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Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in various31

applications, but their performance can be sensitive to specific data properties of the32

graph datasets they operate on. Current literature on understanding the limitations33

of GNNs has primarily employed a model-driven approach that leverages heuristics34

and domain knowledge from network science or graph theory to model the GNN35

behaviors, which is time-consuming and highly subjective. In this work, we propose36

a metadata-driven approach to analyze the sensitivity of GNNs to graph data37

properties, motivated by the increasing availability of graph learning benchmarks.38

We perform a multivariate sparse regression analysis on the metadata derived from39

benchmarking GNN performance across diverse datasets, yielding a set of salient40

data properties. To validate the effectiveness of our data-driven approach, we focus41

on one identified data property, the degree distribution, and investigate how this42

property influences GNN performance through theoretical analysis and controlled43

experiments. Our theoretical findings reveal that datasets with a more balanced44

degree distribution exhibit better linear separability of node representations, thus45

leading to better GNN performance. We also conduct controlled experiments using46

synthetic datasets with varying degree distributions, and the results align well with47

our theoretical findings. Collectively, both the theoretical analysis and controlled48

experiments verify that the proposed metadata-driven approach is effective in49

identifying critical data properties for GNNs.50

1 Introduction51

Graph Neural Networks (GNNs), as a broad family of graph machine learning models, have gained52

increasing research interests in recent years. However, unlike the ResNet model [10] in computer53

vision or the Transformer model [32] in natural language processing, there has not been a dominant54

GNN architecture that is universally effective across a wide range of graph machine learning tasks.55

This may be attributed to the inherently diverse nature of graph-structured data, which results in the56

GNN performance being highly sensitive to specific properties of the graph datasets. Consequently,57

GNNs that demonstrate high performance on certain benchmark datasets often underperform on58

others with distinct properties. For example, early GNNs have been shown to exhibit degraded59

performance when applied to non-homophilous graph datasets, where nodes from different classes60

are highly interconnected and mixed [40, 41, 28, 8, 7].61

However, it is non-trivial to identify and understand critical graph data properties that are highly62

influential on GNN performance. Current literature primarily employs what we term as a model-63

driven approach, which attempts to model GNN performance using specific heuristics or domain64

knowledge derived from network science or graph theory [36, 40]. Although this approach can offer65

an in-depth understanding of GNN performance, it can also be time-consuming, subjective, and may66

not fully capture the entire spectrum of relevant data properties.67

To address these limitations and complement the model-driven approach, we propose a metadata-68

driven approach to identify critical data properties affecting GNN performance. With the increasing69

availability of diverse benchmark datasets for graph machine learning [12, 23], we hypothesize70

that critical graph data properties can be inferred from the benchmarking performance of GNNs71

on these datasets, which can be viewed as the metadata of the datasets. More concretely, we carry72

out a multivariate sparse regression analysis on the metadata obtained from large-scale benchmark73

experiments [23] involving multiple GNN models and a variety of graph datasets. Through this74

regression analysis, we examine the correlation between GNN performance and the data properties75

of each dataset, thereby identifying a set of salient data properties that significantly influence GNN76

performance.77

To validate the effectiveness of the proposed metadata-driven approach, we further focus on a specific78

salient data property, degree distribution, identified from the regression analysis, and investigate79

the mechanism by which this data property affects GNN performance. In particular, our regression80

analysis reveals a decline in GNN performance as the degree distribution becomes more imbalanced.81

We delve deeper into this phenomenon through a theoretical analysis and a controlled experiment.82
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We initiate our investigation with a theoretical analysis of the GNN performance under the assumption83

that the graph data is generated by a Degree-Corrected Contextual Stochastic Block Model (DC-84

CSBM). Here, we define DC-CSBM by combining and generalizing the Contextual Stochastic Block85

Model [4] and the Degree-Corrected Stochastic Block Model [13]. Building upon the analysis by86

Baranwal et al. [3], we establish a novel theoretical result on how the degree distribution impacts the87

linear separability of the GNN representations and subsequently, the GNN performance. Within the88

DC-CSBM context, our theory suggests that more imbalanced degree distribution leads to few nodes89

being linearly separable in their GNN representations, thus negatively impacting GNN performance.90

Complementing our theoretical analysis, we conduct a controlled experiment, evaluating GNN per-91

formance on synthetic graph datasets with varying degree distribution while holding other properties92

fixed. Remarkably, we observe a consistent decline in GNN performance correlating with the increase93

of the Gini coefficient of degree distribution, which reflects the imbalance of degree distribution. This94

observation further corroborates the findings of our metadata-driven regression analysis.95

In summary, our contribution in this paper is two-fold. Firstly, we introduce a novel metadata-driven96

approach to identify critical graph data properties affecting GNN performance and demonstrate its97

effectiveness through a case study on a specific salient data property identified by our approach.98

Secondly, we develop an in-depth understanding of how the degree distribution of graph data99

influences GNN performance through both a novel theoretical analysis and a carefully controlled100

experiment, which is of interest to the graph machine learning community in its own right.101

2 Related Work102

2.1 Analysis on the Limitations of GNNs103

There has been a wealth of existing literature investigating the limitations of GNNs. However,104

most of the previous works employ the model-driven approach. Below we summarize a few well-105

known limitations of GNNs while acknowledging that an exhaustive review of the literature is106

impractical. Among the limitations identified, GNNs have been shown to be sensitive to the extent107

of homophily in graph data, and applying GNNs to non-homophilous data often has degraded108

performance [1, 7, 19, 41, 40]. In addition, over-smoothing, a phenomenon where GNNs lose their109

discriminative power with deeper layers [16, 30, 5], is a primary concern particularly for node-level110

prediction tasks where distinguishing the nodes within the graph is critical. Further, when applied111

to graph-level prediction tasks, GNNs are limited by their ability to represent and model specific112

functions or patterns on graph-structured data, an issue often referred to as the expressiveness problem113

of GNNs. [36, 26, 21, 38]. Most of these limitations are understood through a model-driven approach,114

which offers in-depth insights but is time-consuming and highly subjective. In contrast, this paper115

presents a metadata-driven approach, leveraging metadata from benchmark datasets to efficiently116

screen through a vast array of data properties.117

2.2 Data-Driven Analysis in Graph Machine Learning118

With the increasing availability of graph learning benchmarks, there have been several recent studies119

that leverage diverse benchmarks for data-driven analysis. For example, Liu et al. [20] presents a120

principled pipeline to taxonomize benchmark datasets. Specifically, by applying a number of different121

perturbation methods on each dataset and obtaining the sensitivity profile of the resulting GNN122

performance on perturbed datasets, they perform hierarchical clustering on these sensitivity profiles123

to cluster statistically similar datasets. However, this study only aims to categorize datasets instead124

of identifying salient data properties that influence GNN performance. Ma et al. [23] establish a125

Graph Learning Indexer (GLI) library that curates a large collection of graph learning benchmarks126

and GNN models and conducts a large-scale benchmark study. We obtain our metadata from their127

benchmarks. Palowitch et al. [27] introduce a GraphWorld library that can generate diverse synthetic128

graph datasets with various properties. These synthetic datasets can be used to test GNN models129

through controlled experiments. In this paper, we have used this library to verify the effectiveness of130

the identified critical data properties.131
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2.3 Impact of Node Degrees on GNN Performance132

There have also been a few studies investigating the impact of node degrees on GNNs. In particular,133

it has been observed that within a single graph dataset, there tends to be an accuracy discrepancy134

among nodes with varying degrees [31, 18, 39, 35]. Typically, GNN predictions on nodes with135

lower degrees tend to have lower accuracy. However, the finding of the Gini coefficient of the136

degree distribution as a strong indicator of GNN performance is novel. Furthermore, this indicator137

describes the dataset-level characteristics, allowing comparing GNN performance across different138

graph datasets. In addition, this paper presents a novel theoretical analysis, directly relating the139

degree distribution to the generalization performance of GNNs.140

3 A Metadata-Driven Analysis on GNNs141

3.1 Understanding GNNs with Metadata142

Motivation. Real-world graph data are heterogeneous and incredibly diverse, contrasting with143

images or texts that often possess common structures or vocabularies. The inherent diversity of144

graph data makes it particularly challenging, if not unfeasible, to have one model to rule all tasks145

and datasets in the graph machine learning domain. Indeed, specific types of GNN models often146

only perform well on a selected set of graph learning datasets. For example, the expressive power147

of GNNs [36] is primarily relevant to graph-level prediction tasks rather than node-level tasks –148

higher-order GNNs with improved expressive power are predominantly evaluated on graph-level149

prediction tasks [26, 36]. As another example, several early GNNs such as Graph Convolution150

Networks (GCN) [15] or Graph Attention Networks (GAT) [33] only work well when the graphs151

exhibit homophily [40]. Consequently, it becomes crucial to identify and understand the critical152

data properties that influence the performance of different GNNs, allowing for more effective model153

design and selection.154

The increasing availability of graph learning benchmarks that offer a wide range of structural and155

feature variations [12, 23] presents a valuable opportunity: one can possibly infer critical data156

properties from the performance of GNNs on these datasets. To systematically identify these critical157

data properties, we propose to conduct a regression analysis on the metadata of the benchmarks.158

Regression Analysis on Metadata. In the regression analysis, the performance metrics of various159

GNN models on each dataset serve as the dependent variables, while the extracted data properties160

from each dataset act as the independent variables. Formally, we denote the number of datasets as161

n, the number of GNN models as q, and the number of data properties as p. Define the response162

variables {yi}i∈[q] to be GNN model performance operated on each dataset and the covariate variables163

{xj}j∈[p] to be properties of each dataset. Note that yi ∈ Rn,∀i ∈ [q] and xj ∈ Rn,∀j ∈ [p]. For164

ease of notation, we define Y = (y1, ...,yq) ∈ Rn×q to be the response matrix of n samples and q165

variables, and X = (x1, ...,xp) ∈ Rn×p to be the covariate matrix of n samples and p variables.166

Given these data matrices, we establish the following multivariate linear model to analyze the167

relationship between response matrix Y and covariate matrix X, which is characterized by the168

coefficient matrix B.169

Definition 3.1 (Multivariate Linear Model).
Y = XB+W, (1)

where B ∈ Rp×q is the coefficient matrix and W = (w1, ...,wq) ∈ Rn×q is the matrix of error170

terms.171

Our goal is to find the most salient data properties that correlate with the performance of GNN models172

given a number of samples. To this end, we introduce two sparse regularizers for feature selections,173

which leads to the following Multivariate Sparse Group Lasso problem.174

Definition 3.2 (Multivariate Sparse Group Lasso Problem).

argmin
B

1

2n
∥Y −XB∥22 + λ1∥B∥1 + λg∥B∥2,1, (2)

where ∥B∥1 =
∑p

i=1

∑q
j=1 |Bij | is the L1 norm of B, ∥B∥2,1 =

∑p
i=1

√∑q
j=1 B

2
ij is the L2,1175

group norm of B, and λ1, λg > 0 are the corresponding penalty parameters.176
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In particular, the L1 penalty encourages the coefficient matrix B to be sparse, only selecting salient177

data properties. The L2,1 penalty further leverages the structure of the dependent variables and tries178

to make only a small set of the GNN models’ performance depends on each data property, thus179

differentiating the impacts on different GNNs.180

To solve for the coefficient matrix B in Equation 2, we employ an R package, MSGLasso [17],181

using matrices Y and X as input. To ensure proper input for the MSGLasso solver [17], we have182

preprocessed the data by standardizing the columns of both Y and X.183

3.2 Data Properties and Model Performance184

Next, we introduce the metadata used for the regression analysis. We obtain both the benchmark185

datasets and the model performance using the Graph Learning Indexer (GLI) library [23].186

Data Properties. We include the following benchmark datasets in our regression analysis: cora [37],187

citeseer [37], pubmed [37], texas [29], cornell [29], wisconsin [29], actor [29], squirrel [29],188

chameleon [29], arxiv-year [19], snap-patents [19], penn94 [19], pokec [19], genius [19], and189

twitch-gamers [19]. For each graph dataset, we calculate 15 data properties, which can be categorized190

into the following six groups:191

• Basic: Edge Density, Average Degree, Degree Assortativity;192

• Distance: Pseudo Diameter;193

• Connectivity: Relative Size of Largest Connected Component (RSLCC);194

• Clustering: Average Clustering Coefficient (ACC), Transitivity, Degeneracy;195

• Degree Distribution: Gini Coefficient of Degree Distribution (Gini-Degree);196

• Attribute: Edge Homogeneity, In-Feature Similarity, Out-Feature Similarity, Feature Angular197

SNR, Homophily Measure, Attribute Assortativity.198

The formal definition of these graph properties can be found in Appendix A.199

Model Performance. For GNN models, we include GCN [15], GAT [33], GraphSAGE [9],200

MoNet [25], MixHop [1], and LINKX [19] into our regression analysis. We also include a non-graph201

model, Multi-Layer Perceptron (MLP). The complete experimental setup for these models can be202

found in Appendix B.203

3.3 Analysis Results204

The estimated coefficient matrix B is presented in Table 1. As can be seen, the estimated coefficient205

matrix is fairly sparse, allowing us to identify salient data properties. Next, we will discuss the six206

most salient data properties that correlate to some or all of the GNN models’ performance. For the207

data properties that have an impact on all GNNs’ performance, we call them Universal Factors;208

for the data properties that have an impact on over one-half of GNNs’ performance, we call them209

Selective Factors. Notice that the (+,−) sign after the name of the factors indicates whether this210

data property has a positive or negative correlation with the GNN performance.211

Universal Factors. We discover that the Gini coefficient of the degree distribution (Gini-Degree),212

Edge Homogeneity, and In-Feature Similarity impact all GNNs’ model performance consistently.213

• Gini-Degree (−) measures how the graph’s degree distribution deviates from the perfectly214

equal distribution, i.e., a regular graph. This is a crucial data property that dramatically215

influences GNNs’ performance but remains under-explored in prior literature.216

• Edge Homogeneity (+) is a salient indicator for all GNN models’ performance. This phe-217

nomenon coincides with the fact that various GNNs assume strong homophily condition [24]218

to obtain improvements on node classification tasks [9, 15, 33].219

• In-feature Similarity (+) calculates the average of feature similarity within each class. Under220

the homophily assumption, GNNs work better when nodes with the same labels additionally221

have similar node features, which also aligns with existing findings in the literature [11].222
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Table 1: The estimated coefficient matrix B of the multivariate sparse regression analysis. Each
entry indicates the strength (magnitude) and direction (+,−) of the relationship between a graph data
property and the performance of a GNN model. The six most salient data properties are indicated in
bold.

Graph Data Property GCN GAT GraphSAGE MoNet MixHop LINKX MLP

Edge Density 0 0 0 0 0 0.0253 0.0983
Average Degree 0.2071 0 0.1048 0.1081 0 0.3363 0

Pseudo Diameter 0 -0.349 -0.1531 0 -0.4894 -0.3943 -0.6119
Degree Assortativity 0 0 0 -0.0744 0 0 0

RSLCC 0.1019 0 0 0.0654 0 0.1309 0
ACC 0 0 0 0 0 0 -0.0502

Transitivity 0 -0.0518 0 -0.1372 0 0.2311 0
Degeneracy 0 0 0 0 0 0 -0.1657
Gini-Degree -0.4403 -0.2961 -0.3267 -0.2944 -0.4205 -0.367 -0.1958

Edge Homogeneity 0.7094 0.4705 0.7361 0.8122 0.6407 0.2006 0.4776
In-Feature Similarity 0.3053 0.1081 0.1844 0.1003 0.4613 0.6396 0.2399
Out-Feature Similarity 0 0 0 0 0 0 0
Feature Angular SNR 0.2522 0 0.2506 0 0.2381 0.3563 0.3731

Homophily Measure 0 0.4072 0 0 0 0 0
Attribute Assortativity 0 0 0 0 0 0 0

Selective Factors. We find that Average Degree, Pseudo Diameter, and Feature Angular SNR are223

salient factors for a subset of GNN models, although we do not yet have a good understanding on the224

mechanism of how these data properties impact model performance.225

• Average Degree (+) is more significant for GCN, GraphSAGE, MoNet, and LINKX.226

• Pseudo Diameter (−) is more significant for GAT, GraphSAGE, MixHop, LINKX, and227

MLP.228

• Feature Angular SNR (+) is more significant for GCN, GraphSAGE, MixHop, LINKX, and229

MLP.230

We note that the regression analysis only indicates associative relationships between data properties231

and the model performance. While our analysis has successfully identified well-known influential232

data properties, e.g., Edge Homogeneity, the mechanism for most identified data properties through233

which they impact the GNN performance remains under-explored.234

To further verify the effectiveness of the proposed metadata-driven approach in identifying critical235

data properties, we perform an in-depth analysis for Gini-Degree, which is one of the most salient236

Universal Factors. In the following Section 4 and 5, we conduct theoretical analysis and controlled237

experiments to understand how Gini-Degree influences GNNs’ performance.238

4 Theoretical Analysis on the Impact of Degree Distribution239

In this section, we present a theoretical analysis on influence of graph data’s degree distribution240

on the performance of GNNs. Specifically, our analysis investigates the linear separability of node241

representations produced by applying graph convolution to the node features. In the case that the242

graph data comes from a Degree-Corrected Stochastic Block Model, we show that nodes from243

different classes are more separable when their degree exceeds a threshold. This separability result244

relates the graph data’s degree distribution to the GNN performance. Finally, we discuss the role of245

Gini-Degree on the GNN performance using implications of our theory.246

4.1 Notations and Sketch of Analysis247

The Graph Data. Let G = {V, E} be an undirected graph, where V is the set of nodes and E is the248

set of edges. The information regarding the connections within the graph can also be summarized249

as an adjacency matrix A ∈ {0, 1}|V|×|V|, where |V| is the number of nodes in the graph G. Each250

node i ∈ V possesses a d-dimensional feature vector xi ∈ Rd. The features for all nodes in G can be251
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stacked and represented as a feature matrix X ∈ R|V|×d. In the context of node classification, each252

node i is associated with a class label yi ∈ C, where C is the set of labels.253

Graph Convolutional Network [15]. In our analysis, we consider a single-layer graph convolution,254

which can be defined as an operation on the adjacency matrix and feature matrix of a graph G to255

produce a new feature matrix X̃. Formally, the output of a single-layer graph convolution operation256

can be represented as X̃ = D−1ÃX, where Ã = A + I is the augmented adjacency matrix with257

added self-loops, and D is the diagonal degree matrix with Dii = deg(i) =
∑

j∈[n] Ãij . Hence, for258

each node i ∈ V , the new node representation will become x̃i ∈ Rd, which is the ith row of the259

output matrix X̃.260

Sketch of Our Analysis. Our analysis builds upon and generalizes the theoretical framework261

introduced by Baranwal et al. [3], where they demonstrate that in comparison to raw node features,262

the graph convolution representations of nodes have better linear separability if the graph data comes263

from Contextual Stochastic Block Model (CSBM) [4, 6]. However, in CSBM, the nodes within the264

same class all have similar degrees with high probability, which prevents us to draw meaningful265

conclusions about the impact of degree distribution.266

To better understand the role of degree distribution in the GNN performance, we develop a non-trivial267

generalization of the theory by Baranwal et al. [3]. Specifically, we first coin a new graph data268

generation model, Degree-Corrected Contextual Stochastic Block Model (DC-CSBM) that combines269

and generalizes Degree-Corrected SBM (DC-SBM) [13] and CSBM, and leverages heterogeneity in270

node degrees into consideration. Under DC-CSBM, we find that node degrees play a crucial role in271

the statistical properties of the node representations, and the node degrees have to exceed a certain272

threshold in order for the node representations to sufficiently leverage the neighborhood information273

and become reliably separable. Notably, the incorporation of the node degree heterogeneity into the274

analysis requires a non-trivial adaptation of the analysis by Baranwal et al. [3].275

4.2 Degree-Corrected Contextual Stochastic Block Model (DC-CSBM)276

In this section, we introduce the DC-CSBM that models the generation of graph data. Specifically,277

we assume the graph data is randomly sampled from a DC-CSBM with 2 classes.278

DC-CSBM With 2 Classes. Let us define the class assignments (ϵi)i∈[n] as independent and279

identically distributed (i.i.d.) Bernoulli random variables coming from Ber( 12 ), where n = |V|280

is the number of nodes in the graph G. These class assignments divide n nodes into 2 classes:281

C0 = {i ∈ [n] : ϵi = 0} and C1 = {i ∈ [n] : ϵi = 1}. Assume that inter-class edge probability is q282

and intra-class edge probability is p, and no self-loops are allowed. For each node i, we additionally283

introduce a degree-correction parameter θi ∈ (0, n], which can be interpreted as the propensity of284

node i to connect with others. Note that to keep the DC-SBM identifiable and easier to analyze, we285

adopt a normalization rule to enforce the following constraint:
∑

i∈C0
θi = |C0|,

∑
i∈C1

θi = |C1|286

and thus
∑

i∈V θi = n.287

Assumptions on Adjacency Matrix and Feature Matrix. Conditioning on (ϵi)i∈[n], each entry288

of the adjacency matrix A is a Poisson random variable with Aij ∼ Poi(θiθjp) if i, j are in the same289

class and Aij ∼ Poi(θiθjq) if i, j are in different classes. On top of this, let X ∈ Rn×d be the feature290

matrix where each row xi represents the node feature of node i. Assume each xi is an independent291

d-dimensional Gaussian random vector with xi ∼ N (µ, 1
dI) if i ∈ C0 and xi ∼ N (ν, 1

dI) if i ∈ C1.292

We let µ,ν ∈ Rd to be fixed d-dimensional vectors with ∥µ∥2, ∥ν∥2 ≤ 1, which serve as the293

Gaussian mean for the two classes.294

Given a particular choice of n,µ,ν, p, q and θ = (θi)i∈[n], we can define a class of random graphs295

generated by these parameters and sample a graph from such DC-CSBM as G = (A,X) ∼ DC-296

CSBM(n,µ,ν, p, q, θ).297
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4.3 Linear Separability After Graph Convolution298

Linear Separability. Linear separability refers to the ability to linearly differentiate nodes in the two299

classes based on their feature vectors. Formally, for any Vs ⊆ V , we say that {x̃i : i ∈ Vs} is linearly300

separable if there exists some unit vector v ∈ Rd and a scalar b such that v⊤x̃i+ b < 0,∀i ∈ C0∩Vs301

and v⊤x̃i+ b > 0,∀i ∈ C1∩Vs. Note that linear separability is closely related to GNN performance.302

Intuitively, more nodes being linearly separable will lead to better GNN performance.303

Degree-Thresholded Subgroups of C0 and C1. To better control the behavior of graph convolution304

operation, we will focus on particular subgroups of C0 and C1 where the member nodes having305

degree-corrected factor larger or equal to a pre-defined threshold α > 0. Slightly abusing the306

notations, we denote these subgroups as C0(α) and C1(α), which are formally defined below.307

Definition 4.1 (α-Subgroups). Given any α ∈ (0, n], define α-subgroups of C0 and C1 as follows:308

C0(α) = {j ∈ [n] : θj ≥ α and j ∈ C0},
C1(α) = {j ∈ [n] : θj ≥ α and j ∈ C1}.

Let Vα := C0(α) ∪ C1(α), we are interested in analyzing the linear separability of the node309

representations after the graph convolution operation, namely {x̃i : i ∈ Vα}. Recall that for each310

node i, x̃i =
1

deg(i)

∑
j∈N (i) xj , where N (i) is the set of neighbors of node i.311

Relationship Between α and Linear Separability. We first make the following assumptions about312

the DC-CSBM, closely following the assumptions made by Baranwal et al. [3].313

Assumption 4.2 (Graph Size). Assume the relationship between the graph size n and the feature314

dimension d follows ω(d log d) ≤ n ≤ O(poly(d)).315

Assumption 4.3 (Edge Probabilities). Define Γ(p, q) := p−q
p+q . Assume the edge probabilities p, q316

satisfy p, q = ω(log2(n)/n) and Γ(p, q) = Ω(1).317

Theorem 4.4 asserts that if the threshold α is not too small, then the set Vα = C0(α) ∪ C1(α) can be318

linear separated with high probability. The proof of Theorem 4.4 can be found in Appendix C.319

Theorem 4.4 (Linear Separability of α-Subgroups). Suppose that Assumption 4.2 and 4.3 hold. For320

any (X,A) ∼ DC-CSBM(n,µ,ν, p, q, θ), if α = ω
(
max

(
1

logn ,
logn

dn(p+q)∥µ−ν∥2
2

))
, then321

P({x̃i : i ∈ Vα} is linearly separable) = 1− od(1),

where od(1) is a quantity that converges to 0 as d approaches infinity.322

Note that Theorem 4.4 suggests that, when the heterogeneity of node degrees is taken into considera-323

tion, the nodes with degrees exceeding a threshold α are more likely to be linearly separable. And the324

requirement for the threshold α depends on the DC-CSBM parameters: n, p, q,µ,ν.325

Remark 4.5. If we let p, q ∈ Θ( log
3 n
n ) and ∥µ− ν∥2 be fixed constant, then the requirement can326

be reduced to α ∈ ω( 1
logn ), which is not too large. Given this particular setting and reasonable327

selection of p, q, the regime of acceptable α is broad and thus demonstrates the generalizability of328

Theorem 4.4.329

4.4 Implications on Gini-Degree330

Finally, we qualitatively discuss the relationship between Gini-Degree and GNNs’ performance using331

the results from Theorem 4.4. For any α > 0 that meets the criteria in the statement, we can consider,332

1. Negative correlation between Gini-Degree and the size of Vα: If the number of nodes333

and edges is fixed, a higher Gini-Degree implies more high-degree nodes in the network334

and thus the majority of nodes are receiving lower degrees. Clearly, if most of the nodes335

have lower degrees, then there will be fewer nodes having degrees exceeding a certain336

threshold proportional to α1 and being placed in Vα. Hence, a dataset with a higher (or337

lower) Gini-Degree will lead to a smaller (or larger) size of Vα.338

1Note that the expected value of the degree of node i is proportional to θi when we ignore self-loops. (See
Appendix C for more information.) Thus, the lower bound α on degree-corrected factors can be translated to the
lower bound n(p+ q)α on degrees.
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Table 2: Controlled experiment results for varying Gini-Degree. Standard deviations are derived
from 5 independent runs. The performances of all models except for MLP have an evident negative
correlation with Gini-Degree.

Gini-Degree GCN GAT GraphSAGE MoNet MixHop LINKX MLP

0.906 0.798±0.004 0.659±0.01 0.76±0.005 0.672±0.002 0.804±0.005 0.832±0.002 0.595±0.006
0.761 0.817±0.001 0.732±0.005 0.818±0.004 0.696±0.015 0.817±0.004 0.849±0.002 0.756±0.002
0.526 0.874±0.004 0.742±0.006 0.825±0.013 0.8±0.028 0.826±0.003 0.853±0.002 0.655±0.005
0.354 0.906±0.002 0.737±0.008 0.857±0.008 0.83±0.013 0.837±0.002 0.867±0.002 0.66±0.07
0.075 0.948±0.002 0.746±0.005 0.878±0.002 0.92±0.002 0.84±0.002 0.893±0.001 0.705±0.002

2. Positive correlation between the size of Vα and model performance: Intuitively, the GNN339

performance tends to be better if there are more nodes that can be linearly separable after340

graph convolution. Consequently, the GNN performance is positively relevant to the size of341

Vα corresponding to the minimum possible α.342

Combining the two factors above, our analysis suggests that Gini-Degree tends to have a negative343

correlation with GNNs’ performance.344

5 Controlled Experiment on Gini-Degree345

To further verify whether there is a causal relationship between the degree distribution of graph346

data (in particular, measured by Gini-Degree) and the GNN performance, we conduct a controlled347

experiment using synthetic graph datasets.348

Experiment Setup. We first generate a series of synthetic graph datasets using the GraphWorld349

library [27]. To investigate the causal effect of Gini-Degree, we manipulate the data generation350

parameters to obtain datasets with varying Gini-Degree while keeping a bunch of other properties351

fixed. Specifically, we use the SBM generator in GraphWorld library and set the number of nodes352

n = 5000, the average degree as 30, the number of clusters as 4, cluster size slope as 0.5, feature353

center distance as 0.5, the edge probability ratio p/q = 4.0, feature dimension as 16, feature cluster354

variance as 0.05. The parameters above are fixed throughout our experiments and their complete355

definition can be found in the Appendix. By manipulating the power law exponent parameter of356

the generator, we obtain 5 synthetic datasets with Gini-Degree as 0.906, 0.801, 0.522, 0.329, 0.091357

respectively.358

Then we train the same set of GNN models and MLP model as mentioned in Table 1 on each dataset.359

We randomly split the nodes into training, validation, and test sets with a ratio 3:1:1. We closely360

follow the hyperparameters and the training protocol in the GLI library [23], which is where we361

obtain the metadata in Section 3. We run 5 independent trials with different random seeds.362

Experiment Results. The experiment results are shown in Table 22. We observe an evident monoton-363

ically decreasing trend for the performance of the graph-based models, GCN, GAT, GraphSAGE,364

MoNet, MixHop, and LINKX, as Gini-Degree increases. However, there is no clear pattern for the365

non-graph model, MLP. This result suggests that these widely-used GNN models are indeed sensitive366

to Gini-Degree, which validates our result of sparse regression analysis. Note that MLP does not367

take the graph structure into consideration, and hence the degree distribution has less influence on368

the performance of MLP. The result on MLP also indicates that we have done a reasonably well369

controlled experiment.370

6 Conclusion371

In this work, we propose a novel metadata-driven approach that can efficiently identify critical graph372

data properties influencing the performance of GNNs. This is a significant contribution given the373

diverse nature of graph-structured data and the sensitivity of GNN performance to these specific374

properties. We also verify the effectiveness of the proposed approach through an in-depth case study375

around one identified salient graph data property.376

2Upon double checking our experiment code, we found a bug that makes some of the synthetic datasets
partially corrupted. Therefore, we updated the results with the corrected code. The conclusion remains the same.
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As a side product, this paper also highlights the considerable impact of the degree distribution, a salient377

data property identified through our metadata-driven regression analysis, on the GNN performance.378

We present a novel theoretical analysis and a carefully controlled experiment to demonstrate this379

impact.380

Limitations and Broader Impacts381

We would like to note that the proposed metadata-driven approach cannot replace the model-driven382

approach in understanding GNNs, as the identified salient data properties are only associative with383

the GNN performance. Depending on the choice of the metadata, there may be spurious correlations384

between the data properties and the GNN performance. However, the proposed approach can be an385

effective supplement to the model-driven approach for large-scale screening of salient data properties,386

leading to a faster iteration of research and development.387

Regarding the broader impact, the proposed approach may be particularly useful for detecting388

potential biases that exist in various GNN models by screening sensitive data properties. When389

properly applied, this approach could effectively reduce potential harms caused by biased GNN390

models, in human-centric application domains such as recommender systems.391
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A Definitions of Dataset Properties503

We introduce the formal definitions of the dataset properties mentioned in Section 3.2. Following the504

definitions in Section 4.1, we further define n = |V| and m = |E| to denote the number of nodes and505

edges of graph G. Also, in the context of the node classification task, we define Y ∈ Rn as the vector506

of node labels and C as the number of classes.507

A.1 Basic508

Edge Density: The edge density for an undirected graph is calculated as 2m
n(n−1) , while for a directed509

graph, it is computed as m
n(n−1) .510

Average Degree: The average degree for an undirected graph is defined as 2m
n , while for a directed511

graph, it is defined as m
n .512
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Degree Assortativity: The degree assortativity is the average Pearson correlation coefficient of all513

pairs of connected nodes. It quantifies the tendency of nodes in a network to be connected to nodes514

with similar or dissimilar degrees and ranges between -1 and 1.515

A.2 Distance516

Pseudo Diameter: The pseudo diameter is an approximation of the diameter of a graph and provides517

a lower bound estimation of its exact value.518

A.3 Connectivity519

Relative Size of Largest Connected Component (RSLCC): The relative size of the largest con-520

nected component is determined by calculating the ratio between the size of the largest connected521

component and n.522

A.4 Clustering523

Average Clustering Coefficient (ACC): First define T (u) as the number of triangles including node524

u, then the local clustering coefficient for node u is calculated as 2
deg(u)(deg(u)−1)T (u) for undirected525

graph, where deg(u) is the degree of node u; and is calculated as 2
degtot(u)(degtot(u)−1)−2deg↔(u)T (u)526

for directed graph, where degtot(u) is the sum of in-degree and out-degree of node u and deg↔(u)527

is the reciprocal degree of u. The average clustering coefficient is then defined as the average local528

clustering coefficient of all the nodes in the graph.529

Transitivity: The transitivity is defined as the fraction of all possible triangles present in the graph.530

Formally, it can be written as 3#triangles
#triads , where a triad is a pair of two edges with a shared vertex.531

Degeneracy: The degeneracy is determined as the least integer k such that every induced subgraph532

of the graph contains a vertex with its degree smaller or equal to k.533

A.5 Degree Distribution534

Gini Coefficient of Degree Distribution (Gini-Degree): The Gini coefficient of the node degrees of535

the graph.536

A.6 Attribute537

Edge Homogeneity [27]: The edge homogeneity is defined as the ratio of edges whose endpoints538

have the same node labels.539

In-Feature Similarity [27]: First define within-class angular feature similarity as 1−540

angular_distance(xi,xj) for an edge (i, j) with its endpoints i and j have the same node labels.541

In-Feature Similarity is the average within-class angular feature similarity of all such edges in the542

graph.543

Out-Feature Similarity [27]: First define between-class angular feature similarity as 1−544

angular_distance(xi,xj) for an edge (i, j) with its endpoints i and j have different node labels.545

Out-Feature Similarity is the average between-class angular feature similarity of all such edges in the546

graph.547

Feature Angular SNR [27]: The feature angular SNR is computed as the ratio between in-feature548

similarity and out-feature similarity.549

Homophily Measure [19]: The homophily measure is defined as550

ĥ =
1

C − 1

C∑
k=1

[hk − |Ck|
n

]+,
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where [a]+ = max(a, 0), |Ck| is the total number of nodes having their label k and hk is the551

class-wise homophily metric defined below,552

hk =

∑
u:Yu=k d

(Yu)
u∑

u:Yu=k du
,

where du is the number of neighbors of node u and d
(Yu)
u is the number of neighbors of node u553

having the same node label.554

Attribute Assortativity: The attribute assortativity is the average Pearson correlation coefficient555

of all pairs of connected nodes. It quantifies the tendency of nodes in a network to be connected to556

nodes with the same or different attributes (here node label) and ranges between -1 and 1.557

B Experiment Setup for Obtaining Metadata558

In this section, we describe more details of the experimental setup to obtain GNNs’ performance that559

we use in Section 3.2, mostly following Ma et al. [23]. For completeness, we list down the model560

setting used by them in the following paragraphs.561

GCN [15], GAT [33], GraphSAGE [9], MoNet [25], MLP, and MixHop [1] are set to have two layers562

with hidden dimension equals to 8. For LINKX [19], MLPA, MLPX are set to be a one-layer563

network and MLPf to be a two-layers network, following the setting in Lim et al. [19].564

For the rest of the training settings, we adopt the same configuration for all experiments. Specifically,565

we set learning rate = 0.01, weight decay = 0.001, droptout rate = 0.6, max epoch = 10000, and batch566

size = 256. We use Adam [14] as an optimizer for all models except LINKX. AdamW [22] is used567

with LINKX in order to comply with Lim et al. [19]. For datasets with binary labels (i.e., penn94,568

pokec, genius, and twitch-gamers), we choose the ROC AUC score as the evaluation metric; while569

for other datasets, we use test accuracy instead.570

We also let all the detailed model settings remain consistent with the same with Ma et al. [23].571

Namely,572

• GAT: Number of heads in multi-head attention = 8. leakyReLU angle of negative slope =573

0.2. No residual is applied. The dropout rate on attention weight is the same as the overall574

dropout.575

• GraphSAGE: Aggregator type is GCN. No norm is applied.576

• MoNet: Number of kernels = 3. Dimension of pseudo-coordinte = 2. Aggregator type =577

sum.578

• MixHop: List of powers of adjacency matrix = [1, 2, 3]. No norm is applied. Layer Dropout579

rate = 0.9.580

• LINKX: No inner activation.581

C Proof of Theorem 4.4582

Proof Sketch. To prove Theorem 4.4, we first show that degree and the neighborhood distribution583

of each node concentrate with high probability. Then we claim that the node features after the584

convolution operation will be centered around specific mean values, depending on the node classes.585

Finally, we demonstrate that the nodes in different classes can be linearly separated by the hyperplane586

passing through the mid-point of the two mean values µ,ν with high probability.587

We prove the intermediate results in Lemma C.4 (degree and neighborhood distribution concentration588

inequalities) by utilizing Lemma C.5 (Chernoff bound for Poisson random variable) and in Lemma C.6589

(convoluted feature concentration) by making use of Lemma C.7 (Borell’s inequality). Finally, given590

the requirement of α stated in Theorem 4.4, we argue that the convoluted node features in two classes591

can be linearly separated with a high level of confidence.592

Novelty of our Proof. The general structure of our proof follows that of Baranwal et al. [3].593

However, our analysis requires non-trivial adaptation of the proof by Baranwal et al. [3]. This is594
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because we have a more general data model, DC-CSBM, where the CSBM assumed by Baranwal595

et al. [3] is a restricted special case of ours. In particular, we assume each edge is generated by the596

Poisson random variable following DC-SBM, instead of the Bernoulli random variable assumed597

by CSBM; we also incorporate the degree-corrected factor in our analysis to model node degree598

heterogeneity within communities, which gives us the flexibility to discuss linear separability for599

subgraphs with different levels of sparsity.600

Before we state and prove Lemma C.4, let us first define the following events that we will work on.601

Definition C.1 (Class Size Concentration). For any δ > 0, define602

I1(δ) =
{n
2
(1− δ) ≤ |C0|, |C1| ≤

n

2
(1 + δ)

}
.

Definition C.2 (Degree Concentration). For any δ′ > 0 and for each node i ∈ [n], define603

I2,i(δ
′) =

{
1

2
(p+ q)(1− δ′)θi ≤

Dii

n
≤ 1

2
(p+ q)(1 + δ′)θi

}
.

Definition C.3 (Neighborhood Distribution Concentration). For any δ′ > 0 and for each node i ∈ [n],604

define605

I3,i(δ
′) =

{
(1− ϵi)p+ ϵiq

p+ q
(1− δ′) ≤ |C0 ∩Ni|

Dii
≤ (1− ϵi)p+ ϵiq

p+ q
(1 + δ′)

}
⋂{

(1− ϵi)q + ϵip

p+ q
(1− δ′) ≤ |C1 ∩Ni|

Dii
≤ (1− ϵi)q + ϵip

p+ q
(1 + δ′)

}
,

where Ni denotes the set of nodes connected to node i.606

Then in Lemma C.4, we argue that for nodes in the α-subgroup defined in 4.1 for some appropriately607

chosen α > 0, the above events will happen simultaneously with high probability.608

Lemma C.4 (Concentration Inequalities). Given α ∈ ( 1
logn , n], C0(α), C1(α) defined by Defini-609

tion 4.1, and Vα = C0(α) ∪ C1(α). Let δ = n−1/2+ϵ and δ′ = (α log n)−1/2+ϵ, then for ϵ > 0610

small enough, we have for any c > 0, there is some C > 0 such that611

P

(
I1(δ)

⋂
i∈Vα

I2,i(δ
′)
⋂

i∈Vα

I3,i(δ
′)

)
≥ 1− C

nc
.

Proof. Firstly, we consider the event I1(δ). Since (ϵi)i∈[n] ∼ Ber( 12 ), by the Chernoff bound for612

sums of independent Bernoulli random variables [34, Theorem 2.3.1], we have for any δ > 0 that613

P

(∣∣∣∣∣ 1n
n∑

i=1

ϵi −
1

2

∣∣∣∣∣ ≥ δ/2

)
≤ 2 exp(−nδ2/6).

Notice that
∑n

i=1 ϵi = |C1| and |C0|+ |C1| = n, we can conclude that for any δ > 0, the probability614

that the number of nodes in each class concentrates will satisfy615

P
(
|C0|
n

,
|C1|
n

∈
[
1

2
− δ,

1

2
+ δ

])
≥ 1− C exp(−cnδ2),

for some constant C, c > 0.616

We now turn to the events {I2,i(δ′)}i∈[n]. Notice that the node degrees are sums of independent617

Poisson random variables. It is known that sums of independent Poisson random variables will be618

another Poisson random variable. Hence, conditioning on θ = (θi)i∈[n], for each node i ∈ [n], we619

have620

Dii ∼ 1 + Poi(
n− 1

2
(p+ q)θi),

where Dii is the degree of node i, and621

E[Dii] = 1 +
n− 1

2
(p+ q)θi.

To prove that I2,i(δ′) will occur with high probability for each i ∈ [n], we introduce the following622

result [34, Corollary 2.3.7] whose proof can be found in the referred literature:623
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Lemma C.5 (Corollary 2.3.7 [34]). If X ∼ Poi(λ), then for t ∈ (0, λ], we have624

P(|X − λ| ≥ t) ≤ 2 exp(−ct2

λ
).

625

Here, we can let t = δ′λ where δ′ ∈ (0, 1] and get a tail bound as follows:626

P(|Dii − E[Dii]| ≥ δ′E[Dii]) ≤ 2 exp(−c(δ′E[Dii]
2)

E[Dii]
) = 2 exp(−cE[Dii]δ

′2).

It follows that for each i ∈ [n] and any δ′ ∈ (0, 1], we have627

P
(
Dii

n
∈
[
1

2
(p+ q)(1− δ′)θi,

1

2
(p+ q)(1 + δ′)θi

]c)
≤ C exp(−cn(p+ q)θiδ

′2),

for some C, c > 0.628

We next consider the events {I3,i(δ′)}i∈[n]. Observe that for each node i, we can decompose node629

degree as Dii = Dintra
ii +Dinter

ii , where630

Dintra
ii =

∑
j∈N (i)

1{ϵj = ϵi},

and631

Dinter
ii =

∑
j∈N (i)

1{ϵj ̸= ϵi}.

Obviously, Dintra
ii = |Cϵi ∩ Ni| and Dinter

ii = |C1−ϵi ∩ Ni| will concentrate around npθi
2 and nqθi

2 ,632

correspondingly. And given the tail bound for {I2,i(δ′)}i∈[n], by a similar argument, we have for633

each i ∈ [n] and any δ′ ∈ (0, 1],634

P(I3,i(δ′)) ≥ 1− C exp(−cn(p+ q)θiδ
′2),

for some C, c > 0.635

Define the union event U(δ, δ′) = I1(δ)
⋂

i∈Vα
I2,i(δ

′)
⋂

i∈Vα
I3,i(δ

′). Recall that ∀i ∈ Vα, we have636

θi ≥ α. Thus, we can then choose δ = n−1/2+ϵ and δ′ = (α log n)−1/2+ϵ. Since p, q = ω( log
2 n
n )637

from Assumption 4.3, by a simple union bound, we have for ϵ > 0 small enough, for any c > 0 there638

is C > 0 such that639

P(U(n−1/2+ϵ, (α log n)−1/2+ϵ)) ≥ 1− C

nc
. (3)

Finally, we establish the lower bound for α indicated in the statement, which is 1
logn . The reason640

why we need this lower bound is that if α is too small, then the subgroups: C0(α), C1(α) will be too641

sparse that their member nodes’ degree is too small to assure the concentration inequalities.642

By the definition of the event: U(δ, δ′) and union bound, we have643

P (I1(δ)) ≤ C exp(−cnδ2)

≤ C exp(−cn2ϵ) (plug in δ = n−1/2+ϵ)

≤ C/nc (if we choose ϵ ≥ log log n

2 log n
> 0),

and644

P

( ⋂
i∈Vα

I2,i(δ
′)
⋂

i∈Vα

I3,i(δ
′)

)
≤ n · C exp(−cn(p+ q)αδ′2)

≤ n · C exp(−c log2 n · αδ′2) (by Assumption 4.3)

= C exp(log n− c log2 n · α(α log n)−1+2ϵ) (plug in δ′ = (α log n)−1/2+ϵ)

= C exp(log n− c log n · (α log n)2ϵ)

= C exp(log n · (1− c · (α log n)2ϵ))

= Cn1−c·(α logn)2ϵ .
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We want to assure the last term stays in O(1/nβ), for some β > 0. Equivalently, for any c > 0 in645

the above term, we can choose ϵ > 0 small enough to make 1− c · (α log n)2ϵ < 0. Hence, we can646

conclude that a natural lower bound for α should be 1
logn , i.e., α > 1

logn .647

Thus, combining Equation 3with this fact, we complete the proof.648

649

Next, in Lemma C.6, we claim that given the adjacency matrix A, class memberships (ϵi)i∈[n],650

degree-corrected factors (θi)i∈[n] and a pre-defined threshold α > 0, then with high probability, the651

convoluted node features x̃i ≈ pµ+qν
p+q for i ∈ C0(α) and x̃i ≈ qµ+pν

p+q for i ∈ C1(α), where Dii is652

the degree of node i.653

Lemma C.6 (Convoluted Feature Concentration). Given α ∈ ( 1
logn , n], C0(α), C1(α) defined by654

Definition 4.1, and Vα = C0(α) ∪ C1(α). Conditionally on A, (ϵi)i∈[n] and (θi)i∈[n], we have that655

for any c > 0 and some C > 0, with probability at least 1− C
nc , for every node i ∈ Vα and any unit656

vector w,657 ∣∣∣∣〈x̃i −
pµ+ qν

p+ q
,w

〉
(1 + o(1))

∣∣∣∣ = O

(√
log n

dn(p+ q)α

)
for i ∈ C0(α),

658 ∣∣∣∣〈x̃i −
qµ+ pν

p+ q
,w

〉
(1 + o(1))

∣∣∣∣ = O

(√
log n

dn(p+ q)α

)
for i ∈ C1(α).

Proof. Since (X,A) is sampled from DC-CSBM(µ,ν, p, q, θ), when conditioning on (ϵi)i∈[n], we659

have node i’s node feature xi ∼ N (mi,
1
dI) where mi = µ if i ∈ C0 and mi = ν if i ∈ C1. We660

can also write661

xi = (1− ϵi)µ+ ϵiν +
gi√
d
,

where gi ∼ N (0, I) is standard normal vector.662

On the other hand, conditioning on the adjacency matrix A and class memberships ϵ = (ϵi)i∈[n], the663

mean of the convoluted feature of node i can be written as664

m(i) = E[x̃i|A, ϵ] =
1

Dii

∑
j∈[n]

Ãijmj ,

by the definition of the graph convolution operation (x̃i = [D−1ÃX]i).665

Thus, for any unit vector w, we have666

x̃i ·w =
1

Dii

∑
j∈[n]

Ãij⟨xj ,w⟩ = ⟨m(i),w⟩+ 1

Dii

√
d

∑
j∈[n]

Ãij · ⟨gj ,w⟩. (4)

Let us define Fi = 1
Dii

√
d

∑
j∈[n] Ãij · ⟨gj ,w⟩ and observe that ⟨gj ,w⟩ is a standard Gaussian667

random variable for all j ∈ [n]. Thus, we have that Fi ∼ N (0, 1
dDii

), conditioning on the adjacency668

matrix A. Now we introduce Borell’s inequality [2] to give a high-probability bound of |Fi| for all669

i ∈ Vα.670

Lemma C.7 (Borell’s Inequality, Theorem 2.1.1 in Adler et al. [2]). Let Fi ∼ N (0, σ2
F ) for each671

i ∈ Vα. Then for any K > 0, we have672

P(max
i∈Vα

Fi − E[max
i∈Vα

Fi] > K) ≤ exp(−K2/2σ2
F ).

We can further define the event Qα = Qα(t) = {maxi∈Vα |Fi| ≤ t}. Observe that673

P(Qc
α) = P(max

i∈Vα

|Fi| > t)

≤ 2P(max
i∈Vα

Fi > t)

= 2P(max
i∈Vα

Fi − E[max
i∈Vα

Fi] > t− E[max
i∈Vα

Fi]).
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If we let the union event U := U(n−1/2+ϵ, (α log n)−1/2+ϵ) defined the same as in Lemma C.4,674

then by Lemma C.7675

P(Qc
α) ≤ P(U ∩Qc

α) + P(U c)

≤ 2n exp(−c′(t− E[max
i∈Vα

Fi])
2dDii) +

1

nc

≤ 2n exp(−c′′(t− E[max
i∈Vα

Fi])
2dn(p+ q)α) +

1

nc
,

for any c > 0 and some c′, c′′ > 0.676

By the fact that for some k > 0,677

E[max
i∈Vα

Fi] ≤ k
√

log n/σ2
F = k

√
log n

dn(p+ q)α
,

we can choose t = C ′
√

logn
dn(p+q)α for some large constant C ′ > k > 0 to obtain678

t− E[max
i∈Vα

Fi] ≥ C ′

√
log n

dn(p+ q)α
− k

√
log n

dn(p+ q)α
> 0.

Thus, we have679

P(U ∩Qα) ≥ 1− P(U c)− P(Qc
α)

≥ 1− 2

nc
− 2n exp(−c′′(t− E[max

i∈Vα

Fi])
2dn(p+ q)α)

≥ 1− 2

nc
− 2

nc′′(C′−k)2−1
.

When conditioning on the event U , we have680

m(i) =
pµ+ qν

p+ q
(1 + o(1)) for i ∈ C0(α), (5)

m(i) =
qµ+ pν

p+ q
(1 + o(1)) for i ∈ C1(α). (6)

Thus, on the event U ∩Qα, we have for each node i ∈ Vα,681

|⟨x̃i −m(i),w⟩| = O

(√
log n

dn(p+ q)α

)
,

which completes the proof.682

683

Now we are ready to prove Theorem 4.4.684

Proof. First observe that for all i and conditioning on the adjacency matrix A and class memberships685

ϵ = (ϵi)i∈[n], the convoluted data of node i: x̃i is a Gaussian vector with independent entries and has686

mean and covariance as follows:687

E(x̃i|A, ϵ) = m(i) =
1

Dii

 ∑
j∈N (i)

ÃijE[xj |ϵ]

 ,

Cov(x̃i|A, ϵ) =
1

dDii
I,

which are direct implications given the definition of graph convolution operation defined in Section 4.688
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Note that conditioning on the event U(δ, δ′) defined in Lemma C.4, we have that m(i) is given by689

equations 5 and 6.690

Recall the definition of linear separability, we need to find some unit vector v ∈ Rd and b ∈ R such691

that692

⟨m(i) +
1√
dDii

gi,v⟩+ b < 0 for i ∈ C0(α),

⟨m(i) +
1√
dDii

gi,v⟩+ b > 0 for i ∈ C1(α),

where gi ∼ N (0, I) is a standard normal vector with independent entries.693

We can fix ṽ = 1
2γ (ν − µ) and b̃ = − ⟨µ+ν,ṽ⟩

2 , where γ = 1
2∥µ − ν∥2. By Assumption 4.3,694

Lemma C.4 and C.6, with probability at least 1−O(n−c) for any c > 0, for all i ∈ C0(α), we have695

⟨x̃i, ṽ⟩+ b̃

=
⟨pµ+ qν, ṽ⟩

p+ q
(1 + o(1)) +O

(
∥ṽ∥ 1√

dn(p+ q)α
max
i∈[n]

|⟨gi,v⟩|

)
+ b̃

=

〈
2(pµ+ qν)− (p+ q)(µ+ ν)

2(p+ q)
, ṽ

〉
(1 + o(1)) +O

(
1√

dn(p+ q)α
max
i∈[n]

|⟨gi,v⟩|

)

= −γΓ(p, q)(1 + o(1)) +O

(√
log n

dn(p+ q)α

)
(By Lemma C.6)

= −γΓ(p, q)(1 + o(1)) + o(γ) (α ∈ ω

(
log n

dn(p+ q)∥µ− ν∥22

)
)

< 0. (by Assumption 4.3)

Similarly, for all i ∈ C1(α), we have696

⟨x̃i, w̃⟩+ b̃

=
⟨qµ+ pν, w̃⟩

p+ q
(1 + o(1)) +O

(
∥w̃∥ 1√

dn(p+ q)α
max
i∈[n]

|⟨gi,v⟩|

)
+ b̃

=

〈
−2(pµ+ qν) + (p+ q)(µ+ ν)

2(p+ q)
, w̃

〉
(1 + o(1)) +O

(
1√

dn(p+ q)α
max
i∈[n]

|⟨gi,v⟩|

)

= γΓ(p, q)(1 + o(1)) +O

(√
log n

dn(p+ q)α

)
(By Lemma C.6)

= γΓ(p, q)(1 + o(1)) + o(γ) (α ∈ ω

(
log n

dn(p+ q)∥µ− ν∥22

)
)

> 0. (by Assumption 4.3)

The above two inequalities imply the linear separability of {x̃i, i ∈ Vα}, which completes the697

proof.698
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Table 3: Description of parameters used in the controlled experiments.

Parameter Name Description
n Number of vertices in the graph.
cluster size slope the slope of cluster sizes when ordered by size.
feature dimension the number of dimensions of node features.
feature center distance distance between feature cluster centers.
p/q ratio the ratio of intra-class edge probability to inter-class edge probability.
average degree the average expected degrees of nodes.
power exponent the value of power-law exponent used to generate expected node degrees.
feature cluster variance variance of feature clusters around their centers.

Table 4: Remaining parameters used in experiments. One of the parameters is manipulated to generate
synthetic datasets with varying data properties indicated in the first column.

Experiments p/q ratio Average
Degree

Power
Exponent

Feature Cluster
Variance

Gini-Degree 3 20 [1.5, 2, 2.5, 3, 5] 0.25
Average
Degree 3 [10, 20, 30, 40, 50] 2 0.25

Edge
Homogeneity [1,2,3,5,10] 20 2 0.1

In-Feature
Similarity 2 20 2 [2, 1, 0.5, 0.2, 0.1]

Feature
Angular SNR 2 20 2 [2, 1, 0.5, 0.2, 0.1]

D Controlled Experiments of Identified Salient Factors699

From Section 3.3, we discover six prominent dataset properties that correlate with some or all of700

the GNN models’ performance. In Section 5, we have presented controlled experiments for Gini-701

Degree to verify its relationship to GNNs’ performance (Table 2). In this section, we further conduct702

controlled experiments for all the remaining identified salient factors, except for Pseudo Diameter,703

which is hard to control via manipulating explicit parameters provided by GraphWorld.704

Across all experiments, we fix the number of nodes n = 5000, cluster size slope as 0.0, the number705

of clusters as 4, feature dimension as 16, and feature center distance as 0.05. For each of the706

experiments, we will keep most of the remaining GraphWorld parameters the same and only vary707

one of the parameters. The remaining parameters that we will manipulate are the p/q ratio, average708

degree, power exponent, and feature cluster variance. We give a short description of all the parameters709

in Table 3. For completeness, we summarize the value of the remaining parameters used in all four710

experiments in Table 4.711

Table 5, 6, and 7 show the results of the four controlled experiments, correspondingly. Note that712

varying feature cluster variance can manipulate In-Feature Similarity and Feature Angular SNR713

simultaneously (Table 7). In general, all the results closely follow the regression results indicated in714

Table 1 and the discussion in Section 3.3.715

Table 5: Controlled experiment results for varying Average Degree. Standard deviations are derived
from 5 independent runs. The performances of all models except for GAT, MixHop, and MLP have
an evident positive correlation with Average Degree.

Average
Degree GCN GAT GraphSAGE MoNet MixHop LINKX MLP

10 0.71±0.018 0.67±0.009 0.725±0.002 0.556±0.024 0.696±0.001 0.693±0.006 0.632±0.004
20 0.823±0.001 0.734±0.013 0.797±0.006 0.593±0.012 0.806±0.003 0.825±0.001 0.54±0.024
30 0.839±0.005 0.722±0.017 0.801±0.002 0.761±0.005 0.756±0.002 0.852±0.003 0.653±0.004
40 0.876±0.003 0.742±0.006 0.825±0.001 0.795±0.002 0.794±0.003 0.876±0.002 0.648±0.003
50 0.9±0.004 0.734±0.019 0.86±0.002 0.814±0.003 0.788±0.011 0.89±0.005 0.651±0.002
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Table 6: Controlled experiment results for varying Edge Homogeneity. Standard deviations are
derived from 5 independent runs. The performances of all models except for MixHop and MLP have
an evident positive correlation with Edge Homogeneity.

Edge
Homogeneity GCN GAT GraphSAGE MoNet MixHop LINKX MLP

0.249 0.737±0.004 0.565±0.009 0.732±0.005 0.515±0.004 0.836±0.002 0.823±0.005 0.744±0.033
0.375 0.873±0.002 0.825±0.011 0.847±0.003 0.57±0.009 0.945±0.002 0.93±0.003 0.93±0.001
0.452 0.917±0.002 0.887±0.004 0.896±0.007 0.598±0.005 0.947±0.001 0.949±0.002 0.784±0.09
0.559 0.925±0.002 0.89±0.004 0.925±0.004 0.678±0.003 0.913±0.005 0.943±0.005 0.9±0.004
0.702 0.946±0.004 0.933±0.004 0.953±0.001 0.802±0.003 0.942±0.001 0.959±0.001 0.865±0.004

Table 7: Controlled experiment results for varying In-Feature Similarity / Feature Angular SNR.
Standard deviations are derived from 5 independent runs. The performances of all models except for
MoNet have an evident positive correlation with In-Feature Similarity / Feature Angular SNR.

In-Feature
Similarity

Feature
Angular SNR GCN GAT GraphSAGE MoNet MixHop LINKX MLP

0.506 1.009 0.478±0.016 0.412±0.016 0.446±0.005 0.562±0.021 0.433±0.001 0.598±0.002 0.402±0.002
0.516 1.022 0.563±0.004 0.47±0.006 0.517±0.008 0.615±0.002 0.531±0.003 0.661±0.004 0.47±0.001
0.527 1.039 0.717±0.008 0.507±0.006 0.6±0.006 0.555±0.021 0.621±0.007 0.737±0.001 0.486±0.003
0.582 1.101 0.784±0.011 0.599±0.014 0.74±0.01 0.533±0.01 0.848±0.001 0.854±0.001 0.611±0.003
0.602 1.154 0.887±0.006 0.791±0.004 0.825±0.006 0.627±0.004 0.924±0.004 0.913±0.006 0.915±0.002
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