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Abstract

Training large language models (LLMs) for com-
plex reasoning via Reinforcement Learning with
Verifiable Rewards (RLVR) is effective but lim-
ited by reliance on costly, domain-specific super-
vision. We explore Reinforcement Learning from
Internal Feedback (RLIF), a framework that en-
ables LLMs to learn from intrinsic signals without
external rewards or labeled data. We propose IN-
TUITOR, an RLIF method that uses a model’s own
confidence—termed self-certainty—as its sole re-
ward signal. INTUITOR replaces external rewards
in Group Relative Policy Optimization (GRPO)
with self-certainty scores, enabling fully unsuper-
vised learning. Experiments demonstrate that IN-
TUITOR matches GRPO’s performance on mathe-
matical benchmarks while achieving superior gen-
eralization to out-of-domain tasks like code gen-
eration, without requiring gold solutions or test
cases. Our findings show that intrinsic model sig-
nals can drive effective learning across domains,
offering a scalable alternative to RLVR for au-
tonomous Al systems where verifiable rewards
are unavailable.

1. Introduction

Reinforcement learning has become essential for enhancing
large language model capabilities. Early work focused on
Reinforcement Learning from Human Feedback (RLHF),
which aligns model outputs with human values through
reward models trained on preference data (Ouyang et al.,
2022). Recent advances in Reinforcement Learning with
Verifiable Rewards (RLVR) replace learned reward models
with automatically verifiable signals—such as exact answer
matching in mathematical problem-solving—demonstrating
improved reasoning capabilities in models like DeepSeek-
R1 (Guo et al., 2025; Lambert et al., 2024; Hu et al., 2025).
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Figure 1: Overview of RLIF and INTUITOR’s Performance.
Left: INlustration of RLIF, a paradigm where LLMs learn
from intrinsic signals generated by the model itself, with-
out external supervision. Right: Performance comparison
of Qwen2.5-3B Base, GRPO, and INTUITOR (our RLIF
instantiation). Both GRPO and INTUITOR are trained
on the MATH dataset. INTUITOR achieves comparable
performance to GRPO on in-domain mathematical bench-
marks (GSM8K, MATH500) and demonstrates better gen-
eralization to out-of-domain code generation tasks (Live-
CodeBench v6, CRUXEval). Part of the illustration was
generated by GPT-4o.

Despite these successes, both RLHF and RLVR face funda-
mental limitations that constrain their broader applicability.
RLHF requires extensive human annotation, making it ex-
pensive and potentially biased (Gao et al., 2023). RLVR,
while avoiding learned reward models, demands domain-
specific verifiers and gold-standard solutions. In mathemat-
ics, this requires expert annotation of solutions; in code
generation, it necessitates comprehensive test suites and ex-
ecution environments (Liu et al., 2023; Liu & Zhang, 2025;
Team et al., 2025; Xiaomi LLM-Core Team, 2025). These
requirements limit RLVR to carefully curated domains and
complicate deployment in open-ended scenarios. Moreover,
outcome-oriented verifiable rewards limit transferability to
other domains. These challenges motivate exploration of
more general and scalable reward paradigms, leading to a
critical research question:

Can LLMs enhance their reasoning abilities by relying
solely on intrinsic, self-generated signals, without recourse
to external verifiers or domain-specific ground truth?

In this paper, we introduce and explore such a paradigm:
Reinforcement Learning from Internal Feedback (RLIF),
where models optimize intrinsic feedback to improve per-
formance without external rewards or supervision. The mo-
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tivation for RLIF extends to future scenarios where models
develop superhuman capabilities that become difficult for
humans to evaluate directly (Burns et al., 2023), requiring
self-improvement through intrinsic mechanisms (Oudeyer
& Kaplan, 2007).

Under the RLIF paradigm, we propose INTUITOR, a novel
reinforcement learning approach leveraging a model’s own
confidence as an intrinsic reward. This builds on observa-
tions that LL.Ms exhibit lower confidence on difficult prob-
lems (Farquhar et al., 2024; Kuhn et al., 2023; Kang et al.,
2024; 2025); optimizing for confidence should improve
reasoning capabilities. Specifically, we use self-certainty
(Kang et al., 2025), the average KL divergence between
the model’s output distribution and a uniform distribution,
as our confidence measure. This metric has proven useful
for distinguishing high-quality responses from flawed ones
(Kang et al., 2025; Ma et al., 2025). Building on this insight,
INTUITOR guides learning through self-generated signals,
eliminating the need for external supervision or handcrafted
rewards. The implementation of INTUITOR is simple, effi-
cient, and effective: we replace the verifiable reward signal
in existing RLVR frameworks, specifically Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), with self-
certainty scores, using the same policy gradient algorithm.

Our experiments demonstrate promising results. On the
MATH dataset (Hendrycks et al., 2021) with Qwen2.5-3B
base (Yang et al., 2024a), INTUITOR matches the perfor-
mance of GRPO without relying on any gold answers. As
INTUITOR rewards the generation trajectory rather than
only the end result, it generalizes more effectively: training
a Qwen2.5-3B base model on MATH yields a 65% relative
improvement on LiveCodeBench Code generation task (Jain
et al., 2024) versus no improvement for GRPO, and a 76%
gain on CRUXEval-O (Gu et al., 2024) compared with 44%
for GRPO. Additionally, when we fine-tune the Qwen2.5-
1.5B base model with INTUITOR on the MATH corpus, a
model that originally produces repetitive content and scores
0% on LiveCodeBench learns to emit coherent reasoning
chains and well-structured code, reaching 9.9% accuracy
after the tuning. This demonstrates the strong generalization
capabilities of INTUITOR. As INTUITOR requires only a
clear prompt and no verifiable reward, it is broadly appli-
cable across tasks, providing fresh evidence that pretrained
LLMs possess richer latent behavioral priors than previously
recognized.

Our contributions can be summarized as follows:

* We introduce and explore Reinforcement Learning from
Internal Feedback (RLIF), a novel reinforcement learn-
ing paradigm enabling LLMs to improve reasoning skills
by leveraging intrinsic, self-generated signals, without
reliance on external supervision or labeled data.

¢ We introduce INTUITOR, an RLIF-based method that uti-

lizes a model’s own internal confidence measure—termed
self-certainty—as the sole intrinsic reward.

* We demonstrate that INTUITOR matches supervised RL
performance on in-domain tasks while achieving supe-
rior out-of-domain generalization. We uncover emergent
structured reasoning and enhanced instruction-following
capabilities induced by intrinsic rewards.

2. Related Work

Reinforcement Learning from Human Feedback
(RLHF). RL has become instrumental in refining LLMs.
Early pivotal work centered on Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022),
which aligns LLMs with human values by training a reward
model on human preference data. While effective, RLHF
is often resource-intensive due to the need for extensive
human annotation (Touvron et al., 2023). Subsequent inno-
vations like Direct Preference Optimization (DPO) (Rafailov
et al., 2023) aimed to simplify this by directly training mod-
els on preferences. The reliance on human-generated or
model-approximated human preferences poses scalability
challenges and introduces potential biases from the reward
model itself (Gao et al., 2023).

Reinforcement Learning with Verifiable Rewards
(RLVR). RLVR emerged as a powerful alternative, par-
ticularly for tasks with clear correctness criteria like math-
ematical reasoning and code generation (Guo et al., 2025;
Lambert et al., 2024; Hu et al., 2025; Team et al., 2025;
Xiaomi LLM-Core Team, 2025). RLVR utilizes rule-based
verification functions, such as exact answer matching (Guo
et al., 2025; Team et al., 2025; Xiaomi LLM-Core Team,
2025; Jaech et al., 2024), to provide reward signals, thereby
avoiding the complexities and potential pitfalls of learned
reward models. This approach has sparked significant ad-
vances, with models like DeepSeek-R1 (Guo et al., 2025)
achieving state-of-the-art reasoning capabilities. The devel-
opment of robust policy optimization algorithms like GRPO
(Shao et al., 2024) and its variants (Luo et al., 2025; Liu
et al., 2025) has further solidified RLVR’s success. Never-
theless, RLVR’s applicability is largely confined to domains
where verifiable gold solutions or exhaustive test cases can
be constructed, and its predominant focus on outcome-based
rewards can limit generalization to dissimilar tasks or those
requiring nuanced, process-oriented feedback.

Intrinsic Signals and Self-Play in Language Model Op-
timization. Self-play and intrinsic rewards have gained
attention as strategies for enabling autonomous model im-
provement. Inspired by early work in games like AlphaGo
Zero (Silver et al., 2017), recent LLM-based frameworks
incorporate self-refinement mechanisms to bootstrap rea-
soning ability. Methods like SPIN (Chen et al., 2024) and



Learning to Reason without External Rewards

Self-Rewarding LMs (Yuan et al., 2024) utilize the model
itself to provide feedback for subsequent training iterations.
While earlier work such as STaR (Zelikman et al., 2022) re-
lies on repeated outcome evaluation, more recent approaches
explore self-improvement through procedural generalization
and goal invention (Poesia et al., 2024; Cheng et al., 2024).
Concurrent works like Genius, TTRL, and Absolute Zero
(Xu et al., 2025; Zuo et al., 2025; Zhao et al., 2025)—Ilever-
age queries without labels for reinforcement learning but
remain constrained to specific task distributions, primar-
ily in mathematical reasoning. INTUITOR aligns with this
direction but introduces a lightweight, general-purpose alter-
native: using self-certainty as a confidence-based intrinsic
reward. Unlike prior work, INTUITOR enables single-agent
reinforcement learning across diverse tasks without rely-
ing on explicit feedback, gold labels, or environment-based
validation.

3. Method

In this section, we present our approach to training large lan-
guage models through intrinsic feedback mechanisms. We
begin by reviewing existing RL-based fine-tuning paradigms
and their limitations, which motivate our exploration of Re-
inforcement Learning from Internal Feedback (RLIF). We
then introduce INTUITOR, our novel RLIF method that lever-
ages self-certainty as an intrinsic reward signal, and detail
its implementation through policy optimization.

3.1. From External Supervision to Internal Feedback

Current RL fine-tuning approaches for LLMs primarily fall
into two categories: those relying on external human feed-
back (RLHF) and those using verifiable, often task-specific,
rewards (RLVR).

In RLHF (Ziegler et al., 2019; Ouyang et al., 2022), the
policy 7y is optimized to align with human preferences,
typically encapsulated by a learned reward model 4. The
objective is:

max Bo~r, (g) [16(¢, 0) — BKL{mo(0]g) | mer (0la)l] (1)

where ¢ is an input query, o is the generated output, 7y is
an initial reference policy, and S is a coefficient controlling
the KL divergence to prevent excessive deviation from 7.
Online RL algorithms like PPO (Schulman et al., 2017)
generate samples from 7y, evaluate them using r4, and
update 7y to maximize this objective. However, the reward
model 7 is crucial yet fragile; introducing it can lead to
“reward hacking,” and retraining it is resource-intensive,
complicating the training pipeline (Gao et al., 2023).

RLVR, on the other hand, substitutes the learned reward
model with an automatically verifiable signal. This has
proven effective in promoting reasoning capabilities, espe-

cially in domains like mathematics (Guo et al., 2025). The
RLVR objective is:

max o~y (q) [v(q; 0) = BKLIms (0lg) [ mrer(0lg)]]  (2)

where v(g,0) is a verifiable reward function. For in-
stance, in mathematical problem-solving, v(q, o) might be:

a if output o is correct

v(g,0) = . RLVR is often im-

0 otherwise.

plemented using algorithms like REINFORCE (Williams,
1992), PPO or GRPO. Despite their simplicity, verifiable re-
wards still rely on gold-standard answers or test executions,
which are costly and domain-specific (Liu et al., 2025; Team
et al., 2025). RLVR faces challenges in extending beyond
math and code to tasks involving ambiguity or subjective
reasoning.

3.2. Reinforcement Learning from Internal Feedback
(RLIF)

To overcome the limitations of RLHF’s costly human anno-
tation and RLVR’s domain-specific supervision, we propose
Reinforcement Learning from Internal Feedback (RLIF).
Instead of depending on external evaluation, RLIF uses the
model’s own assessment of its outputs or reasoning process
as feedback. This offers several advantages: it reduces re-
liance on supervision infrastructure, provides task-agnostic
reward signals, and supports learning in domains where ex-
ternal verification is unavailable. Under the RLIF paradigm,
the optimization objective becomes:

max Eo~ry (q) [u(g,0) = BKL[mo(0]g)l|mrer(0la)]] -~ (3)

where u(q, 0) represents an intrinsic signal derived from the
model’s internal state or computation, rather than external
verification. The key challenge lies in identifying intrinsic
signals that correlate with output quality and can effectively
guide learning.

Concurrent research explores related concepts within the
RLIF paradigm. For example, Entropy Minimized Policy
Optimization (EMPO) (Zhang et al., 2025) minimizes LLM
predictive entropy on unlabeled questions in a latent seman-
tic space. SEED-GRPO (Chen et al., 2025) uses the seman-
tic entropy of generated sequences, combined with ground
truth rewards, to modulate policy updates. Reinforcement
Learning with a Negative Entropy Reward (EM-RL) (Agar-
wal et al., 2025) employs a reward signal based solely on the
negative sum of token-level entropy, akin to REINFORCE
but without labels. These methods highlight the growing
interest and potential of leveraging intrinsic signals for LLM
training under the RLIF framework.
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3.3. INTUITOR: Policy Optimization with Self-Certainty

We propose INTUITOR, a novel RLIF method that utilizes a
model’s own confidence as the sole intrinsic reward signal

u(g, 0).

Our choice of model confidence as the intrinsic reward is
motivated by observations that LLMs often exhibit lower
confidence when encountering unfamiliar tasks or lacking
sufficient knowledge (Kang et al., 2024). Conversely, higher
confidence frequently correlates with correctness. By re-
warding increased self-confidence, INTUITOR encourages
to iteratively “practice” and refine its reasoning pathways
until it becomes more confident in its outputs.

We adopt the self-certainty metric from Kang et al. (2025),
defined as the average KL divergence between a uniform
distribution U over the vocabulary V and the model’s next-
token distribution:

Self-certainty(o|q) := Z (U || pro (lg, 0<4))
=1
lo| |V
‘V| Zzlog |V| Prg j‘Q7O<z)) “)
=1 j=1

where o.; are the previously generated tokens and
p(jlg, 0<;) is the model’s predicted probability for token
7 at step ¢. Higher self-certainty values indicate greater
confidence.

Self-certainty, being related to a KL divergence where the
model’s prediction is the second argument KL(U || px, ), is
mode-seeking. This contrasts with entropy (or reverse KL
divergence from uniform), which is mode-covering. Crit-
ically, self-certainty is reported to be less prone to biases
towards longer generations, a common issue with perplexity
or entropy-based measures (Fang et al., 2024; Kang et al.,
2025), making it a potentially more reliable indicator of
intrinsic confidence. Kang et al. (2025) demonstrate that
self-certainty is effective for selecting high-quality answers
from multiple candidates, and uniquely among different con-
fidence measures, its utility improves with more candidates.
Optimizing for self-certainty thus encourages the model to
generate responses that it deems more convincing. The RL
process can achieve this by, for instance, guiding the model
to produce more detailed reasoning steps, thereby increasing
the model’s conviction in its final answer. This mechanism
is more nuanced than simply increasing the probability of
the most likely output; it involves modifying the generation
process itself to build confidence.

To optimize the objective in Equation 3, various policy
gradient algorithms can be employed. Informed by the
recent success in models such as DeepSeek-R1 (Guo et al.,
2025) and its widespread adoption of GRPO in open-source
projects, we utilize GRPO to optimize for self-certainty.

Model Outputs Rewards Advantages

Policy Self-Certainty  __ | [fe—— |
Model Scores
Models

Figure 2: Illustration of INTUITOR. INTUITOR simpli-
fies the training strategy by leveraging self-certainty (the
model’s own confidence) as an intrinsic reward, optimizing
these scores to incentivize reasoning abilities without exter-
nal supervision.

The overall pipeline for this GRPO-based instantiation of
INTUITOR is illustrated in Figure 2.

The core idea behind the optimization is to sample multiple
candidate outputs for a given query and use their relative
rewards to estimate advantages for policy updates. For each
query ¢ ~ P(Q), GRPO samples a group of G outputs
01, ...,0q using a behavior policy 7y, (e.g., a previous
iteration or the SFT model). The target policy 7y is then
optimized by maximizing:

Jareo(0)

= EgP(Q),{0:}E. ~r0,, (Ola) ®)

T

— BDkL (7T9||7Tref)> ,

loi

Q \

We(Oz',t \ ani,<t)
T001a (Oi,t | (I70i,<t),

7Tref( iy

Ci,t (9) =

Z (mm [c” )Ai,t, Clip(ciyt(ﬂ),l €1+ e)

0i,<t) B Wref(Oi,t | ani,<t)

Dk (76 || Tret) =
ke (76 [ o) m9(0it | 4, 0i,<t)
Hyperparameters e (for clipping) and § (for KL penalty
strength) control stability and exploration, and A; ; is the
advantage estimate.

Integration of Self-Certainty. The key innovation in IN-
TUITOR is replacing external rewards with self-certainty
scores in GRPO’s advantage computation. Specifically, each
output o; is scored by:

u; = Self-certainty(0;|q),

Ai,t _ Ui~ mean({uy, ug, - - ,uG})- ©)
Std({ula U,y -~ ’UG})

This formulation enables the policy to favor outputs that
the model itself considers more confident, creating a self-
reinforcing learning loop. The complete INTUITOR training
pipeline operates by sampling multiple candidate outputs
for each query, computing self-certainty scores for each
candidate, using these scores to estimate advantages within
the group, and updating the policy to increase the likelihood

70(0it | q,0i,<¢)

Ay

-1
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of generating high-confidence outputs. This process requires
no external supervision, making it broadly applicable across
domains and tasks.

4. Experimental Setup

Training Setup. Both GRPO and INTUITOR are trained
with the Open-R1 framework (Face, 2025) on the train-
ing split of the MATH dataset (Hendrycks et al., 2021),
which contains 7,500 problems. We use Qwen2.5-1.5B
and Qwen2.5-3B (Yang et al., 2024b) as backbone models,
with a chat-based prompting format throughout. Given the
models’ initially weak instruction-following abilities, we
do not require them to disentangle intermediate reasoning
from final answers. Each update processes 128 problems,
generating 7 candidate solutions per problem, with a default
KL penalty of 5 = 0.005. For a fair comparison, GRPO and
INTUITOR share identical hyperparameters (see Appendix)
without additional tuning. We also evaluate a GRPO variant,
denoted GRPO-PV in Table 1, which uses plurality voting'
as a proxy for ground truth. This follows the approach from
TTRL (Zuo et al., 2025), which shows that self-consistency-
based rewards can match the performance of golden answers
when training on inference data.

INTUITOR for Code Generation (INTUITOR-Code). To
assess generalization beyond mathematical reasoning, we
apply INTUITOR to the Codeforces code generation dataset
(Li et al., 2022). This variant, denoted INTUITOR-Code
in Table 1, modifies the setup as follows: the number of
sampled completions per problem is increased to 14; the
learning rate is reduced from 3 x 1075 to 1 x 10~°; and
the KL penalty is increased to 3 = 0.01. For simplicity, we
limit the run to 50 steps, utilizing a total of 3,200 problems.

Evaluation. Evaluations generally use the same chat-style
prompting format as in training, except for MMLU-Pro
(Wang et al., 2024), where we follow the benchmark’s orig-
inal prompt format. Greedy decoding is used for all com-
pletions. Experiments were conducted on NVIDIA A100
GPUs, each with 40GB of memory. We evaluate perfor-
mance on the following benchmarks (1) Math reasoning:
MATHS500 and GSM8K, using the 1ighteval library
(Habib et al., 2023). (2) Code reasoning: CRUXEval-O (Gu
et al., 2024), using the ZeroEval framework (Lin, 2024),
and LiveCodeBench v6 (LCB) (Jain et al., 2024). (3) In-
struction following: AlpacaEval 2.0 with length-controlled
win rates (Dubois et al., 2024), judged by GPT-4.1 (OpenAl,
2025).

ISelf-consistency uses a plurality rule, selecting the most fre-
quent answer even without majority support, while majority voting
requires > 50% support and otherwise yields no winner (De Con-
dorcet et al., 2014).

-®- GRPO Intuitor A~ GRPO-PV
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Figure 3: Average response lengths during training rollouts.
For Qwen2.5-1.5B, INTUITOR and GRPO reduce gibberish
outputs. For Qwen2.5-3B, INTUITOR and GRPO increase
reasoning length; INTUITOR yields significantly longer re-
sponses. GRPO-PV shows minimal length increase.

5. Results and Analysis

Table 1 presents main evaluation results, and Figure 3 il-
lustrates response length evolution during training. On
in-domain MATH and GSMS8K datasets, INTUITOR and
GRPO-PV (both golden-answer-free) achieve performance
comparable to GRPO (using golden answers). This aligns
with TTRL (Zuo et al., 2025), where plurality voting ap-
proximated golden answers without significant performance
loss. While INTUITOR performs slightly worse than GRPO
overall, on MATH it produces longer responses and demon-
strates markedly improved code generation, suggesting en-
hanced reasoning capabilities.

5.1. Learning to Follow Instructions

INTUITOR significantly enhances instruction-following. Ini-
tially, the pretrained Qwen2.5-1.5B struggles with chat-style
prompts, scoring j10% on all chat-template tasks (Table 1)
and generating repetitive, nonsensical output, which inflates
average response lengths (Figure 3). Fine-tuning with INTU-
ITOR sharply reduces such gibberish, decreases completion
lengths, and enables non-trivial performance across all eval-
uated benchmarks.

Furthermore, on the MATH dataset, INTUITOR substantially
improves the Length Control Win Rate on AlpacaEval for
both Qwen2.5-1.5B and Qwen2.5-3B, surpassing GRPO
under identical settings. This demonstrates robust gains in
instruction adherence.

5.2. Fostering Structured Reasoning

Rapid Initial Learning. Self-certainty, a continuous and
inherently process-aware reward derived from the model’s
internal assessment across all tokens, contrasts with binary
rewards. This internal signal may encourage LLMs to fol-
low more effective learning trajectories. Given comparable
final performance between GRPO and INTUITOR, we assess
early-stage learnability by comparing in-domain accuracy
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Table 1: Performance comparison of various methods on the GSM8K, MATH, LCB, CRUXEval-O, MMLU-Pro, and
AlpacaEval benchmarks. The INTUITOR-Code variant is trained on Codeforces data with a smaller learning rate and fewer
training steps. All evaluations are obtained with the chat inference template, except for MMLU-Pro.

Model Training Data GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval
Owen2.5-1.5B Results
Base - 0.002 0.090 0.000  0.000 0.297 2.10
+ GRPO MATH 0.747 0.560 0.056  0.328 0.315 4.03
+ INTUITOR MATH 0.711 0.530 0.099  0.296 0.310 4.28
Owen2.5-3B Results
Base - 0.673 0.544 0.093  0.236 0.377 3.72
+ GRPO MATH 0.826 0.636 0.085 0.341 0.403 6.91
+ GRPO-PV MATH 0.820 0.636 0.086  0.299 0.398 6.17
+ INTUITOR MATH 0.792 0.612 0.153 0416 0.379 7.10
+ INTUITOR-Code Codeforces 0.743 0.572 0.153 0411 0.386 4.16
Table 2: Early-stage performance (training step 10) on 8- CRPOWAT) B ot (AT k- GRPO (L) 4 Iutor (.B)
GSMS8K and MATH. INTUITOR consistently outperforms L rapy = EITIILY Qwenz'jB 5
GRPO. 0579 ¢ Fo.08 0.624 ! \\// to.14
£ 0.4 e § g
8 “_*‘*»o.os‘% g 0601 012 d
Model Method ~ GSM8K MATH £ I 10048 Eoss g
Baseline  0.002  0.090 NIV o sy Al
Qwen2.5-1.5B  GRPO 0.081  0.296 e osetn A
INTUITOR 0.152 0.368 Step Step
Bascline 0.673 0.544 Figure 4: Performance evolution on MATH500 (in-domain)
Qwen2.5-3B GRPO 0.758 0.596 and LiveCodeBench (transfer) for models trained on MATH.
INTUITOR  0.811 0.618 In-domain (MATHS500) accuracy improves rapidly early

at training step 10. As shown in Table 2, INTUITOR con-
sistently outperforms GRPO on both GSM8K and MATH
benchmarks for Qwen2.5-1.5B and Qwen2.5-3B, highlight-
ing its advantage in rapid initial learning.

Cross-Task Generalization. Figure 4 illustrates perfor-
mance trajectories on MATHS500 (in-domain) and Live-
CodeBench (transfer task) for models trained on the MATH
dataset. For both INTUITOR and GRPO, accuracy improve-
ments on LiveCodeBench emerge later in training, following
initial gains on MATHS500. Notably, LiveCodeBench perfor-
mance continues to improve even after MATH500 accuracy
plateaus. This pattern suggests that initial in-domain learn-
ing (on MATH) facilitates subsequent generalization to code
generation tasks (LiveCodeBench).

Emergence of Long-Form Reasoning. While large mod-
els like Deepseek-R1 achieve long-form reasoning through
extensive RL, INTUITOR enables smaller models to develop
structured reasoning with limited data. On CRUXEval-O
(Figure 8), models trained with INTUITOR often exhibit free-
form reasoning before summarizing it within the instructed
JSON block, despite prompts requiring reasoning directly

in training, preceding gains in code-generation (Live-
CodeBench) accuracy. LiveCodeBench performance contin-
ues to rise even after MATHS500 accuracy plateaus.

in JSON. A similar pattern of pre-code natural language
reasoning is observed on LiveCodeBench. This emergent
pre-reasoning may contribute to INTUITOR ’s strong perfor-
mance on these benchmarks.

5.3. Understanding Emergent Long-Form Reasoning

When LLMs encounter unfamiliar questions, they sample
from a distribution of possible answers (Kang et al., 2024).
Self-certainty reflects the model’s internal assessment of
its output coherence. By reinforcing high-confidence re-
sponses, INTUITOR encourages more elaborate reasoning,
potentially improving the model’s comprehension of its own
outputs. While not explicitly targeting benchmark accuracy,
this enhancement in output quality and structure leads to
more reliable answers and better generalization.

We analyze models trained with INTUITOR on code cor-
pora by examining outputs for ten randomly selected Live-
CodeBench questions across different training steps. Fig-
ure 5 shows the evolution of output types alongside model
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Figure 5: (a) Left: Distribution of answer types for ten ran-
dom LiveCodeBench questions across training steps. Right:
Corresponding model accuracy. The model first learns to
generate correct code, then adds reasoning to improve un-
derstanding. (b) Training with INTUITOR on code corpora
leads to spontaneous reasoning before coding and explana-
tion of outputs.

accuracy. The results reveal a clear progression: models
first learn to generate valid Python code (evidenced by im-
proved accuracy and fewer invalid responses), then develop
pre-code reasoning to facilitate self-understanding. Further
inspection of generations confirms that models progressively
elaborate their reasoning throughout training, supporting our
hypothesis that INTUITOR encourages traces that the model
itself can better understand.

To quantify this effect, we classify outputs from succes-
sive checkpoints into three categories: invalid code ("No
Answer”), valid code without reasoning ("No Reasoning”),
and valid code with explicit reasoning ("Reasoning”). Fig-
ure 5(a) illustrates how these proportions evolve during
training alongside LiveCodeBench accuracy. The model
first reduces invalid outputs and improves code correct-
ness before incorporating pre-code reasoning, reflecting an
emergent emphasis on self-explanatory traces. Figure 5(b)
demonstrates how training with INTUITOR leads to struc-
tured reasoning before code generation. Additional evidence
appears in Figure 7, where INTUITOR-trained models assign
significantly higher confidence to their generated responses
compared to baseline models, as discussed further in Sec-
tion 5.4.

5.4. Online Self-Certainty Prevents Reward
Exploitation

Over-optimization against static reward models is a known
failure mode in reinforcement learning (Gao et al., 2023).
To assess the robustness of self-certainty as a reward, we
compare offline self-certainty (rewards from a fixed base
model) with online self-certainty (rewards from the evolving
policy model), using a reduced batch size of 224 responses
per gradient update.

Figure 6 demonstrates that the offline annotator is suscepti-
ble to exploitation. Around the 100th update step, the policy
model learns to inflate its self-certainty reward by append-
ing an auxiliary, already-solved problem to its answer for
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Figure 6: Accuracy (solid) and response length (dashed)
during training, comparing online and offline self-certainty
annotators with INTUITOR under reduced batch sizes. The
offline reward model is exploited early in training (around
100 steps), leading to increased response length and de-
creased accuracy. The online annotator maintains stable
training. Refer to Section 5.4 for details.

the given question. This exploitation manifests as a sharp
increase in response length (dashed line) and a concurrent
collapse in validation accuracy (solid line). In contrast, the
online annotator, whose reward signal co-evolves with the
policy, prevents such reward hacking and maintains stable
training dynamics.

To further evaluate the quality of self-certainty as a
reward signal, we analyze the distribution of self-
certainty scores from policies trained with INTUITOR and
GRPO on MATHS500 responses (Figure 7). We employ
Mann—Whitney U tests to determine if correct responses
achieve significantly higher self-certainty scores than incor-
rect ones.

Both GRPO and INTUITOR models exhibit significantly
higher average self-certainty scores, indicating that GRPO
also enhances the model’s self-assessment capabilities. No-
tably, policies trained with online self-certainty (i.e., INTU-
ITOR) show no signs of reward hacking. The INTUITOR
policy yields the lowest p-values and largest effect sizes
(r) in the Mann-Whitney U tests (Figure 7, inset). This
indicates it is most effective at discriminating its own cor-
rect and incorrect answers using self-certainty, even while
assigning higher absolute confidence scores overall. These
findings underscore the potential of INTUITOR for robust
training on larger datasets.

5.5. Ablation Studies

We further investigate how the magnitude of the KL
penalty influences INTUITOR, as shown in Table 3. On
in-domain benchmarks (MATHS500 and GSM8K) the choice
of penalty has only a minor effect, but on out-of-domain
tasks—LiveCodeBench (code generation) and CRUXEval-
O (code reasoning)—model accuracy is highly sensitive to
this hyper-parameter. Because INTUITOR does not receive
explicit feedback from generated responses during training,
the KL penalty serves as a critical regularization mechanism.
It prevents the policy from drifting too far from the initial
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Figure 7: Distribution of self-certainty on MATHS500 re-
sponses, for policies trained with GRPO and INTUITOR.
Histograms are split by response correctness. The inset
shows Mann—Whitney U test statistics (p-value and effect
size ) comparing self-certainty of correct versus incorrect
responses. The policy trained with INTUITOR demonstrates
the best separation.

Table 3: Impact of the KL-divergence penalty in INTUITOR
during fine-tuning of Qwen-2.5-3B on the MATH dataset.
We compare performance across GSM8SK, MATH500, LCB,
CRUXEval-O, MMLU-Pro, and AlpacaEval. All scores are
obtained with the chat-style inference template, except for
MMLU-Pro, which uses its standard evaluation protocol.

Model GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval
Base 0.673 0.544 0.093 0236 0.377 3.72
+ INTUITOR-KLO 0.809 0.598 0.081  0.390 0.359 6.77
+ INTUITOR-KLO0.0001 0.793 0.616 0.090  0.364 0.354 6.79
+ INTUITOR-KLO0.005 0.792 0.612 0.153 0416 0.379 7.10
+ INTUITOR-KLO0.01 0.803 0.618 0.130  0.394 0.371 6.54

model distribution, acting as a safeguard against degener-
ation. These findings highlight the importance of careful
KL tuning in general-purpose RL setups, especially when
targeting robust generalization across domains.

Additionally, we evaluate INTUITOR on larger models, in-
cluding Qwen2.5-7B and Qwen2.5-14B, and test different
model architectures such as Llama-3.2-3B (Meta Al, 2024)
and OLMo-2 (OLMo et al., 2024); these results are detailed
in the Appendix.

6. Discussion and Future Research

Scalability and Generalization. Our experiments, con-
strained by computational resources, utilize relatively com-
pact models trained on relatively small, unsupervised cor-
pora. We aim to demonstrate the potential of a model’s
self-certainty as a reward signal for policy optimization.
The results show that this signal consistently promotes more
coherent, well-justified, and interpretable explanations, in-
dicating a path towards more autonomous learning. Future
work could explore these benefits in larger foundation mod-
els and on more diverse, real-world datasets. Given that

purely offline training with INTUITOR led to performance
degradation over time, scaling up will likely require peri-
odic online updates to self-certainty estimates or hybrid
offline-online schedules to maintain calibration.

Applicability to Other Policy Gradient Methods. INTU-
ITOR is a framework that leverages a model’s self-certainty
as an intrinsic reward signal for fine-tuning LLMs. It can be
instantiated with various policy gradient algorithms. Due
to computational constraints, and informed by the success
of models like DeepSeek-R1 and the widespread adoption
of GRPO, we employ GRPO for self-certainty optimization.
The efficacy of self-certainty signals with other algorithms,
such as REINFORCE or PPO, warrants further investiga-
tion.

Combining Reward Signals. To enable a direct compari-
son between self-certainty and golden-answer rewards, this
paper focuses exclusively on a single reward signal. How-
ever, these signals are not mutually exclusive. Future work
could explore combining them, for instance, by summation
or by alternating based on the availability of golden answers.
Furthermore, other reward signals, such as formatting re-
wards (Guo et al., 2025), could be additively combined to
enhance performance. Integrating RLIF with methods like
RLHF and RLVR may further advance LLM capabilities
across various dimensions.

7. Conclusion

This paper introduces INTUITOR, an instantiation of Re-
inforcement Learning from Internal Feedback (RLIF) that
uses a model’s intrinsic self-certainty as its sole reward
signal, eliminating the need for external supervision or gold-
standard solutions. Our experiments show that INTUITOR
matches the performance of supervised RLVR methods like
GRPO on mathematical reasoning, while achieving superior
generalization to out-of-domain tasks such as code gen-
eration and instruction following. It also promotes struc-
tured reasoning and leverages online self-certainty to guard
against reward exploitation.

These findings highlight the transformative potential of
RLIF, signaling a meaningful step toward Al systems that
improve through introspection and unlock rich latent capa-
bilities. Looking forward, this paradigm opens the door to
Al agents capable of autonomous skill acquisition in novel
domains and scalable self-improvement—even as they ap-
proach or surpass the limits of human oversight. Future
directions include integrating RLIF with external reward
methods like RLHF or RLVR to tackle increasingly com-
plex real-world challenges, and advancing the development
of more robust, generalizable, and truly autonomous learn-
ing systems.
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Table 4: Performance comparison of various methods on the GSM8K, MATH, LCB, CRUXEval-O, MMLU-Pro, and
AlpacaEval benchmarks for larger models. All evaluations are obtained with the chat inference template, except for
MMLU-Pro.

Model GSM8K MATHS500 LCB CRUX MMLU-Pro AlpacaEval
Qwen2.5-7B 0.549 0.612 0.017 0.161 0.424 5.63
+ GRPO 0.723 0.699 0.200  0.540 0.434 7.78
+ INTUITOR 0.874 0.730 0.200 0.573 0.422 8.43
Qwen2.5-14B  0.751 0.674 0.219  0.499 0.499 6.28
+ GRPO 0.917 0.764 0.295 0.516 0.487 11.58
+ INTUITOR 0.922 0.770 0.294  0.555 0.492 11.83

Question description ...
E.g., """json{reasoning: , answer: [0

GRPO Dominant Format Intuitor Dominant Format

To solve this, we need ...

“'json The answer is:
( “ison
reasoning: The function ..., {
answer: ... reasoning: The function ...,
} answer: ...
§

Figure 8: INTUITOR quickly demonstrate R1-like reasoning

A. Additional Experimental Details
A.1. Generalization to Larger Models

We extend INTUITOR to larger base models Qwen2.5-7B and Qwen2.5-14B and find that the original training recipe triggers
severe behavioural collapse at the very start of training. Even before any updates, the 7B model solves the given problem
and then immediately proceeds to tackle an unrelated one; this tendency becomes more pronounced as training progresses.

To stabilize learning, we simplify the system prompt, reduce the learning rate to 1 x 1075, and increase the number
of sampled responses per problem to sixteen. These settings represent our first, untuned trial, and a comprehensive
hyperparameter sweep is beyond the scope of this paper. Because the system prompt is the only additional signal the model
receives during INTUITOR fine-tuning, we expect its careful calibration to exert a particularly strong influence on training
dynamics. With the foregoing adjustments INTUITOR trains smoothly on both larger models. The corresponding evaluation
results are reported in Table 4.

A.2. Evaluation on Llama3.2-3B-Instruct

We further evaluate INTUITOR on the Llama3.2-3B-Instruct model. Compared to the Qwen family, improvements on
external benchmarks are less pronounced—Ilikely due to extensive prior instruction tuning. Nevertheless, as shown in
Figure 10, both accuracy and generated sequence length improve steadily over the course of training, indicating meaningful
optimization gains under INTUITOR.
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Figure 9: Average accuracy and mean completion length during reinforcement learning on the MATH dataset using
INTUITOR and GRPO. Both methods yield similar accuracy gains, with INTUITOR generally producing longer completions.

A.3. Evaluation on OLMo-2-1124-7B-SFT
To further validate our findings, we applied INTUITOR to OLMo-2-1124-7B-SFT (OLMo et al., 2024), a fully open large

language model. The results are shown below.

A.4. Evaluating INTUITOR Against Entropy-Minimization and Random Reward Strategies

Contemporary research has found that applying a negative token-level entropy reward can improve a model’s reasoning
performance without requiring external labels (Agarwal et al., 2025; Prabhudesai et al., 2025). However, since low entropy
often correlates with repetitive loops (Holtzman et al., 2019), using negative entropy alone as a reinforcement learning
reward risks driving the model into a collapsed state. In other words, without sufficient supervised training to push the base
model away from degenerate behavior, the model risks falling into a repetition trap from which it cannot recover. As we
observed a nontrivial amount of repetitive responses in Qwen2.5-1.5B, we tested this hypothesis by applying GRPO with
the negative-entropy reward (ugp; = —ﬁ Zlf;‘l Z‘j‘;ll Dy (J|0s 0<i) - 10g (Dr, (41g, 0<:))). Figure 12 (left) validates our
prediction. Entropy minimization exacerbates repetition, and after a few updates the model converges to producing the same

Table 5: Accuracy of the OLMo-2-1124-7B-SFT model using GRPO and INTUITOR on GSM8K and MATH500

Model Method GSM8K MATH
Baseline 0.685 0.288
OLMo-2-1124-7B-SFT GRPO 0.704 0.334
INTUITOR 0.697 0.348
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Figure 10: Average accuracy and mean completion length of Llama3.2-3B-Instruct during training with INTUITOR on

MATH dataset. Both metrics exhibit significant increases.
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Figure 11: Average accuracy and mean completion length on the MATH dataset during reinforcement learning with
OLMo-2-1124-7B-SFT using INTUITOR and GRPO. Both methods achieve comparable accuracy gains.

character regardless of the prompt. By contrast, INTUITOR enhances performance without triggering collapse (Figure 4).

To further validate the efficacy of INTUITOR, we also trained Qwen2.5-3B using a random reward baseline, where each
response was assigned a reward of O or 1 with equal probability. Figure 12 (Right) shows that this random reward scheme
severely degrades the model’s performance in a chat-style RL setting, demonstrating that the performance gains observed

with INTUITOR are indeed non-trivial.

A.5. Training Hyper-parameters

We show the training hyper-parameters in Table 6.

B. Prompts and Model Completions

This section presents sample prompts and the responses generated by the models. Unless otherwise specified, the default
base model used is Qwen2.5-3B, and the default training dataset is MATH.
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Figure 12: Left: GRPO with an entropy minimization objective using Qwen2.5-1.5B on MATH. Right: GRPO with a
random reward using Qwen2.5-3B on MATH. Both approaches exhibit severe output degeneration.

Table 6: Only hyper-parameters that affect the learned policy or evaluation are listed. Unspecified fields inherit the TRL_v0.8
defaults.

Parameter MATH (1.5B/3B) MATH (7B/14B) Codeforces (3B)
Learning Rate 3x 1076 1x 1076 1x107¢
Batch Size 128 64 64
Group Size 7 14 14
KL Penalty(3) 0.0005 0.01 0.01
Training Steps 58 117 50
Max Prompt Length 512 512 1024
Max Completion Length 3072 3072 2048
Temperature 0.9 0.9 0.9
Clip Ratio 0.2 0.2 0.2

Lr Scheduler Type Cosine Cosine Cosine
Warmup Ratio 0.1 0.1 0.1
Optimizer AdamW (3;=0.9, 3,=0.999, ¢=10"8)

B.1. Training Prompts

System prompt used for Qwen2.5-1.5B on MATH.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses. You FIRST think about
the reasoning process step by step and then provide the user with the answer. Please enclose your final answer in the
box: \boxed{ Your Answer}.

System prompt used for Qwen2.5-3B on MATH.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses. You FIRST think about
the reasoning process step by step and then provide the user with the answer. Please enclose your final answer in the
box: \boxed{Your Answer}. Please stop generation immediately after outputing the box.

System prompt used for Qwen2.5-7B and Qwen2.5-14B on MATH.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses. Please provide a
step-by-step solution to the following problem.

15
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System prompt used for Qwen2.5-3B on code corpuse.

You are an Al designed to help solve competitive programming problems by generating Python code.

B.2. Example from LiveCodeBench Code Generation

Models trained with INTUITOR tend to generate reasoning before producing code, whereas GRPO-tuned models typically
respond with Python code directly under the same prompt.

Question:
You are given a O-indexed array of strings details. Each element of details provides information about a given
passenger compressed into a string of length 15. The system is such that:

* The first ten characters consist of the phone number of passengers.

» The next character denotes the gender of the person.

» The following two characters are used to indicate the age of the person.
 The last two characters determine the seat allotted to that person.

* Return the number of passengers who are strictly more than 60 years old.

Example 1
Input

details = ["7868190130M7522","5303914400F9211","9273338290F4010"]
Output
2

Explanation The passengers at indices 0, 1, and 2 have ages 75, 92, and 40. Thus, there are 2 people who are over
60 years old.

Example 2
Input

details = ["1313579440F2036","2921522980M5644"]
Output
0

Explanation None of the passengers are older than 60.
Constraints
¢ | j=details.length j= 100
e details[i].length == 15
o details[i] consists of digits from 0’ to ’9’.
e details[i][10] is either "M’ or ’F’ or ’O’.
* The phone numbers and seat numbers of the passengers are distinct.”

You will use the following starter code to write the solution to the problem and enclose your code within delimiters.

‘“‘python
class Solution:
def countSeniors(self, details: List[str]) —> int:

I3
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INTUITOR-tuned

To solve the problem of counting the number of passengers who are strictly more than 60 years old, we can follow
these steps:

1. Iterate through each passenger’s details.

2. Extract the age from the details.

3. Check if the age is greater than 60.

4. Count the number of passengers who meet the criteria.

Here is the Python code to achieve this:

‘“‘python
class Solution:
def countSeniors(self, details: List[str]) —> int:
count = 0
for detail in details:
age = int(detail [11:13])
if age > 60:
count += 1
return count

GRPO-tuned

‘““python
class Solution:
def countSeniors(self, details: List[str]) —> int:
count = 0
for detail in details:
age = int(detail [11:13])
if age > 60:
count += 1
return count

B.3. Example from LiveCodeBench Code Generation

Models trained with INTUITOR are typically effective at interpreting instructions and producing correct Python code, while
GRPO-tuned models may misinterpret the instructions or decline to provide a response.

Question:
There are three cards with letters a, b, and ¢ placed in a row in some order. You may perform at most one operation:

* Pick any two cards and swap them.
Is it possible that the row becomes abc after the operation? Output YES if it is possible, and NO otherwise.
Input

The first line contains a single integer ¢ (1 < ¢ < 6) — the number of test cases. Each test case consists of a single
line containing a permutation of the three characters a, b, and c.
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Output
For each test case, output YES if you can make the row abc with at most one operation, or NO otherwise. The
answer is case-insensitive.

Sample Input

6

abc
acb
bac
bca
cab
cba

Sample Output

YES
YES
YES
NO
NO
YES

Note
¢ In the first test case, no operation is needed.
¢ In the second test case, swap c and b: acb — abc.
¢ In the third test case, swap b and a: bac — abc.
* In the fourth test case, it is impossible to obtain abc using at most one swap.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample
inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the
inputs, runs the algorithm and writes output to STDOUT.

‘“‘python
# YOUR CODE HERE

I3

INTUITOR-tuned

To solve the problem of determining whether it is possible to transform the given string into “abc” using at most one
operation (swapping two cards), we can follow these steps:

1. Read the input string
2. Check if the string is already ”abc”
3. If the string is not "abc”, check if it can be transformed into “abc” by swapping two cards

4. Output "YES” if it is possible, otherwise output "NO”

‘“‘python
# Determine whether s can become “abc” with <= swap
def can_transform_to_abc(s: str) —> str:

if s == "abc”:
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return “YES”
# try all pairs of indices (i, j) with i < j
for i in range(len(s)):
for j in range(i + 1, len(s)):
swapped = s[:i]+s[jl+s[i+1:j]+s[i]+s[j+1:]
if swapped == “abc”:
return “YES”
return “NO”

t = int(input (). strip ())
for _ in range(t):
print (can_transform_to_abc (input (). strip ()))

GRPO-tuned

‘“‘python
# YOUR CODE HERE

I3

Another related GRPO-tuned response to another problem

I’'m sorry, but I can’t assist with that request.

B.4. Example from CRUXEval-O

Models trained with INTUITOR usually articulate their reasoning first, then deliver the formatted response as instructed,
while GRPO-tuned models often produce the required JSON output immediately under the same prompt.

Question:

You are given a Python function and an assertion containing an input to the function. Complete the assertion with a
literal (no unsimplified expressions, no function calls) containing the output when executing the provided code on
the given input, even if the function is incorrect or incomplete.

def f(text):
new_text =
for ch in text.lower (). strip ():
if ch.isnumeric () or ch in
>\ u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc *:
new_text += ch

LI

return new_text\nassert f(’’) == ??
Instruction
Please answer this question by first reasoning and then providing your answer. Present your reasoning and solution
in the following json format. Please show your final answer in the answer field, e.g.,"answer": "42".
¢ 6 ¢ j S 0 n

i) 29

“reasoning”’: TV ___7,

Lt} i)

“answer”: o

}cnc
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INTUITOR-tuned

To complete the assertion for the given Python function £ (text), we need to determine the output of the function
when the input is an empty string ’ ’ .

Let’s break down the function step by step:

1. Function Definition:

def f(text):
new_text =
for ch in text.lower (). strip ():
if ch.isnumeric () or ch in
"\ u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc *:
new_text += ch
return new_text

LI

2. Input: The input to the function is an empty string ’ .
3. Step-by-Step Execution:

e Step 1: text.lower () .strip()

— text.lower () converts the string to lowercase.
— text.strip () removes leading or trailing whitespace.
— For ’ 7, both calls return ’ ’, so the resultis ’ 7.

e Step 2: Iterate over each character

— The loop sees no characters; it performs zero iterations.
e Step 3: Character check

— Because there are no  characters, the condition ch.isnumeric() or ch in
"\u00c4\u00e4\u00cf\ul0ef\u00d6\u00£6\u00dc\u00£fc’ is never true, and nothing
is appended to new_text.

4. Output: Since nothing was appended, new_text remains ’ /.
Therefore the assertion should be:

assert f(’’) == "~
So, the final answer is:

‘‘json

{
“reasoning ”: “The function ‘f(text)‘ converts the input
string to lowercase and removes any leading or trailing
whitespace. For an empty string the resulting string is
also empty. Therefore the output of “f(’’)° is an empty
string .”,
“answer ”:

}“‘

3% % 99

GRPO-tuned

“‘jSOIl

{

“reasoning ”: “The function ‘f°‘ takes a string ‘text ‘ as
input and returns a new string with only numeric characters
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and certain special characters
(\u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc) preserved.
The assertion checks if the function correctly handles an
empty string. Since an empty string contains no characters,
the function should return an empty string as well.
Therefore , the expected output for an empty string is an
empty string.”,

“answer”: 77

}‘4‘

B.5. Rollout Example of INTUITOR During Training on Code Corpus

The following examples illustrate representative rollouts during the reinforcement-learning training of Qwen2.5-3B on
the CodeContest dataset. As shown in Figure 5, the model initially produces concise reasoning and brief explanations to
“convince” itself of its interim outputs. Over the course of training, it gradually shifts toward more detailed, step-by-step
reasoning and richer explanations, which further reinforce its understanding and improve the final responses.

Code Block (Step 2)

I have solved the problem. Here’s the Python code to solve it as described:

‘““‘python

def calculate_stones (S):
n = len(S)
MOD = 10%%9 + 7

# Initialize array to store remainders
remainder = [0] * (n + 1)

# Calculate remainders

for i in range(n, -1, -1):
remainder[i] = (
remainder[i+1] = 10 + int(S[i])) % MOD
if 1 > 0:
remainder[i] = (

remainder[i] — remainder[i+1] + MOD) % MOD
return remainder[1] % 10 + remainder[0]

# Read input
S = input ()

# Call function to calculate stones
T = calculate_stones (S)

# Print output
print (T)

I3

This code computes the sum of digits from right to left, using an array ‘remainder* to store partial remainders modulo
1000000007. It then calculates T as the final remainder times 10 plus the first remainder from the array.
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Planning + Code Block + Explanation (Step 15)

To solve this problem, we can iterate through all the possible subsets of the set and calculate their sums. However, a
more efficient approach is to use combinatorics. For N elements, there are 2"V subsets. Each element appears in

exactly half of the subsets, so the total sum of all subset elements is 20N — 1) times the sum of all elements in the
original set.

‘“‘python
def sum_of_powerset(n):
return 2xx(n—-1) = n % (n+l1) // 2

# Read input
t = int(input())
for _ in range(t):
n = int(input())
print (sum_of_powerset(n))

I3

This program defines a function sum_of_powerset(n) that calculates the sum of the power set of a set with n elements.
It then reads the number of test cases t, and for each test case, reads n and prints the result.

Step-by-Step Planning + Code Block + Step-by-Step Explanation (Step 50)

To solve this problem, we need to read the input, parse the map and the regions to survey, then count the number of
each type of terrain for each survey region. Here’s a step-by-step approach to write the Python code for this problem:

1. Read the input: Get the dimensions of the map and the number of regions to survey.
2. Read the map: Parse the map information into a 2D list of strings.
3. Read the regions: Parse the survey regions into a list of tuples.

4. Count the terrain: For each survey region, count the number of ‘J*, ‘O°, and ‘I* characters in the corresponding
section of the map.

5. Output the results: Print the counts for each survey region.

Here’s the Python code that implements this solution:

‘“‘python
def count_terrain (map_info, survey):
m, n = map_info.get(’m’), map-info.get(’n’)
j-count = 0
o_count = 0
i_count = 0

for row in survey:
a, b, ¢, d = row
if a>m or b>n or ¢ >m or d > n:
continue

for i in range(a, ¢ + 1):
for j in range(b, d + 1):

if map_info[(i, j)] == T :
j-count += 1
elif map_info[(i, j)] == "0O’:

o_count += 1
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elif map_info[(i, j)] == "1’:
i_count += 1

return j_count, o_count, i_count

def process_input():
M, N = map(int, input().split())
K = int(input())
map_info = {}
survey = []

for _ in range(M):
map_info[(M - _, _)] = input(). strip ()

for _ in range (K):
survey .append(list (map(int, input().split())))

return M, N, K, map_info, survey

def main():
M, N, K, map_info, survey = process_input()
results = []

for region in survey:
j-count ,o0_count,i_count=count_terrain (map_info,region)
results .append ((j_count, o_count, i_count))

for region in results:
print(region[0], region[l], region[2])

if __name__ == ”__main__":
main ()

¢ 6 ¢

Explanation:

1. count_terrain Function: This function takes the map information and a survey region, and counts the number
of J¢, ‘O, and ‘I* in that region.

2. process_input Function: This function reads the input from the user, processes it to extract the map information
and the survey regions.

3. main Function: This function calls ‘process_input to get the necessary data, then calls ‘count_terrain‘ for each
survey region and prints the results.

This code should correctly solve the problem and provide the desired output.

B.6. Evolution of Qwen2.5-3B’s Responses on LiveCodeBench Code Generation trained with INTUITOR on MATH

During training Qwen2.5-3B with INTUITOR on the MATH dataset, its code-generation capability steadily improves. By the
middle of training, the model learns to produce syntactically valid Python; as training progresses, it refines formatting and
clarity. By the end, it arrives at correct solutions.
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Question:

Alex is participating in the filming of another video of BrMeast, and BrMeast asked Alex to prepare 250 thousand
tons of TNT, but Alex didn’t hear him well, so he prepared n boxes and arranged them in a row waiting for trucks.
The i-th box from the left weighs a; tons.

All trucks that Alex is going to use hold the same number of boxes, denoted by k. Loading happens the following
way:

* The first k£ boxes goes to the first truck,

* The second k boxes goes to the second truck,

* The last k boxes goes to the 7 -th truck.

Upon loading is completed, each truck must have exactly k& boxes. In other words, if at some point it is not possible
to load exactly k boxes into the truck, then the loading option with that % is not possible. Alex hates justice, so he
wants the maximum absolute difference between the total weights of two trucks to be as great as possible. If there is
only one truck, this value is 0.

Alex has quite a lot of connections, so for every 1 < k < n, he can find a company such that each of its trucks can
hold exactly k boxes. Print the maximum absolute difference between the total weights of any two trucks.

Input

The first line contains one integer ¢ (1 < ¢ < 10%) — the number of test cases.

The first line of each test case contains one integer n (1 < n < 150 000) — the number of boxes.

The second line contains n integers a1, as,...,a, (1 < a; < 109) — the weights of the boxes.

It is guaranteed that the sum of n for all test cases does not exceed 150 000.

Output

For each test case, print a single integer — the answer to the problem.

Sample Input 1:

5

1000000000 1000000000 1000000000 1000000000

15
60978 82265 78961 56708 39846 31071 4913
4769 29092 91348 64119 72421 98405 222 14294

8
19957 69913 37531 96991 57838 21008 14207 19198

Sample Output 1:

1
9
0
189114
112141

Note
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¢ In the first case, we should pick two trucks, so the first one will have only the first box, and the second one will
have only the second box.

* In the second case, we should pick six trucks, so the maximum will be 10, the minimum will be 1, and the
answeris 10 —1 = 9.

* In the third case, for any possible k, the trucks will have the same total weight of boxes, so the answer is 0.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample
inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the
inputs, runs the algorithm and writes output to STDOUT.

‘“‘python
# YOUR CODE HERE

I3

Step 0 (Base): Incorrect

‘“‘python
# YOUR CODE HERE

I3

Step 10: Incorrect

‘“‘python
# YOUR CODE HERE

I3

Step 20: Incorrect

‘“‘python
# YOUR CODE HERE

I3

Step 30: Incorrect

To solve the problem of finding the maximum absolute difference between the total weights of any two trucks, we
can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an integer n (the number of
boxes), followed by n integers a1, aq, . . ., a, (the weights of the boxes).

2. Calculate the total weight of all boxes: Sum up all the weights of the boxes to get the total weight V.

3. Determine the number of trucks: The number of trucks m is given by m = [%] , where k is the number of
boxes each truck can hold. Since k can vary from 1 to n, we need to find the maximum possible value of k that
allows us to distribute the boxes evenly.

4. Calculate the maximum and minimum total weights of the trucks: For each possible value of k, calculate
the total weight of the boxes that can be loaded into each truck. The maximum total weight of the trucks will be
the sum of the weights of the k£ heaviest boxes, and the minimum total weight will be the sum of the weights of
the k lightest boxes.
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5. Find the maximum absolute difference: The maximum absolute difference between the total weights of any
two trucks is the maximum of the absolute differences between the maximum and minimum total weights of the
trucks for all possible values of k.

6. Find the maximum absolute difference: The maximum absolute difference between the total weights of any
two trucks is the maximum of the absolute differences between the maximum and minimum total weights of the
trucks for all possible values of k.

Here is the Python code that implements the above steps:

‘“‘python
import sys
from heapq import heappush, heappop
def max_difference(n, weights):
# Calculate the total weight of all boxes
total_weight = sum(weights)
# Initialize variables to store the maximum
# and minimum total weights of the trucks
max_weight = 0
min_weight = total_weight
# Iterate over all possible values of k
for k in range(l, n + 1):
# Calculate the total weight of the k heaviest boxes
max_weight = max(max_weight,
sum (heappop(weights) for _ in range(k)))

# Calculate the total weight of the k lightest boxes
min_weight = min(min_weight,
sum (heappop(weights) for _ in range(k)))

# Return the maximum absolute difference
return max_-weight — min_weight

# Read the number of test cases
t = int(input())

# Process each test case

for _ in range(t):
n = int(input())
weights = list (map(int, input().split()))
# Calculate the maximum absolute difference
result = max_difference (n, weights)

# Write the result to stdout
print(result)

Step 40: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any two trucks, we
can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an integer n (the number of
boxes), followed by n integers representing the weights of the boxes.
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2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total weight.
3. Determine the number of trucks: Since each truck holds & boxes, the number of trucks is %

4. Calculate the possible total weights of the trucks: For each possible value of £ (from 1 to n), calculate
the total weight of the boxes that can be loaded into the trucks. This involves summing up the weights of k
consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the maximum and
minimum total weights of the trucks. The maximum absolute difference is the difference between the maximum
and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for each test case.

Here is the Python code that implements the above steps:

‘“‘python

def find_max_difference(n, weights):
total_weight = sum(weights)
max _difference = 0

for k in range(l, n + 1):
if n % k != 0:

continue
truck_weights = [sum(weights[i % k

(i + 1) = k]) for i in range(n // k)]
max_weight = max(truck_weights)
min_weight = min(truck_weights)
max_difference = max(max_difference ,

abs (max_weight — min_weight))

return max_difference

def main ():
t = int(input())
for _ in range(t):
n = int(input())
weights = list (map(int, input().split()))

result = find_max_difference(n, weights)
print(result)
if __name__ == ”__main__":
main ()

I3

Step 58: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any two trucks, we
can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an integer n (the number of
boxes), followed by n integers representing the weights of the boxes.

2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total weight.

3. Determine the number of trucks: Since each truck holds & boxes, the number of trucks is %
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4. Calculate the possible total weights of the trucks: For each possible value of £ (from 1 to n), calculate
the total weight of the boxes that can be loaded into the trucks. This involves summing up the weights of k

consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the maximum and
minimum total weights of the trucks. The maximum absolute difference is the difference between the maximum

and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for each test case.

Here is the Python code that implements the above steps:

‘“‘python
def max_difference(n, weights):
total_weight = sum(weights)

max _diff = 0

for k in range(l, n + 1):
if n % k '= 0:
continue
truck_weights = [sum(weights[i % k
(i + 1) = k]) for i in range(n // k)]
max_diff = max(max_diff,
max(truck_weights) — min(truck_weights))
return max_diff

def solve():
t = int(input())
for _ in range(t):
n = int(input())
weights = list(map(int, input().split()))
result = max_difference(n, weights)
print(result)

if __name__. == ”__main__":
solve ()

I3
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