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Abstract1

The cornerstone of neural algorithmic reasoning is the ability to solve algorithmic2

tasks, especially in a way that generalises out of distribution. While recent years3

have seen a surge in methodological improvements in this area, they mostly focused4

on building specialist models. Specialist models are capable of learning to neurally5

execute either only one algorithm or a collection of algorithms with identical6

control-flow backbone. Here, instead, we focus on constructing a generalist7

neural algorithmic learner—a single graph neural network processor capable of8

learning to execute a wide range of algorithms, such as sorting, searching, dynamic9

programming, path-finding and geometry. We leverage the CLRS benchmark to10

empirically show that, much like recent successes in the domain of perception,11

generalist algorithmic learners can be built by "incorporating" knowledge. That12

is, it is possible to effectively learn algorithms in a multi-task manner, so long as13

we can learn to execute them well in a single-task regime. Motivated by this, we14

present a series of improvements to the input representation, training regime and15

processor architecture over CLRS, improving average single-task performance by16

over 20% from prior art. We then conduct a thorough ablation of multi-task learners17

leveraging these improvements. Our results demonstrate a generalist learner that18

effectively incorporates knowledge captured by specialist models.19

1 Introduction20

Machine learning systems based on deep neural networks have made tremendous strides in recent21

years, especially so for tasks dominated by perception. Prominent models in this space are usually22

required to generalise in-distribution, meaning that their training and validation sets are representative23

of the distribution expected of test inputs. In contrast, to truly master tasks dominated by reasoning, a24

model needs to provide sensible outputs even when generalising out-of-distribution (OOD). Corre-25

spondingly, neural networks have seen lesser levels of success in this domain. Indeed, it has been26

suggested that stronger neural reasoning architectures may require careful application of methods27

such as algorithmic alignment [1], causality [2] and self-supervised learning [3]. Furthermore, these28

kinds of architectures are likely to be critical for robustly generating new knowledge based on existing29

observations, especially when that knowledge escapes the domain of training data.30

Neural algorithmic reasoning [4] offers a robust route for obtaining such modelling advancements.31

Its focus is on evaluating existing (graph) neural network architectures on their ability to solve32

algorithmic tasks, typically by learning to execute classical algorithms [5]. This is an excellent target33

for probing reasoning capabilities, as classical algorithms can be seen as the essential “building34

blocks” for all of theoretical computer science, and fundamental tools in a software engineering35

career [6]. While this is a fairly self-contained pipeline, evidence of its applicability has already36

emerged: Graph Neural Networks (GNNs) pre-trained on algorithmic tasks have been successfully37

utilised in implicit planning [7] and self-supervised learning [8]. All of the prior advances in this38

area focused on building specialist models: either focusing on a single algorithm, or a collection of39

algorithms with an identical control flow backbone [9, 10].40

In contrast, here we demonstrate a generalist neural algorithmic learner: a single GNN, with a single41

set of parameters, capable of learning to solve several classical algorithmic tasks simultaneously—to42

a level that matches relevant specialist models on average. This represents an important milestone,43
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Figure 1: Our generalist neural algorithmic learner is a single processor GNN P , with a single set of
weights, capable of solving several algorithmic tasks, τ , in a shared latent space (each of which is
attached to P with simple encoders/decoders fτ and gτ ). Among others, our processor network is
capable of sorting (top), shortest path-finding (middle), and convex hull finding (bottom).

showing we can meaningfully incorporate reasoning capabilities even across tasks with completely44

disparate control flow, and in several tasks, we can exceed the OOD performance (performance45

on larger-size instances of the tasks) of the corresponding single-task specialist. Our generalist46

model is capable of performing various tasks, spanning sorting, searching, greedy algorithms,47

dynamic programming, graph algorithms, string algorithms and geometric algorithms (Figure 1). The48

experimentation we conduct is made possible by the CLRS-30 benchmark [5], a collection of thirty49

classical algorithmic tasks [6] spanning the above categories, along with a unified representational50

interface which made multi-task models easier to deploy.51

Our results are powered by a single salient observation: any numerical difficulties which would make52

individual algorithms harder to learn (e.g. unstable gradients) are amplified when trying to learn a53

collection of such algorithms at once. Therefore, one of our main contributions is also to present a54

series of improvements to the training, optimisation, input representations, and GNN architectures55

which, taken together, improve the best-known average performance on the CLRS-30 benchmark by56

over 20% in absolute terms. We hope that our collection of improvements, with careful explanation57

for their applicability, will prove useful to GNN practitioners even beyond the realm of reasoning.58

2 Related Work59

The closest related work to ours is NeuralExecutor++, a multi-task algorithmic reasoning model by60

Xhonneux et al. [10, NE++]. NE++ focuses on a highly specialised setting where all the algorithms61

have an identical control flow backbone. For example, NE++ jointly learns to execute Prim’s [11]62

and Dijkstra’s [12] algorithms, which are the same up to a choice of key function and edge relaxation63

subroutine. Even in this specialist regime, the authors are able to make critical observations, such as64

empirically showing the specific forms of multi-task learning necessary for generalising OOD. We65

leverage these insights and extend them beyond the domain of closely related algorithms.66

Also of note is the work on neural execution of graph algorithms by Veličković et al. [9]. This67

work provided early evidence of the potential for multi-task learning of classical algorithms. The68

authors simultaneously learn breadth-first search and the Bellman-Ford algorithm [13]—empirically69

demonstrating that joint learning is better than learning them either in isolation or with various forms70

of curriculum [14]. Once again, the algorithms have nearly-identical backbone; in fact, breadth-first71

search can be interpreted as the Bellman-Ford algorithm over a graph with constant edge weights.72

Our work belongs to the hard parameter sharing class of models, pioneered by Caruana [15]. In73

hard parameter sharing, all tasks share the same model, with, potentially, some task-specific weights.74
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This line of work has demonstrated that a single general model can learn a set of challenging tasks75

in combinatorial optimisation [16–18], computer control [19], and multi-modal multi-embodied76

learning [20, Gato]. Just like Gato provides a generalist agent for a wide variety of tasks (language77

modelling, playing Atari games, robotic control, image captioning), we provide a generalist agent for78

a diverse set of algorithmic domains, including sorting, searching, graphs, strings, and geometry.79

Due to their ability to operate on graphs of arbitrary size, GNNs (including Transformers [21]) have80

been extensively explored for their in- and out-of-distribution generalisation properties in Reinforce-81

ment Learning (RL) [22–26]. In our setting, OOD generalisation implies generalisation to problems82

of larger size, e.g., longer input arrays to sort or larger graphs to find shortest paths in. In-distribution83

generalisation implies generalisation to new instances of problems of the same size. From this84

perspective, our problem setting is similar to procedurally-generated environments in RL [27–29].85

The improvements we implemented for our single-task specialist reasoners are largely motivated by86

the theory of algorithmic alignment [30]. The key result of this theory is that neural networks will87

have provably smaller sample complexity if they are designed with components that “line up” with88

the target algorithm’s operations. Following this prescription, we make several changes to the input89

data representations to make this alignment stronger [1], modify the GNN architecture to support90

higher-order reasoning [31] and suggest dedicated decoders for doubly-stochastic outputs [32].91

3 Single-task experiments92

Each algorithm in the CLRS benchmark [5] is specified by a number of inputs, hints and outputs. In93

a given sample, the inputs and outputs are fixed, while hints are time-series of intermediate states of94

the algorithm. Each sample for a particular task has a size, n, corresponding to the number of nodes95

in the GNN that will execute the algorithm.96

A sample of every algorithm is represented as a graph, with each input, output and hint located in97

either the nodes, the edges, or the graph itself, and therefore has shape (excluding batch dimension,98

and, for hints, time dimension) n× f , n× n× f , or f , respectively, f being the dimensionality of99

the feature, which depends on its type. The CLRS benchmark defines five types of features: scalar,100

categorical, mask, mask_one and pointer, with their own encoding and decoding strategies and101

loss functions—e.g. a scalar type will be encoded and decoded directly by a single linear layer, and102

optimised using mean squared error. We defer to the CLRS benchmark paper [5] for further details.103

3.1 Base Model104

Encoder. We adopt the same encode-process-decode paradigm [33] presented with the CLRS105

benchmark [5]. At each time step, t, of a particular task τ (e.g. insertion sort), the task-based encoder106

fτ , consisting of a linear encoder for each input and hint, embeds inputs and the current hints as107

high-dimensional vectors. These embeddings of inputs and hints located in the nodes all have the108

same dimension and are added together; the same happens with hints and inputs located in edges,109

and in the graph. In our experiments we use the same dimension, h = 128, for node, edge and graph110

embeddings. Thus, at the end of the encoding step for a time-step t of the algorithm, we have a111

single set of embeddings
{
x
(t)
i , e

(t)
ij ,g

(t)
}

, shapes n× h, n× n× h, and h, in the nodes, edges and112

graph, respectively. Note that this is independent of the number and type of the inputs and hints of113

the particular algorithm, allowing us to share this latent space across all thirty algorithms in CLRS.114

Further, note that at each step, the input encoding is fed directly to these embeddings—this recall115

mechanism significantly improves the model’s robustness over long trajectories [34].116

Processor. The embeddings are fed into a processor P , a GNN that performs one step of com-117

putation. The processor transforms the input node, edge and graph embeddings into processed118

node embeddings, h(t)
i . Additionally, the processor uses the processed node embeddings from the119

previous step, h(t−1)
i , as inputs. Importantly, the same processor model can operate on graphs of any120

size. We leverage the message-passing neural network [35, MPNN], using the max aggregation and121

passing messages over a fully-connected graph, as our base model. The MPNN computes processed122

embeddings as follows:123

z(t) = x
(t)
i ∥h(t−1)

i m
(t)
i = max

1≤j≤n
fm

(
z
(t)
i , z

(t)
j , e

(t)
ij ,g

(t)
)

h
(t)
i = fr

(
z
(t)
i ,m

(t)
i

)
(1)
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starting from h(0) = 0. Here ∥ denotes concatenation, fm : R2h × R2h × Rh × Rh → Rh is the124

message function (for which we use a three-layer MLP with ReLU activations), and fr : R2h×Rh →125

Rh is the readout function (for which we use a linear layer with ReLU activation). The use of the max126

aggregator is well-motivated by prior work [5, 9], and we use the fully connected graph—letting the127

neighbours j range over all nodes (1 ≤ j ≤ n)—in order to allow the model to overcome situations128

where the input graph structure may be suboptimal. Layer normalisation [36] is applied to h
(t)
i before129

using them further. Further details on the MPNN processor may be found in Veličković et al. [5].130

Decoder. The processed embeddings are finally decoded with a task-based decoder gτ , to predict131

the hints for the next step, and the outputs at the final step. Akin to the encoder, the task-based decoder132

relies mainly on a linear decoder for each hint and output, along with a mechanism to compute133

pairwise node similarities when appropriate. Specifically, the pointer type decoder computes134

a score, sij , for each pair of nodes, and then chooses the pointer of node i by taking either the135

argmaxj sij or softmaxj sij (depending on whether a hard or soft prediction is used).136

Loss. The decoded hints and outputs are used to compute the loss during training, according to their137

type [5]. For each sample in a batch, the hint prediction losses are averaged across hints and time,138

and the output loss is averaged across outputs (most algorithms have a single output, though some139

have two outputs). The hint loss and output loss are added together. Besides, the hint predictions at140

each time step are fed back as inputs for the next step, except possibly at train time if teacher forcing141

is used (see Section 3.2.1).142

We train the model on samples with sizes n ≤ 16, and periodically evaluate them on in-distribution143

samples of size n = 16. Also, periodically, we evaluate the model with the best in-distribution144

evaluation score so far on OOD samples of size n = 64. In what follows, we will be reporting only145

these OOD evaluation scores. Full details of the model, training and evaluation hyperparameters can146

be found in Appendix A.147

3.2 Model improvements148

As previously discussed, single-task improvements, especially in terms of learning stability, will149

empirically transfer well to multi-task algorithmic learning. We now describe, in a gradual manner,150

all the changes made to the model, which have lead to an absolute improvement of over 20% on151

average across all 30 tasks in CLRS.152

3.2.1 Dataset and training153

Removing teacher forcing. At evaluation time, the model has no access to the step-by-step hints in154

the dataset, and has to rely on its own hint predictions. However, during training, it is sometimes155

advisable to stabilise the trajectories with teacher forcing [37]—providing the ground-truth hint156

values instead of the network’s own predictions. In the prior model [5], ground-truth hints were157

provided during training with probability 0.5, as, without teacher forcing, losses tended to grow158

unbounded along a trajectory when scalar hints were present, destabilising the training. In this159

work we incorporate several significant stabilising changes (described in future paragraphs), which160

allows us to remove teacher forcing altogether, aligning training with evaluation, and avoiding the161

network becoming overconfident in always expecting correct hint predictions. With teacher forcing,162

performance deteriorates significantly in sorting algorithms and Kruskal’s algorithm. Naïve String163

Matcher, on the other hand, improves with teacher forcing (see Appendix A, Figs. 7-9).164

Augmenting the training data. To prevent our model from over-fitting to the statistics of the165

fixed CLRS training dataset [5], we augmented the training data in three key ways, without breaking166

the intended size distribution shift. Firstly, we used the on-line samplers in CLRS to generate new167

training examples on the fly, rather than using a fixed dataset which is easier to overfit to. Secondly,168

we trained on examples of mixed sizes, n ≤ 16, rather than only 16, which helps the model anticipate169

for a diverse range of sizes, rather than overfitting to the specifics of size n = 16. Lastly, for graph170

algorithms, we varied the connectivity probability p of the input graphs (generated by the Erdős-Rényi171

model [38]); and for string matching algorithms, we varied the length of the pattern to be matched.172

These both serve to expose the model to different trajectory lengths; for example, in many graph173

algorithms, the amount of steps the algorithm should run for is related to the graph’s diameter, and174

varying the connection probability in the graph generation allows for varying the expected diameter.175
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These changes considerably increase training data variability, compared to the original dataset in [5].176

We provide a more detailed step-by-step overview of the data generation process in Appendix A.177

Soft hint propagation. When predicted hints are fed back as inputs during training, gradients178

may or may not be allowed to flow through them. In previous work, only hints of the scalar type179

allowed gradients through, as all categoricals were post-processed from logits into the ground-truth180

format via argmax or thresholding before being fed back. Instead, in this work we use softmax181

for categorical, mask_one and pointer types, and the logistic sigmoid for mask types. Without182

these soft hints, performance in sorting algorithms degrades (similarly to the case of teacher forcing),183

as well as in Naïve String Matcher (Appendix A, Figs. 7-9).184

Static hint elimination. Eleven algorithms in CLRS1 specify a fixed ordering of the nodes, common185

to every sample, via a node pointer hint that does not ever change along the trajectories. Prediction of186

this hint is trivial (identity function), but poses a potential problem for OOD generalization, since the187

model can overfit to the fixed training values. We therefore turned this fixed hint into an input for188

these 11 algorithms, eliminating the need for explicitly predicting it.189

Improving training stability with encoder initialisation and gradient clipping. The scalar190

hints have unbounded values, in principle, and are optimised using mean-squared error, hence their191

gradients can quickly grow with increasing prediction error. Further, the predicted scalar hints then192

get re-encoded at every step, which can rapidly amplify errors throughout the trajectory, leading to193

exploding signals (and consequently gradients), even before any training takes place.194

To rectify this issue, we use the Xavier initialisation [45], effectively reducing the initial weights for195

scalar hints whose input dimensionality is just 1. However, we reverted to using the default LeCun196

initialisation [46] elsewhere. This combination of initialisations proved important for the initial197

learning stability of our model over long trajectories. Relatedly, in preliminary experiments, we saw198

drastic improvements in learning stability, as well as significant increases in validation performance,199

with gradient clipping [47], which we subsequently employed in all experiments.200

3.2.2 Encoders and decoders201

Randomised position scalar. Across all algorithms in the dataset, there exists a position scalar202

input which uniquely indexes the nodes, with values linearly spaced between 0 and 1 along the node203

index. To avoid overfitting to these linearly spaced values during training, we replaced them with204

random values, uniformly sampled in [0, 1], sorted to match the initial order implied by the linearly205

spaced values. The benefit of this change is notable in algorithms where it would be easy to overfit to206

these positions, such as string matching. Namely, the model could learn to base all of its computations207

on the assumption that it will always be finding a m-character pattern inside an n-character string,208

even though at test time, m and n will increase fourfold.209

Permutation decoders and the Sinkhorn operator. Sorting algorithms (Insertion Sort, Bubble210

Sort, Heapsort [48] and Quicksort [49]) always output a permutation of the input nodes. In the CLRS211

benchmark, this permutation is encoded as a pointer where each node points to its predecessor in212

the sorted order (the first node points to itself); this is represented as a n× n matrix P where each213

row is a one-hot vector, such that element (i, j) is 1 if node i points to node j. As with all types of214

pointers, such permutation pointers can be predicted using a row-wise softmax on unconstrained215

decoder outputs (logits), trained with cross entropy (as in [5]). However, this does not explicitly take216

advantage of the fact that the pointers encode a permutation, which the model has to learn instead.217

Our early experiments showed that the model was often failing to predict valid permutations OOD.218

Accordingly, we enforce a permutation inductive bias in the output decoder of sorting algorithms, as219

follows. First, we modify the output representation by rewiring the first node to point to the last one,220

turning P into a permutation matrix, i.e., a matrix whose rows and columns are one-hot vectors. We221

also augment the representation with a one-hot vector of size n that specifies the first node, so we do222

not lose this information; this vector is treated like a regular mask_one feature. Second, we predict the223

permutation matrix P from unconstrained decoder outputs Y by replacing the usual row-wise softmax224

with the Sinkhorn operator S [32, 50–53]. S projects an arbitrary square matrix Y into a doubly225

1Binary Search, Minimum, Max Subarray [39], Matrix Chain Order, LCS Length, Optimal BST [40], Activity
Selector [41], Task Scheduling [42], Naïve String Matcher, Knuth-Morris-Pratt [43] and Jarvis’ March [44].
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stochastic matrix S(Y) (a non-negative matrix whose rows and columns sum to 1), by exponentiating226

and repeatedly normalizing rows and columns so they sum to 1. Specifically, S is defined by:227

S0(Y) = exp(Y) Sl(Y) = Tc(Tr(Sl−1(Y))) S(Y) = lim
l→∞

Sl(Y), (2)

where exp acts element-wise, and Tr and Tc denote row and column normalisation respectively.228

Although the Sinkhorn operator produces a doubly stochastic matrix rather than a permutation matrix,229

we can obtain a permutation matrix by introducing a temperature parameter, τ > 0, and taking230

P = limτ→0+ S(Y/τ); as long as there are no ties in the elements of Y, P is guaranteed to be a231

permutation matrix [52, Theorem 1].232

In practice, we compute the Sinkhorn operator using a fixed number of iterations lmax. We use a233

smaller number of iterations lmax = 10 for training, to limit vanishing and exploding gradients, and234

lmax = 60 for evaluation. A fixed temperature τ = 0.1 was experimentally found to give a good235

balance between speed of convergence and tie-breaking. We also encode the fact that no node points236

to itself, that is, that all diagonal elements of P should be 0, by setting the diagonal elements of Y to237

−∞. To avoid ties, we follow Mena et al. [53], injecting Gumbel noise to the elements of Y prior to238

applying the Sinkhorn operator, during training only. Finally, we transform the predicted matrix P,239

and mask_one pointing to the first element, into the original pointer representation used by CLRS.240

3.2.3 Processor networks241

Gating mechanisms. Many algorithms only require updating a few nodes at each time step, keeping242

the rest unchanged. However, the MPNN we use (Equation 1) is biased towards the opposite: it243

updates all hidden states in each step. Although it is theoretically possible for the network to keep the244

states unchanged, learning to do so is not easy. With this in mind, and motivated by its effectiveness245

in NDRs [54], we augment the network with an update gate, biased to be closed by default. We246

found that the gate stabilizes learning on many of the tasks, and increases the mean performance247

over all tasks on single-task training significantly. Surprisingly, however, we did not find gating to be248

advantageous in the multi-task case.249

To add gating to the MPNN model we produce a per-node gating vector from the same inputs that250

process the embeddings in Equation 1:251

g
(t)
i = fg

(
z
(t)
i ,m

(t)
i

)
(3)

where fg : R2h × Rh → Rh is the gating function, for which we use a two-layer MLP, with252

ReLU activation for the hidden layer and logistic sigmoid activation for the output. Importantly, the253

final layer bias of fg is initialized to a value of −3, which biases the network for not updating its254

representations, unless necessary. The processed gated embeddings, ĥ(t)
i , are computed as follows:255

ĥ
(t)
i = g

(t)
i ⊙ h

(t)
i + (1− g

(t)
i )⊙ h

(t−1)
i (4)

and are used instead of h(t)
i in the subsequent steps, replacing z(t) in Eq. 1 by z(t) = x

(t)
i ∥ĥ(t−1)

i .256

Triplet reasoning. Several algorithms within CLRS-30 explicitly require edge-based reasoning—257

where edges store values, and update them based on other edges’ values. An example of this is the258

Floyd-Warshall algorithm [55], which computes all-pairs shortest paths in a weighted graph. The259

update rule for dij , its estimate for the best distance from node i to j, is dij = mink dik + dkj , which260

roughly says “the best way to get from i to j is to find the optimal mid-point k, travel from i to k, then261

from k to j”. Similar rules are pervasive across many CLRS-30 algorithms, especially in dynamic262

programming. Even though there are no node representations in the above update, all our processors263

are centered on passing messages between node representations hi.264

To rectify this situation, we augment our processor to perform message passing towards edges.265

Referring again to the update for dij , we note that the edge representations are updated by choosing266

an intermediate node, then aggregating over all possible choices. Accordingly, and as previously ob-267

served by Dudzik and Veličković [31], we introduce triplet reasoning: first, computing representations268

over triplets of nodes, then reducing over one node to obtain edge latents:269

tijk = ψt(hi,hj ,hk, eij , eik, ekj ,g) hij = ϕt(max
k

tijk) (5)
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Figure 2: The OOD performance in single-task experiments before and after the improvements
presented in this paper, sorted in descending order of current performance. Error bars represent
standard error of the mean across seeds (3 seeds for previous SOTA experiments, 10 seeds for current).
The previous SOTA values are the best of MPNN, PGN and Memnet models (see Table 2).

Here, ψt is a triplet message function, mapping all relevant representations to a single vector for270

each triplet of nodes, and ϕt is an edge readout function, which transforms the aggregated triplets271

for each edge for later use. According to prior findings on the CLRS benchmark [5], we use the272

max aggregation to obtain edge representations. The computed hij vectors can then be used in any273

edge-based reasoning task, and empirically they are indeed significantly beneficial, even in tasks274

where we did not initially anticipate such benefits. One example is Kruskal’s minimum spanning tree275

algorithm [56], where we presume that access to triplet reasoning allowed the model to more easily276

sort the edges by weight, as it selects how to augment the spanning forest at each step.277

In order to keep the footprint of triplet embeddings as lightweight as possible, we compute only278

8-dimensional features in ψt. ϕt then upscales the aggregated edge features back to 128 dimensions,279

to make them compatible with the rest of the architecture. Our initial experimentation demonstrated280

that the output dimensionality of ψt did not significantly affect downstream performance. Note that281

computing triplet representations has been a useful approach in general GNN design [57]—however,282

it has predominantly been studied in the context of GNNs over constant input features. Our study is283

among the first to verify their utility over reasoning tasks with well-specified initial features.284

3.3 Results285

Table 1: Single-task OOD micro-F1 score of previous state-of-the-art (SOTA) Memnet, MPNN and
PGN [5] and our best model Triplet-GMPNN with all our improvements, after 10,000 training steps.

Alg. Type Memnet [5] MPNN [5] PGN [5] Triplet-GMPNN (ours)
Div. & C. 13.05%± 0.14 20.30%± 0.85 65.23%± 4.44 76.36%± 1.34
DP 67.94%± 8.20 65.10%± 6.44 70.58%± 6.48 81.99%± 4.98
Geometry 45.14%± 11.95 73.11%± 17.19 61.19%± 7.01 94.09%± 2.30
Graphs 24.12%± 5.30 62.79%± 8.75 60.25%± 8.42 81.41%± 6.21
Greedy 53.42%± 20.82 82.39%± 3.01 75.84%± 6.59 91.21%± 2.95
Search 34.35%± 21.67 41.20%± 19.87 56.11%± 21.56 58.61%± 24.34
Sorting 71.53%± 1.41 11.83%± 2.78 15.45%± 8.46 60.37%± 12.16
Strings 1.51%± 0.46 3.21%± 0.94 2.04%± 0.20 49.09%± 23.49

Overall avg. 38.88% 44.99% 50.84% 74.14%

> 90% 0/30 6/30 3/30 11/30
> 80% 3/30 9/30 7/30 17/30
> 60% 10/30 14/30 15/30 24/30

By incorporating the changes described in the previous sections we arrived at a single model type,286

with a single set of hyper-parameters, that was trained to reach new state-of-the-art performance287

on CLRS-30 [5]. Tables 1 and 2 show the micro-F1 scores of our model, which we refer to as288
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Figure 3: Per-algorithm comparison between our multi-task model and single-task Triplet-GMPNN
from Table 2, ordered by biggest improvement for multi-task (left to right). Refer to Figure 5 for a
comparison against the best single-task model per algorithm instead.

Triplet-GMPNN (an MPNN with gating and triplet edge processing), over the original CLRS-30289

test set (computed identically to [5], but with 10 repetitions instead of 3). Our baselines include290

the Memnet [58], MPNN [35] and PGN [59] models, taken directly from [5]. Figure 2 displays the291

comparison between the improved model and the best model from [5]. Our improvements lead to292

an overall average performance that is more than 20% higher (in absolute terms) compared to the293

next best model (see Table 1), and to a significant performance improvement in all but one algorithm294

family, compared to every other model. Further, our stabilising changes (such as gradient clipping)295

have empirically reduced the scale of our model’s gradient updates across the 30 tasks, preparing us296

better for the numerical issues of the multi-task regime. We finally also note that though we do not297

show it in Tables 1 & 2, applying the same improvements to the PGN processor, leads to an increase298

in overall performance from 50.84% (Table 1) to 69.31%.299

There are two notable examples of algorithm families with significant OOD performance improvement.300

The first are geometric algorithms (Segments Intersect, Graham Scan [60] and Jarvis’ March), now301

solved at approximately 94% OOD, compared to the previous best of about 73%; the second being302

string algorithms (Knuth-Morris-Pratt and Naïve String Matcher) for which our model now exceeds303

49% compared to the previous best of approximately 3%.304

The significant overall performance boost is reflected in the increased number of algorithms we can305

now solve at over 60%, 80% & 90% OOD performance, compared to previous SOTA [5]. Specifically,306

we now exceed 60% accuracy in 24 algorithms (15 algorithms previously), 80% for 17 algorithms (9307

previously) and 90% for 11 algorithms (6 previously).308

4 Multi-task experiments309

In the multi-task setting, we train a single processor across all CLRS-30 tasks. We keep encoders310

and decoders separate for each task. To perform the update, one might accumulate gradients from all311

the tasks before stepping the optimizer, or step independently after each batch from each algorithm.312

Both approaches have been deemed to be effective in the multi-task learning literature [20, 24, 61],313

and we empirically found that, in our setting, stepping separately per task produced superior results.314

Following recent work [61], we did not explore specialised multi-task optimizers, but ensured the315

stability of the training with gradient clipping [47] and Xavier initialisation [45] of scalar hint encoders316

to ameliorate exploding outputs and NaN gradients, as already described. Batch size and learning rate317

are the same as in single-task experiments. We found that gating (Section 3.2.3) degraded multi-task318

performance, so it was not included in the multi-task model.319

Chunking. To reduce the memory footprint of multi-task training we implemented a chunked320

training mode, where trajectories are split along the time axis for gradient computation and, when321

they are shorter than the chunk length, are concatenated with the following trajectory so as to avoid322

the need of padding. Thus, while a standard-training batch consists of full trajectories, padded to323

the length of the longest one, a chunked-training batch has a fixed time length (16 steps in our324

experiments) and consists of segments of trajectories. Immediately after the end of one trajectory the325

8



A Generalist Neural Algorithmic Learner

0 2000 4000 6000 8000 10000
step

0

20

40

60

80

100

sc
or

e

ST, full
MT, full, chunked
MT, full, non-chunked

(a) Chunking significantly improves the multi-task
model performance.

0 2000 4000 6000 8000 10000
step

0

20

40

60

80

100

sc
or

e

ST, full model
MT, full model
MT, remove triplets
MT, remove randomized position
MT, reinstate static pred_h hints
MT, remove permutation decoders
MT, reinstate hard hints
MT, add 50% hint teacher forcing

(b) Cumulative ablation demonstrates the positive effect
of model improvements on the final OOD performance.

Figure 4: Multi-task model ablations showing average performance and 95% CI across 10 seeds.
ST, single-task; MT, multi-task.

beginning of another one follows, so there is no padding. Losses are computed independently for326

each chunked batch, and gradients cannot flow between chunks. Since the output loss is computed327

only on the final sample of each trajectory, a chunk may give rise to no output loss, if it contains no328

end-of-trajectory segments. Chunking, therefore, changes the balance between hint and output losses329

depending on the length of trajectories. Surprisingly, multi-task performance averaged across all 30330

tasks, after chunked training, is significantly better compared to full-trajectory training (Figure 4a).331

Only one algorithm, Bellman-Ford, has worse performance with chunked training (Figure 10). The332

strong effect of chunking on multi-algorithm performance indicates that the weighting of hint and333

output losses of the different tasks during optimization is important for successful multi-task learning.334

Results. Figure 3 compares the performance of the single-task Triplet-GMPNN against the multi-335

task model. Additional comparisons against the best per-algorithms single-task model from Table 2336

are also presented in Figure 5, along with an illustration of the number of tasks where the performance337

of multi-task model matches, or exceeds, that of single-task models.338

To evaluate the effect of our model improvements independently, we also performed a thorough model339

ablation. Figure 4a shows the significant difference in performance between the vanilla and chunked340

training regimes; we chose the latter to perform the ablations on. Figure 4b shows the results of our341

cumulative ablation: we gradually removed our improvements one at a time, with each element in342

the legend being the same as the model preceding it with a single improvement removed. On average,343

all the presented improvements contribute to the higher performance, with the largest effect coming344

from teacher forcing noise, i.e. feeding ground-truth hints at training time hurts generalisation, most345

likely because the correct hints are not available at test time, leading to data distribution shift.346

5 Conclusion347

We presented a generalist neural algorithmic learner: a single graph neural network, with a single348

set of weights, capable of solving a diverse collection classical algorithms, at a level comparable to349

(and at times exceeding) a relevant single-task expert. Achieving this objective was preceded by a350

range of improvements to the dataset, optimisation and architectures for neural algorithmic reasoning,351

which led to over 20% absolute improvements over the prior best known result. It is our hope that the352

results and empirical insights shared by this work will be of use to researchers and practitioners in353

the area, and help scale neural algorithmic learning to new domains and applications.354

Contrary to implications of prior art [9, 10], our key takeaway is that it is indeed possible to learn355

diverse algorithms in a multi-task manner, but careful attention needs to be paid to the learning356

dynamics and stability of the (G)NN. Further, if modifications (to the GNN architecture, data pipeline,357

or loss functions) are made at the right level of generality, it is possible to improve algorithmic358

execution performance in large groups of algorithms at once. Lastly, the significant improvements359

obtained by chunking in the multi-task regime point that there are many interesting future avenues to360

explore on the utility of hint optimisation, and how it is counterbalanced with downstream output361

predictions—especially in the multi-task algorithmic learning regime.362
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A Appendix524

A.1 Example data augmentation pipeline525

We elaborate on the procedure for generating a particular sample in our augmented training dataset.526

Let’s assume that we want to learn to execute an algorithm A. One training example trajectory for A527

is generated as follows:528

1. Choose a problem size, 4 ≤ n ≤ 16, at random. In the case of string algorithms (Naïve String529

Matcher and Knuth-Morris-Pratt), n is fixed at 20, and size randomness will come from the530

choice of needle length (see point 5 below).531

2. Choose a connection probability, p ∈ [0, 1], at random.532

3. Generate an input, represented as a graph with n nodes, and with input node, edge and graph533

features sampled to match the algorithm’s spec (see Veličković et al. [5] for details on specs).534

4. If the task is a graph algorithm, for every pair of nodes (u, v), decide whether to connect them535

with an edge by sampling euv ∼ Bernoulli(p). This is the Erdős-Rényi model, ER(n, p) [38].536

5. If the task is a string algorithm, choose a pattern length 1 ≤ m ≤ ⌊n
2 ⌋ at random. Then use the537

first n −m nodes to represent the string to be searched (the haystack), and the remaining m538

nodes as the pattern to be matched (the needle).539

6. Execute A on the resulting input, recording intermediate states, to obtain the training trajectory.540

Steps 3 and 6 are shared with the original CLRS-30 benchmark generation pipeline [5]. All of the541

other steps are newly introduced by our work, with the purpose of avoiding overfitting to a rigid542

distribution. Specifically:543

• We vary the problem size, n, to avoid overreliance on a particular size and/or particular positional544

embeddings. The original CLRS-30 dataset, in comparison, kept n = 16 (n = 20 for string545

matching algorithms) during training.546

• We vary the connection probability, p, to avoid overreliance on a particular neighbourhood size.547

The original CLRS-30 dataset, in comparison, kept p fixed during training. The exact value of548

p varied depending on the algorithm; most used p = 0.5, but Articulation Points, Bridges and549

MST Kruskal used p = 0.2 to avoid very long trajectories. In our augmentations we have used550

p ∈ [0, 0.5] for these 3 algorithms, as opposed to p ∈ [0, 1] for the rest.551

• We vary the needle length, m, to avoid overreliance on specific needle/haystack boundaries in552

string matching. The original CLRS-30 dataset, in comparison, kept m = 4 during training.553

• Lastly, we generate the dataset in an online manner, providing the model with an infinite source554

of training data, to avoid overreliance on any particular fixed-size dataset. The original CLRS-30555

dataset, in comparison, is a pre-generated dataset which is kept fixed.556

A.2 Additional experimental details557

We use an embedding size h = 128 across all experiments. We train in batches of size 32 using558

an Adam optimizer [62] with learning rate 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, employing559

gradient clipping by norm [47] with the clipping constant c empirically set to 1.0. In single-task560

experiments, we train for 10,000 batches; in the multi-task experiments, we train for 10,000 cycles561

of 30 batches, one per algorithm. When using multiple training sizes (that is, everywhere except in562

no-data-augmentation ablations), each batch of each algorithm contains samples of the same size n,563

and the sizes for each algorithm cycle along the sequence [4, 7, 11, 13, 16], except for string matching564

algorithms, where the training size is always n = 20 (variability is achieved by randomising the565

needle size, see below). When using chunking in multi-task experiments, batches have a fixed unroll566
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length of 16 steps; otherwise, each batch contains full-length samples. In chunked experiments it is567

important to keep separate values of the processor embeddings for each algorithm and training size,568

since unrolls are split in time and a new batch must start from the last-step embedding state of the569

same trajectories.570

The trained model is evaluated periodically during training on samples of size n = 16 (n = 20 for571

string matching algorithms), and the best-performing model seen so far is evaluated on OOD samples.572

OOD refers to generalisation with respect to problem size; specifically, our OOD samples have size573

n = 64 (n = 80 for string matching). Only OOD performance is reported in this paper. The OOD574

data used for evaluation is sampled on-the-fly, drawn randomly at each evaluation, the number of575

samples being the same as in the CLRS benchmark [5]. The exception is Tables 1 and 2, where, for576

fair comparison, we used the fixed OOD samples from the CLRS dataset. We found no significant577

difference in evaluations with the fixed test data or on-the-fly samples.578

When using randomised edge connection probabilities p for data augmentation in graph algorithms579

(that is, in all experiments except the no-data-augmentation ablations), we sampled p independently580

for each sample, uniformly from the set {0, 1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. However, for581

Articulation Points, Bridges and MST Kruskal we used a value of p/2, since otherwise, with dense582

graphs, the algorithms produce very long trajectories that would not fit in GPU memory. In Naïve583

String Matcher and Knuth-Morris-Pratt we randomised the length of the needle uniformly between 1584

and 8.585

As discussed in the main text, data augmentation via sizes, connection probabilities and needle586

lengths only applied to the training data. Evaluation always used the fixed parameters established in587

the CLRS benchmark.588

A.3 Additional experimental results589
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Table 2: Single-task OOD average micro-F1 score of previous SOTA Memnet, MPNN and PGN [5]
and our best model Triplet-GMPNN with all the improvements described in Section 3.

Algorithm Memnet [5] MPNN [5] PGN [5] Triplet-GMPNN (ours)
Activity Selector 24.10%± 2.22 80.66%± 3.16 66.80%± 1.62 95.18%± 0.45
Articulation Points 1.50%± 0.61 50.91%± 2.18 49.53%± 2.09 88.32%± 2.01
Bellman-Ford 40.04%± 1.46 92.01%± 0.28 92.99%± 0.34 97.39%± 0.19
BFS 43.34%± 0.04 99.89%± 0.05 99.63%± 0.29 99.73%± 0.04
Binary Search 14.37%± 0.46 36.83%± 0.26 76.95%± 0.13 77.58%± 2.35
Bridges 30.26%± 0.05 72.69%± 4.78 51.42%± 7.82 93.99%± 2.07
Bubble Sort 73.58%± 0.78 5.27%± 0.60 6.01%± 1.95 67.68%± 5.50
DAG Shortest Paths 66.15%± 1.92 96.24%± 0.56 96.94%± 0.16 98.19%± 0.30
DFS 13.36%± 1.61 6.54%± 0.51 8.71%± 0.24 47.79%± 4.19
Dijkstra 22.48%± 2.39 91.50%± 0.50 83.45%± 1.75 96.05%± 0.60
Find Max. Subarray 13.05%± 0.08 20.30%± 0.49 65.23%± 2.56 76.36%± 0.43
Floyd-Warshall 14.17%± 0.13 26.74%± 1.77 28.76%± 0.51 48.52%± 1.04
Graham Scan 40.62%± 2.31 91.04%± 0.31 56.87%± 1.61 93.62%± 0.91
Heapsort 68.00%± 1.57 10.94%± 0.84 5.27%± 0.18 31.04%± 5.82
Insertion Sort 71.42%± 0.86 19.81%± 2.08 44.37%± 2.43 78.14%± 4.64
Jarvis’ March 22.99%± 3.87 34.86%± 12.39 49.19%± 1.07 91.01%± 1.30
Knuth-Morris-Pratt 1.81%± 0.00 2.49%± 0.86 2.00%± 0.12 19.51%± 4.57
LCS Length 49.84%± 4.34 53.23%± 0.36 56.82%± 0.21 80.51%± 1.84
Matrix Chain Order 81.96%± 1.03 79.84%± 1.40 83.91%± 0.49 91.68%± 0.59
Minimum 86.93%± 0.11 85.34%± 0.88 87.71%± 0.52 97.78%± 0.55
MST-Kruskal 28.84%± 0.61 70.97%± 1.50 66.96%± 1.36 89.80%± 0.77
MST-Prim 10.29%± 3.77 69.08%± 7.56 63.33%± 0.98 86.39%± 1.33
Naïve String Matcher 1.22%± 0.48 3.92%± 0.30 2.08%± 0.20 78.67%± 4.99
Optimal BST 72.03%± 1.21 62.23%± 0.44 71.01%± 1.82 73.77%± 1.48
Quickselect 1.74%± 0.03 1.43%± 0.69 3.66%± 0.42 0.47%± 0.25
Quicksort 73.10%± 0.67 11.30%± 0.10 6.17%± 0.15 64.64%± 5.12
Segments Intersect 71.81%± 0.90 93.44%± 0.10 77.51%± 0.75 97.64%± 0.09
SCC 16.32%± 4.78 24.37%± 4.88 20.80%± 0.64 43.43%± 3.15
Task Scheduling 82.74%± 0.04 84.11%± 0.32 84.89%± 0.91 87.25%± 0.35
Topological Sort 2.73%± 0.11 52.60%± 6.24 60.45%± 2.69 87.27%± 2.67

Overall average 38.03% 51.02% 52.31% 75.98%
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(a) Per-algorithm comparison between our multi-task model and the best per-algorithm model from Table 2,
ordered by biggest improvement for multi-task (left to right).
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(b) Number of tasks where the performance of the multi-task model matched, or exceeded, a given percentage of
the performance of the best single-task model (per algorithm) from Table 2, grouped by algorithm type. Note that,
for some algorithms, the performance of the multi-task learner is higher than that of the best single-task learner.
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(c) Number of tasks where the performance of the multi-task model matched, or exceeded, a given percentage of
the performance of single-task Triplet-GMPNN from Table 2, grouped by algorithm type.

Figure 5: Comparing our multi-task model to the best model per algorithm from Table 2 (5a & 5b).
The comparison in 5c is between our multi-task model and our single-task Triplet-GMPNN.
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Figure 6: Single-task model cumulative ablations.
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Figure 7: Non-cumulative single-task ablations faceted by algorithm. Part 1.
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Figure 8: Non-cumulative single-task ablations faceted by algorithm. Part 2.
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Figure 9: Non-cumulative single-task ablations faceted by algorithm. Part 3.
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Figure 10: Per-algorithm comparison of chunked and non-chunked multitask models.
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