig. 15 and Fig. 16. We see that: (a) Mnemosyne without any hyperparameter tuning matches or851

outperforms optimal Adam variants, (b) it also substantially outperforms Adam variant used as an852

expert in meta-training. This is valid for both: regular Mnemosyne as well as the hybrid version.853

B.7.2 ViT multi-layer fine-tuning854

Here, we used a light version of coordinate-wise Mnemosyne using a single temporal encoder layer855

with hidden dimension 8. This reduced the memory requirement of the Mnemosyne optimizer state.856

We fine-tune ViT-B model on CIFAR-100 dataset with batch size 128. We were able to fine-tune last857

2 transformer layers along with the embedding, cls and head layers with Mnemosyne. Rest of the858

model was fine-tuned with Adam (learning rate = 1e−3). For comparison, the same baseline Adam859

variant is to fine-tune the complete model.

Table 1: Hyperparameters for the different ViT models used in this paper

Model Heads Layers Hidden Dim. MLP Dim. Params Patch Size

ViT-Base 12 12 768 3072 86M 16
ViT-Large (16) 24 16 1024 4096 307M 16
ViT-Large (32) 24 16 1024 4096 307M 32
ViT-Huge 32 16 1280 5120 632M 32

860

24

B.8 Tensor-wise Mnemosyne versus hard-coded optimizers for ViT-H861

We finetuned the embedding and cls layer of ViT-H (see Tab: 1 for hyperparameter) using tensorwise862

(∼ 1M params), while the head was trained using Adam. The rest of the transformer parameters are863

fixed to the pre-trained value for all methods. The batch size was set at 128 for all methods.864

B.9 Super-Mnemosyne: combining coordinate- and tensor-wise strategies for ViTs865

We finetuned the top-8 layers of the ViT-Base model (see Tab: 1) along with the head, cls and866

embedding layer before we ran out of memory ie ∼ 50M parameters with a batch size of 256. Large867

tensor such as: a) the MLP block withing each layer, b) the head layer was finetuned using lite version868

of coordinate-wise. Rest of the tensors were finetuned using tensorwise. The bottom 4 layers of the869

model were kept fixed for Mnemosyne. For Adam baselines we finetuned all layers.870

B.10 BERT-pretraining NLP Transformers with Mnemosyne871

We trained the Bert base model, whose Hyperparameters are shown in Tab: 2. The details of the872

training dataset used is shown in Tab: 3. We trained all parameters from scratch for all methods, with873

a batch size of 512. For the Mnemosyne results shown in Fig: 7, we trained all parameters except the874

token embedding using Tensorwise Mnemosyne (∼ 86M parameters). The token embedding was875

trained using Adam with learning rate 1e− 4. For Adam baseline we trained all parameters.876

Table 2: Hyperparameters for the Bert base model

Model Heads Layers Hidden Dim. MLP Dim. Params Compute Loss

Bert-Base 12 12 768 3072 110M 4x2 TPUv3 MLM

Table 3: Dataset used for pre training.

Dataset # tokens Avg. doc len.

Books [70] 1.0B 37K
Wikipedia 3.1B 592

B.11 Soft prompt-tuning massive T5XXL Transformers with Mnemosyne877

We use coordinate-wise Mnemosyne to prompt-tune [34] T5XXL model [50] (see Table 4 for878

hyper-parameters) on SuperGLUE benchmark. Batch size 32 was used. The length of the soft-prompt879

sequence was 30 and each soft-prompt vector was of size 4096, making the total number of trainable880

parameters 122880.881

Table 4: Hyperparameters for the T5XXL model

Model Encoder
Layers

Decoder
Layers

Heads Head
Dim.

Embedding
Dim.

MLP
Dim.

Params Compute

T5XXL 24 24 64 64 4096 10240 11B 2x2x4
TPUv3

25

	Proofs
	Kernels & their linearizations for temporal encoders in Mnemosyne
	The curious case of linearization with bounded features

	The proof of the extended version of Theorem 4.3

	Experiment details
	Warm-up for Mnemosyne and other optimizers: additional results
	Mnemosyne's CAM mechanism vs regular attention
	Different RF-mechanisms: detailed look
	Ablations over different discount factors and number of RFs in CAM mechanism
	Benchmarking different depths of the temporal module
	Compute Resources Used
	Coordinate-wise Mnemosyne versus hard-coded optimizers for larger ViTs
	ViT last-layer fine-tuning
	ViT multi-layer fine-tuning

	Tensor-wise Mnemosyne versus hard-coded optimizers for ViT-H
	Super-Mnemosyne: combining coordinate- and tensor-wise strategies for ViTs
	BERT-pretraining NLP Transformers with Mnemosyne
	Soft prompt-tuning massive T5XXL Transformers with Mnemosyne

