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Abstract

Reconstructing large-scale dynamic scenes from visual observations is a fundamen-
tal challenge in computer vision. While recent differentiable rendering methods
such as NeRF and 3DGS have achieved impressive photorealistic reconstruction,
they suffer from scalability limitations and require annotations to decouple moving
actors from the static scene, such as in autonomous driving scenarios. Existing self-
supervised methods attempt to eliminate explicit annotations by leveraging motion
cues and geometric priors, yet they remain constrained by per-scene optimization
and sensitivity to hyperparameter tuning. In this paper, we introduce Flux4D,
a simple and scalable framework for 4D reconstruction of large-scale dynamic
driving scenes. Flux4D directly predicts 3D Gaussians and their motion dynamics
to reconstruct sensor observations in a fully unsupervised manner. By adopting
only photometric losses and enforcing an “as static as possible” regularization,
Flux4D learns to decompose dynamic elements directly from raw data without
requiring pre-trained supervised models or foundational priors simply by training
across many scenes. Our approach enables efficient reconstruction of dynamic
scenes within seconds, scales effectively to large datasets, and generalizes well
to unseen environments, including rare and unknown objects. Experiments on
outdoor driving datasets show Flux4D significantly outperforms existing methods
in scalability, generalization, and reconstruction quality.

1 Introduction

Reconstructing the 4D physical world from visual observations captured in the wild is a key goal
in computer vision, with applications in virtual reality and robotics, including autonomous driving.
High-quality reconstructions provide the foundation for scalable simulation environments that enable
safer and more efficient autonomy development. Unlike artist-created environments, environments
built automatically with data collected by sensor-equipped vehicles are more realistic, are more
cost-efficient, and capture the diversity of the real world.

Advances in differentiable rendering approaches such as Neural Radiance Field (NeRF) [26] and 3D
Gaussian Splatting (3DGS) [17] have enabled high-quality reconstruction of dynamic scenes [53, 50,
62, 39, 18]. These methods decompose scenes into a static background and a set of dynamic actors
using human annotations such as 3D tracklets or dynamic masks, and then perform rendering on
the composed representation, optimizing to reconstruct the input observations. While they achieve
impressive visual fidelity, their reliance on manual annotations to decompose static and dynamic
elements increases costs and time, preventing these methods from scaling to large sets of unlabelled
data. Some approaches leverage pre-trained perception models to generate annotations automatically,
but this can cause artifacts when the model predictions are noisy or incorrect, which can be difficult
to recover from during reconstruction. Moreover, these methods typically require hours to reconstruct
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each scene on consumer GPUs. These two main issues, expensive annotation costs and slow per-scene
optimization, limit the scalability of these methods.

Recent works have explored self-supervised approaches to eliminate the reliance on human an-
notations and learn the decomposition of static and dynamic actors directly from data. This is a
challenging task due to the ambiguity of actor motion over time, coupled with spatial geometry
and appearance variations. One strategy attempts to improve the decomposition by incorporating
additional regularization terms such as geometric constraints [31] or cycle consistency [52], or
performing multi-stage training [16]. Another strategy is to leverage foundation models for additional
semantic features or priors [31, 7, 52]. However, the resulting complex models can be sensitive to
hyperparameters, slow to train, and unable to generalize to new scenes. Moreover, they often have
poor decomposition results, and struggle to render novel views, limiting their usability.

As an alternative to costly per-scene optimization, generalizable approaches [3, 42, 2, 5, 13, 44, 59]
use feed-forward neural networks to predict scene representations directly from observations, enabling
efficient reconstruction within seconds. However, these approaches are designed for small-scale
environments, can only process a few low-resolution images (typically 1-4 views with resolutions
below 512px), and primarily focus on static scenes [2, 5] or only dynamic objects [33]. When
handling large scenes with many dynamic elements, they rely on costly annotations [6, 34], limiting
their scalability. Most recently, DrivingRecon [25] and STORM [51] propose feed-forward, self-
supervised approaches for driving scenes. While promising, these methods focus on the sparse
reconstruction setting and can only handle a small number (≤ 12) of low-resolution (≤ 360px) input
views before reaching compute limits, and still depend on pre-trained vision models for semantic
guidance, constraining their fidelity, scalability and applicability to downstream simulation.

In this paper, we propose Flux4D, an unsupervised and generalizable reconstruction approach that
enables accurate and efficient 4D driving scene reconstruction at scale. Without any annotations,
Flux4D predicts 3D Gaussians along with motion parameters directly in 3D space from multi-sensor
observations within seconds, enabling efficient scene reconstruction. Our reconstruction paradigm
is illustrated in Fig. 1. Flux4D uses a remarkably minimalist design that employs only photometric
losses and a simple static-preference prior, without requiring complex regularization schemes or
external supervision to learn the motion that prior works leverage. We find that the key ingredient
for Flux4D to accurately recover geometry, appearance, and motion flow comes from learning
across a diverse range of scenes. Moreover, Flux4D’s use of LiDAR data, commonly available
in the autonomous driving domain, enable handling of a large number (≥ 60) of high-resolution
(1080px) input multi-view images, achieving high-fidelity reconstruction and scalable simulation.
Our 3D design yields a compact and geometrically consistent representation across views, improving
efficiency, enabling explicit multi-view flow reasoning and reducing appearance-motion ambiguity.

Experiments on outdoor driving datasets PandaSet [48] and WOD [36] demonstrate that Flux4D
achieves better scene decomposition and novel view synthesis than previous state-of-the-art
annotation-free reconstruction methods, and is competitive with per-scene optimization methods that
use human annotations. We also show that Flux4D can be trained to predict sensor observations in
future frames, akin to next-token prediction, but applied to dynamic 3D scenes. Finally, we showcase
using Flux4D’s reconstruction for controllable camera simulation via scene editing and novel view
rendering at high resolution (≥ 1080px). Flux4D highlights the power of unsupervised learning for
4D scene reconstruction, enabling efficient scaling to vast unlabeled datasets.

2 Related Work
Optimization-based 4D reconstruction: Inspired by differentiable rendering [26, 17], recent
approaches use deformation fields [32, 30, 56, 46] to model dynamic scenes but still struggle with
real-world complexity due to overparameterization and poor static-dynamic decomposition. While
some methods address this by using human annotations (3D tracklets, semantic models) to explicitly
separate static and dynamic elements [29, 54, 40, 50, 9, 12], they remain limited by annotation quality
and availability. Self-supervised alternatives using motion cues and physics-informed priors [47, 52,
7, 16, 31] reduce dependence on annotations but typically require complex regularization schemes
and expensive per-scene optimization. In contrast, our approach reconstructs dynamic 4D scenes
without explicit supervision or per-scene optimization, achieving scalable reconstruction through
simple photometric losses with minimal regularization.
Generalizable reconstruction: Generalizable methods infer scene representations directly from
observations without per-scene optimization [3, 42, 2, 5, 13, 44, 59], leveraging large training datasets
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Figure 1: Flux4D is a simple and scalable framework for unsupervised 4D reconstruction. Left:
Paradigms for 4D reconstruction. Right: realism-speed comparisons with existing works.

to improve reconstruction quality in novel environments. However, existing approaches primarily
target static scenes, struggling with dynamic environments due to computational constraints and
dependence on sparse, low-resolution inputs. Recent advances attempt to overcome these limitations
using efficient architectures [63] or iterative refinement [6], but still rely on 3D annotations. In
contrast, Flux4D generalizes to unseen dynamic scenes by predicting 3D Gaussians with their motion
directly from raw observations without external supervision.

Unsupervised world models: Our work relates to recent advances in unsupervised world models,
which learn predictive representations of environments without explicit supervision. These approaches
typically tokenize visual data into discrete or continuous representations [14, 11, 43, 61, 27] processed
by autoregressive or diffusion-based models to predict future states. While demonstrating impressive
visual quality, such methods generally lack interpretable 3D structure, limiting precise control
over generated content. Existing solutions often produce lower-resolution outputs with reduced
temporal consistency, are typically restricted to single modalities (e.g., camera [14, 11, 22] or
LiDAR [60, 55, 1]), and require substantial computational resources. While our primary focus is
reconstruction, Flux4D’s ability to simultaneously model motion dynamics and predict future frames
shares conceptual similarities with world models. Unlike these approaches, Flux4D uses explicit 3D
representation, providing 3D interpretability, controllability and spatiotemporal consistency.

Unsupervised generalizable reconstruction: Most recently, DrivingRecon [25] and STORM [51]
explore unsupervised generalizable 4D reconstruction for driving scenes, using feed-forward networks
to predict the velocities of 3D Gaussians. Despite impressive performance, they can process only
sparse (3-4), low-resolution (≤ 256 × 512) frames with substantial computational requirements
and rely on pre-trained vision models (DeepLabv3+ [4], SAM [20], ViT-Adapter [8]) for additional
supervision, limiting their scalability and applicability. Flux4D achieves better performance with a
simpler and more scalable approach, and through our novel incorporation of LiDAR to initialize the
scene, can handle full HD images with denser views (> 60) while being computationally efficient.
Please see supp. for more discussions.

3 Scalable 4D Reconstruction with Flux4D

Given a sequence of camera and LiDAR data captured by a robot sensor platform, we aim to
reconstruct the underlying 4D scene representation that disentangles static and dynamic entities
and supports high-quality rendering at novel viewpoints. Such a representation can enable future
prediction and counterfactual simulation. To achieve scalable 4D scene reconstruction, our method
should be unsupervised, meaning it uses no annotations, and fast, running in seconds. Towards this
goal, we propose Flux4D, an unsupervised and generalizable approach that learns to reconstruct
4D scenes via three simple steps (Fig. 2). We first lift the sensor observations at each timestep to
a set of initial 3D Gaussians. We then feed the initial representation to a network to predict 3D
flow and refined attributes for each 3D Gaussian. Finally, we supervise the network solely through
reconstruction and static-preference losses.

3.1 Scene Representation

Our approach takes a set of posed camera images I = {Ik}1≤k≤K and LiDAR point clouds
P = {Pk}1≤k≤K captured over time by a moving platform and outputs a scene representation
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Figure 2: Model overview. Flux4D reconstructs 4D world by predicting 3D Gaussians with velocities
given unlabelled sensor observations, and trained with the photometric reconstruction objective. The
resultant model can be used for RGB and flow synthesis from novel views.

with geometry, appearance, and 3D flow. We represent the scene using a set of 3D Gaussians
G = {gi}1≤i≤M . Each Gaussian point gi is parameterized by its center position pi (R3), scale (R3),
orientation (R4), color (R3) and opacity (R1) [17]. Additionally, we augment each Gaussian with a
learnable instantaneous velocity vi ∈ R3 and a fixed capture time ti. We denote the sets of velocities
and timestamps for all Gaussians as V = {vi}1≤i≤M and T = {ti}1≤i≤M .

Initialization: We initialize Gaussian positions from LiDAR points Pk from each source frame
in the sequence, set scales based on the average distance to nearby points, and assign colors by
projecting these points onto the corresponding camera image Ik. Each Gaussian’s timestamp ti
is assigned the capture time of its source LiDAR frame, and velocities are initialized to zero. We
aggregate source frame Gaussians to create Ginit.

3.2 Predicting Flow and Rendering

Inspired by recent advances in 4D reconstruction [47, 52, 31, 58, 25, 51], we propose to learn a
time-dependent velocity field to model the dynamics of driving scenes. Given the initial velocity-
augmented Gaussians Ginit, we leverage a neural reconstruction function fθ that outputs the refined
Gaussian parameters G and the predicted velocities V:

G,V = fθ(Ginit, T ). (1)

With the predicted velocities V , each Gaussian can be propagated from its initial timestep ti to any
target timestep t′ using a linear motion model:

pt′

i = pti
i + vi · (t′ − ti), (2)

where pt′

i is the Gaussian position at time t′, vi and ti are its velocity and capture time. This
formulation enables continuous, temporally consistent reconstruction under a constant velocity
assumption. We find this simple motion model can already achieve reasonable performance when
reconstructing outdoor driving scenes with short time horizons (∼ 1s), an observation aligned with
existing works [31, 25, 21, 51]. Moreover, we investigate higher-order polynomial motion models, as
discussed in Sec. 3.4 and Table 7.

3.3 Unsupervised Learning of Dynamics

We now describe how the method learns to disentangle the scene dynamics. The network fθ is
trained in a fully self-supervised manner, without requiring explicit 3D annotations. Given the
predicted Gaussians G, we move the Gaussians to target time t′ using Eqn. (2), render the scene
using differentiable rasterization [17] to generate color and depth images, and compare them against
the real sensor observations I and P . To prevent unnecessary motion and encourage stability, we
introduce an “as static as possible” regularization. The total loss L is defined as:

L = Lrecon + λvelLvel, (3)

where Lrecon represents the reconstruction loss, consisting of L1 and structural similarity losses w.r.t
the images, and an L1 depth loss in the image plane compared to the projected LiDAR, and Lvel
serves as a velocity regularization term that minimizes motion magnitudes:

Lrecon = λrgbLrgb + λSSIMLSSIM + λdepthLdepth, (4)
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Table 1: Comparison to SoTA unsupervised methods on novel view synthesis. We evaluate
photorealism, geometry, and speed metrics against per-scene optimization methods and generalizable
methods. † denotes the need for pre-trained vision models. Flux4D surpasses unsupervised and
achieves competitive performance with supervised methods (top block), without requiring 3D labels.

Methods Unsup. Gen. Dynamic-only Full image Recon speed
PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓ PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓ Time↓

Recon. with labels (reference)
NeuRAD [39] ✗ ✗ 23.01 0.734 1.98 – 24.61 0.685 2.30 – ∼60min
StreetGS [50] ✗ ✗ 20.06 0.605 1.02 – 23.38 0.680 0.84 – ∼28min
G3R [6] ✗ ✓ 21.85 0.670 2.33 – 24.35 0.686 1.96 – 17s

Unsupervised recon.
EmerNeRF† [52] ✓ ✗ 17.79 0.411 6.09 0.318 22.80 0.624 4.24 0.432 ∼100min
DeSiRe-GS† [31] ✓ ✗ 19.08 0.477 3.36 0.297 22.25 0.608 24.89 0.322 ∼120min
DepthSplat∗ [49] ✓ ✓ 16.87 0.425 6.18 – 21.40 0.595 2.73 – 0.87s
L4GM [33] ✓ ✓ 17.36 0.343 – – 19.38 0.465 – – 0.32s
STORM [51] ✓ ✓ 17.65 0.367 5.24 0.203 20.79 0.508 4.80 0.238 0.07s
Flux4D (Ours) ✓ ✓ 21.99 0.662 1.63 0.157 23.84 0.675 1.07 0.182 3.9s

Lvel =
1

M

∑
i

∥vi∥2. (5)

We train fθ across a diverse set of scenes. Notably, we find that training across many scenes enables
the network to automatically decompose static and dynamic components in urban scenes without
requiring the complex regularizations used in prior per-scene optimization techniques [47, 52,
7, 16, 31]. This highlights the effectiveness of data-driven priors as a powerful form of implicit
regularization and the scalability of this simple framework.

3.4 Improving Realism and Flow

The aforementioned components form the core of our approach, termed Flux4D-base. Flux4D-base
can already disentangle motion and render novel views with high quality. We further improve Flux4D-
base through two enhancements that further recover more fine-grained appearance and refined flow,
resulting in our final model, Flux4D.

Iterative refinement: Flux4D-base recovers the overall scene appearance, but often lacks fine-
grained details. We hypothesize that this limitation stems from the constrained capacity of a single-
step feedforward network, and imperfect initialization due to occlusions. To mitigate this, we
introduce an iterative refinement mechanism inspired by G3R [6], leveraging 3D gradients as feedback
to enhance reconstruction quality. Specifically, after each forward pass and generation of rendered
color and depth at the supervision views, we compute the 3D gradients of the Gaussians according to
the loss function Eqn. (3), and provide the generated Gaussians and gradients as input to a network
fϕ to further refine them. This process progressively corrects color inconsistencies and sharpens
details within as few as two iterations. By incorporating iterative feedback, our method achieves
higher-fidelity reconstruction, particularly in regions with complex appearance variations, while
preserving the efficiency and scalability of Flux4D-base.

Motion enhancement: Flux4D-base recovers the overall scene flow accurately (Table 7). We fur-
ther introduce polynomial motion parameterizations to better model actor behaviors like acceleration,
braking or turning. Please see supp. for more details and comparisons. Exploring more advanced
velocity models [21] or implicit flow representations is an exciting direction for future work. To
further improve the flow and appearance quality of dynamic actors, we modify the loss function to
focus on dynamic regions. Specifically, we render the flow in the image plane and apply pixel-wise
re-weighting to the photometric loss. This gives higher importance to faster-moving regions during
training, which typically occupy fewer pixels and would contribute less to the overall loss.

4 Experiments

We evaluate Flux4D against the current state-of-the-art (SoTA) self-supervised scene reconstruction
methods, including both per-scene optimization and generalizable approaches. We also report the
performance of supervised methods that do require annotations to model dynamics as a reference.
We perform experiments on multiple outdoor dynamic datasets and assess novel view appearance
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Figure 3: Qualitative results for NVS on PandaSet. Rendered RGB images from novel views show
that our method achieves better image quality across a variety of urban scenes, with crisper edges and
sharper dynamic actors compared to baselines.

OursDeSiRe-GSEmerNeRFG3RNeuRADGT

106-21

115-41

158-7

8s reconstruction

16-31

Reconstruction w/o labelReconstruction w/ label

Figure 4: NVS on longer-horizon logs. Qualitative comparison shows that our method outperforms
SoTA unsupervised baselines, by maintaining better estimation of actor movements in longer horizon.
We shrink the gap in quality to supervised methods.

and depth, as well as recovered flow. We also ablate Flux4D’s design and show that Flux4D scales
with more data. Finally, we demonstrate the controllability of our predicted scene representation for
realistic camera simulation.

4.1 Experimental Details

Experiment setup: We conduct experiments on outdoor driving scenes from PandaSet [48] and
Waymo Open Dataset (WOD) [36]. From PandaSet’s 103 dynamic scenes (1080p cameras, 64-beam
LiDARs, 10Hz), we select 10 diverse scenes for validation and use the rest for training. We use the
front camera and 360◦ LiDAR, both collected at 10 Hz. To compare against existing feed-forward
generalizable reconstruction methods that can only take a small number of frames as input, we report
scene reconstruction results on short 1.5s windows within the validation sequences. Each method
takes as input frames 0, 2, 4, 6, 8, 10, and is evaluated on frames 1, 3, 5, 7, 9 (interpolation) and
11-15 (future prediction). We sample a new snippet every 20 frames, yielding four non-overlapping
evaluation snippets per log. We also evaluate against per-scene optimization methods over the full
duration of the validation sequence (8 seconds) in the interpolation setting (every other frame is held
out). For WOD evaluation, we follow the NVS setting in DrivingRecon [25], using the Waymo-NOTR
subset with three front cameras, taking {t − 2, t − 1, t + 1} frames as input, and generating the
interpolated frame at time t, where t is every tenth frame in each sequence. Finally, we evaluate
scene flow estimation perpformance on PandaSet and WOD (official validation set with 202 logs). As
existing scene flow estimation methods cannot directly predict flows at novel timesteps, we evaluate
scene flow on the input frames. We restrict evaluation to LiDAR points within the camera field of
view (FoV) following [51].

Baselines: We compare against SoTA unsupervised scene reconstruction approaches: (1) Self-
supervised per-scene optimization: EmerNeRF [52] and DeSiRe-GS [31], which reconstruct dynamic
scenes using geometry priors, cycle consistency, and pre-trained vision models (FiT3D [57] and DI-

6



OursDeSiRe-GSEmerNeRF

158-7

GT

8s reconstruction

115-49

158-39

84-16

Image

Figure 5: Estimating motion flows. We compare our estimated motion with prior unsupervised
methods through rendered flow, showing accurate static region detection and sharper actor flow edges.

Table 2: Full sequence reconstruction. Flux4D outperforms unsupervised methods for 8-second
reconstructions on dynamic regions and full image, closing the gap with supervised methods.

Methods Dynamic-only Full image
PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓ PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓

Recon. with labels (reference)
NeuRAD [39] 22.99 0.719 1.71 – 24.99 0.679 2.29 –
StreetGS [50] 21.63 0.701 0.94 – 23.89 0.708 0.87 –
G3R [6] 20.60 0.573 2.16 – 23.15 0.636 2.01 –

Unsupervised recon.
EmerNeRF† [52] 18.65 0.437 4.48 0.478 23.42 0.627 3.09 0.975
DeSiRe-GS† [31] 19.76 0.544 4.08 0.312 22.91 0.659 4.07 0.395
Flux4D (Ours) 21.94 0.658 1.57 0.162 23.72 0.670 1.10 0.186

NOv2 [28]); (2) Generalizable methods: L4GM∗ [33], a 4D reconstruction model adapted to driving
scenes using depth supervision; DepthSplat∗, an extension of [49] that unprojects LiDAR points using
estimated depth for 3D Gaussian prediction; DrivingRecon [25], which builds a 4D feed-forward
model utilizing learned priors from pre-trained vision models (SAM [20] and DeepLab-v3 [4]); and
STORM [51] which predicts per-pixel Gaussians and their motion in a feed-forward manner. For
reference, we also include SoTA methods that use ground-truth 3D tracklets: StreetGS [50] and
NeuRAD [39] (compositional 3DGS/NeRF), as well as G3R [6] (iterative refinement of composi-
tional 3DGS). Apart from reconstruction methods, we also compare with representative scene flow
estimation methods NSFP [23] and FastNSF [24] as a reference.

Metrics: We report standard metrics to measure the photorealism, geometric and motion accuracy
using PSNR, SSIM, and depth RMSE (VRMSE) and velocity RMSE (VRMSE). Results are reported
on both full images and dynamically moving regions for a comprehensive assessment. For scene-flow
quality, we report EPE3D, Acc5 and Acc10 (fraction of points with error ≤ 5/10 cm), angular error in
radians (θϵ), three-way EPE [10]: background-static (BS), foreground-static (FS), and foreground-
dynamic (FD), bucketed normalized EPE [19], and inference speed. On WOD, where semantic labels
are coarse, we follow EulerFlow [41] and report bucketed normalized EPE for Background (incl.
Signs), Vehicles, Pedestrians, and Cyclists only.

Flux4D implementation details: We adopt a 3D U-Net with sparse convolutions [37] for fθ. To
handle unbounded scenes, we place random points on a spherical plane at a far distance to model sky
and far-away regions. We also add random points within a 3D sphere following [50] to increase model
robustness. Our model processes full-resolution images (≥ 1920× 1080) in all experiments and can
be efficiently scaled to higher resolutions without significant overhead. Unless otherwise stated, all
models are trained for 30,000 iterations on 4× NVIDIA L40S (48G) GPUs, taking approximately 2
days. The reconstruction loss weights λrgb, λSSIM, λdepth are set as 0.8, 0.2 and 0.01 respectively.
The velocity regularization weight λvel is set as 5e-3.
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Table 3: NVS on WOD [36]. We achieve significant im-
provements over generalizable baselines.

Methods Full Image Dynamic Static
PSNR SSIM LPIPS PSNR SSIM PSNR SSIM

LGM [38] 17.49 0.47 0.33 17.79 0.49 15.37 0.39
PixelSplat [2] 18.24 0.56 0.30 18.63 0.58 16.96 0.44
MVSplat [5] 19.00 0.57 0.28 19.29 0.58 17.35 0.47
L4GM [33] 17.63 0.54 0.31 18.58 0.56 16.78 0.43
DrivingRecon [25] 20.63 0.61 0.21 20.97 0.62 19.70 0.51
Flux4D 26.62 0.82 0.18 26.86 0.83 26.09 0.80

Table 4: Future prediction. We surpass
unsupervised and supervised methods.

Methods PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓
Recon. with labels
NeuRAD [39] 21.52 0.557 3.03 –
StreetGS [50] 19.09 0.499 1.49 –
G3R [50] 21.13 0.570 2.09 –

Unsupervised recon.
EmerNeRF† [52] 19.64 0.516 5.00 0.346
DeSiRe-GS† [31] 18.86 0.513 26.07 0.325
STORM [51] 19.63 0.489 5.19 0.251
Flux4D (Ours) 21.81 0.598 1.42 0.193

Label 
Flow

Flux4D
Flow

Flux4D
RGB

Figure 6: High-fidelity flow and RGB reconstruction. Flux4D not only provides photorealistic
reconstruction of the dynamic scene but also estimates actors’ motion flow with high precision.

4.2 Scalable 4D Reconstruction

Novel view synthesis on PandaSet: Table 1 and Fig. 3 compare Flux4D against SoTA unsupervised
methods on 1s PandaSet snippets in the interpolation setting, with supervised approaches included
for reference. Reconstruction speed is measured on a single RTX A5000 GPU (24GB). Flux4D
achieves superior photorealism and geometric accuracy with fast reconstruction speed. We further
evaluate our method on longer-horizon reconstruction of 8 second logs (Table 2 and Fig. 4), using
iterative processing of 1s snippets. Our approach outperforms unsupervised per-scene optimization
methods by a large margin on both 1s and 8s reconstruction tasks, without requiring pre-trained
models or complex regularization. Our quantitative results as reported in these tables also indicate
that Flux4D is competitive even against supervised approaches. Qualitatively, as shown in Fig. 3
and 4, Flux4D achieves high-fidelity camera rendering in both static and dynamic regions, while
existing unsupervised approaches usually suffer from noticeable artifacts on dynamic actors due to
inaccurate learned dynamics.

Novel view synthesis on WOD: We further compare Flux4D with SoTA generalizable methods on
WOD in Table 3, where we follow the setup in [25]. The baseline results are from DrivingRecon [25]
paper and we confirmed the setup and results with the authors to ensure accurate comparison. Flux4D
surpasses DrivingRecon by +5.99 dB in PSNR and +0.21 in SSIM, demonstrating its effectiveness
for unsupervised dynamic scene reconstruction. Please see supp. for qualitative comparisons.

Flow estimation: We compare the estimated motion flows of Flux4D with existing unsupervised
per-scene optimization methods EmerNeRF [52] and DeSiRe-GS [31]. As shown in Table 1, 2 and
Fig. 5, Flux4D significantly outperforms prior approaches, learning accurate motion direction and
magnitude without any supervision. In contrast, existing methods struggle to learn consistent motion
flows and fully decompose dynamic scenes, leading to inaccurate and incoherent motion predictions,
limiting their applicability in downstream tasks.

Scene flow evaluation: While Flux4D primarily focuses on reconstruction and is not specifically
designed for scene flow estimation, we further evaluate its performance on PandaSet compared with
representative scene flow estimation methods using standard scene flow metrics in Table 5 and 6.
Please see supp. for comparisons on WOD. Although not designed for scene flow estimation, Flux4D
achieves superior performance across most scene flow metrics using only reconstruction-based
supervision (RGB + depth). Notably, it outperforms other methods on smaller or less common object
categories such as wheeled VRUs, other vehicles, and pedestrians, as shown in bucketed evaluations.
These results highlight a promising path to unifying state-of-the-art scene flow estimation and
reconstruction within a single framework.

8



Table 5: Comparison with scene flow estimation methods.
Method EPE3D ↓ Acc5 ↑ Acc10 ↑ θϵ ↓ EPE-BS ↓ EPE-FS ↓ EPE-FD ↓ EPE-3way ↓ Inference time ↓
NSFP [23] 0.183 0.558 0.713 0.510 0.106 0.103 0.573 0.227 ∼5.57 s/frame
FastNSF [24] 0.194 0.571 0.714 0.471 0.155 0.134 0.428 0.211 ∼0.68 s/frame
STORM [51] 0.120 0.757 0.782 0.489 0.009 0.098 0.536 0.201 ∼0.01 s/frame
Flux4D 0.094 0.775 0.807 0.123 0.019 0.117 0.391 0.165 ∼0.31 s/frame

Table 6: Bucketed scene flow error on PandaSet. Normalized EPE3D (↓) per class, split into static
(S) and dynamic (D) regions. Mean S/D are averages across all buckets. Abbrev.: BG = Background,
CAR = Car, WVRU = Wheeled VRU, VEH = Other Vehicles, PED = Pedestrian.

Method BG-S↓ CAR-S↓ CAR-D↓ WVRU-S↓ WVRU-D↓ VEH-S↓ VEH-D↓ PED-S↓ PED-D↓ Mean S↓ Mean D↓
NSFP [23] 0.128 0.093 0.668 0.046 0.975 0.060 0.819 0.071 0.945 0.080 0.852
FastNSF [24] 0.196 0.153 0.581 0.043 0.960 0.075 0.701 0.041 0.894 0.102 0.784
STORM [51] 0.005 0.087 0.713 0.000 1.000 0.195 1.000 0.093 1.012 0.076 0.931
Flux4D 0.019 0.078 0.701 0.011 0.866 0.021 0.661 0.027 0.966 0.031 0.800

Future prediction: We evaluate Flux4D’s capability for future frame prediction beyond the ob-
served frames. This challenging task requires precise motion estimation, temporal consistency,
occlusion reasoning, and a comprehensive 4D scene understanding. As shown in Table 4, Flux4D
outperforms existing unsupervised methods in both photometric accuracy and geometric consistency.
Moreover, Flux4D even outperforms supervised approaches that rely on imperfect explicit annota-
tions for extrapolation, demonstrating the robustness of our predicted scene representation and the
effectiveness of unsupervised scene flow prediction. This highlights Flux4D’s ability to model scene
dynamics, which is critical for world modeling, simulation, and scene understanding in autonomous
systems. We report full-image metrics in Table 4 and report dynamic-only metrics in supp.

Ablation: Table 7 evaluates Flux4D’s key design components. Iterative refinement significantly
enhances image quality and geometric accuracy metrics. Polynomial motion modeling improves
motion prediction performance. Table 8 demonstrates that our static-preference prior is essential to
learning accurate flow, and that velocity reweighting improves performance on the dynamic elements.
Please refer to supp. for qualitative comparisons.

LiDAR-free Flux4D: We show that Flux4D can also operate in a LiDAR-free mode at inference
similar to DrivingRecon [25] and STORM [51] by using off-the-shelf monocular depth estimation
model [15]. As shown in Table 9, the flow estimation performance remains comparable, and in some
cases, the visual realism improves in background regions (e.g., buildings) due to the broader coverage
provided by monocular depth, particularly in areas where LiDAR sparsity limits reconstruction
quality. Combining both LiDAR and points lifted by monocular depth yields the best overall realism.

Scaling analysis: Flux4D’s effectiveness stems from multi-scene training, leveraging diverse driv-
ing data as implicit regularization. Unlike per-scene methods that require complex regularizations
or pre-trained models, increasing the amount of training data naturally improves scene decompo-
sition and motion estimation. Analysis on PandaSet and WOD shows consistent improvements in
photometric accuracy and motion estimation as training data scale. This confirms unsupervised
4D reconstruction benefits significantly from diverse real-world scenarios, suggesting Flux4D can
continue improving with additional data, making it promising for scalable scene reconstruction.

Camera Simulation: We showcase applying Flux4D for high-fidelity camera simulation in large-
scale driving scenarios. Flux4D produces high-quality motion flows in diverse, large-scale dynamic
scenes on PandaSet (Fig. 6), Argoverse 2 [45], and WOD (Fig. 7). This allows accurate scene
decomposition across diverse environments which is critical for instance extraction and direct
manipulation of dynamic elements (Fig. 9). Compared to existing self-supervised per-scene methods,
Flux4D is better suited for interactive and controllable applications, as it reconstructs an editable
representation that supports instance mask extraction, scene editing and object manipulation for
various downstream tasks. In Fig. 9, we demonstrate Flux4D’s capability to render realistic images of
the modified scene representation. Notably, our approach achieves this without requiring labels.

5 Limitations

Although Flux4D achieves SoTA 4D reconstruction without any annotations or pre-trained models,
three key limitations remain: (1) flow estimation for highly dynamic actors with complex motion
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Table 7: Ablation study on Flux4D designs.

Methods Dynamic-only
PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓

Flux4D-base 18.89 0.472 1.98 0.165
+ iterative refine 21.32 0.636 1.66 0.167
+ polynomial motion 21.45 0.641 1.55 0.167

Table 8: Ablation study on training strategy.

Methods Dynamic-only
PSNR↑ SSIM↑ DRMSE ↓ VRMSE ↓

Flux4D 21.99 0.662 1.63 0.157
− vel. reweighting 21.45 0.641 1.55 0.167
− vel. regularization 21.08 0.614 1.44 0.532

Table 9: LiDAR-free Flux4D using off-the-shelf monocular depth estimation model [15].

Methods Dynamic-only Full image Scene Flow
PSNR ↑ SSIM ↑ DRMSE ↓ VRMSE ↓ PSNR ↑ SSIM ↑ DRMSE ↓ VRMSE ↓ EPE-3way ↓

Flux4D (monocular depth only) 21.71 0.668 1.45 0.159 23.87 0.688 1.23 0.186 0.165
Flux4D (LiDAR, Table 1) 21.99 0.662 1.63 0.157 23.84 0.675 1.07 0.182 0.165
Flux4D (LiDAR + monocular depth) 21.99 0.682 1.52 0.158 24.55 0.726 1.11 0.184 0.161

Waymo Open DataSet (WOD)Argoverse 2

Right turnTraffic light Sunny Dense traffic Pedestrian / CyclistRainingNighttimeExposure
Lighting 
variation

Figure 7: Flux4D reconstruction on Argoverse 2 and WOD.

Figure 8: Scaling analysis. Increasing num-
ber of training scenes for Flux4D consistently
improves performance.

Actor Insertion

Moving Instances (no labels)

Actor removal Actor Manipulation

Rendered RGB Rendered Velocity

Controllable sim figure

Figure 9: Simulation applications. Flux4D can be
applied suc- cessfully to different camera simulation
tasks, e.g., actor removal, insertion and manipulation.

patterns is challenging, which could be mitigated by leveraging larger and more diverse training data;
(2) iterative approach for long-horizon reconstruction creates visible inconsistencies at transition
points; and (3) the method assumes a simple pinhole camera model with clean LiDAR data, limiting
applicability with rolling shutter cameras or noisy sensor inputs. Please see supp. for more examples.
Future work will focus on scaling to larger datasets, developing a unified temporal representation
for seamless long-term reconstruction, and improving robustness to real-world sensor imperfections.
Furthermore, Flux4D’s explicit 3D representation offers interpretable structure for world models.
Overall, we believe that our simple and scalable design serves as a foundation for the community to
build upon, enabling further advancements in 4D reconstruction.

6 Conclusion

We present Flux4D, a scalable flow-based unsupervised framework for reconstructing large-scale
dynamic scenes by directly predicting 3D Gaussians and their motion dynamics. By relying solely
on photometric losses and enforcing an “as static as possible” regularization, Flux4D effectively
decomposes dynamic elements without requiring any supervision, pre-trained models, or foundational
priors. Our method enables fast reconstruction, scales efficiently to large datasets, and generalizes
well to unseen environments. Extensive experiments on outdoor driving datasets demonstrate state-
of-the-art performance in scalability, generalization, and reconstruction quality. We hope this work
paves the way for efficient, unsupervised 4D scene reconstruction at scale.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the contributions
and scope of our work. The stated claims are well aligned with both empirical results
presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations in Sec. 5. We further provide qualitative examples
of failure cases and more discussions about the limitations in the supplemental material.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To the best of our knowledge, we have provided all the information needed to
reproduce the main experimental results of the paper. We provide the complete architectural
designs, data splits, experiment settings, training hyperparameters, loss weights, and more
in both the main paper (Sec. 4) and the supplementary material.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We use public datasets [48, 45, 35] in this work. We are unable to release
code at the time of submission. We recognize the importance of reproducibility and are
actively exploring the possibility of releasing the code with the camera-ready version. In
the meantime, we provide pseudocode and implementation details, as well as training and
evaluation procedures in the main paper or supplementary.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all implementation, training, testing, and data details in both the
main paper and supplementary material. This includes data splits, hyperparameters, loss
weights, pseudocode, optimizer type, architectural design, experimental settings, and more.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not include error bars or statistical significance tests. This is
consistent with common practice in the 3D vision field, where such results are typically
considered self-evident due to the large performance gaps.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the full breakdown of our experiments compute resources for
each experiment in the supplementary material. We also provide our rough estimate of the
compute resources needed for development.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, our research conforms with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We discuss the broader impact in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide a complete summary of the licenses of all assets we used (datasets,
codebases) in the supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper experiments with exisitng, open-source datasets and does not release
new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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