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This section will cover (i) the derivations of pulling back the network gradient into the space of
initial velocity fields ṽnj each time after forward propagation, and (ii) a complexity analysis of our
unsupervised atlas building network using the low-dimensional parameterizations.

1 Derivations of the gradient for the atlas building network

We recall that the loss of the geometric shape learning based on atlas building network is
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We set the network output ṽnj(θEg , θ
D
g ) as the initial condition of geodesic shooting, and adopt a

forward-backward shooting approach (2; 3) that employs adjoint Jacobi fields in Fourier space. With
a simplified math notation Θg = (θEg , θ

D
g ), we derive the gradient of the loss function with respect to

the predicted initial velocity fields ṽnj before back-propagation as follows

(i) Forward integrating the geodesic shooting equation (a.k.a. EPDiff) in Eq.(2) to compute
ṽnj(Θg)t=1 at time point t = 1 after obtaining the predicted initial velocity fields ṽnj from
network forward-propagation;

(ii) Compute the gradient of the loss function lGeo(Θg, Ij) with respect to ṽnj(Θg)t=1,
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;

(iii) Bring the gradient in (ii) back to the space of initial velocity fields defined at the time point
t = 0 by integrating adjoint Jacobi fields backward in time obtain ∇ṽnj(Θg)lGeo,

dv̂

dt
= −ad†ṽû,

dû

dt
= −v̂ − adṽû+ ad†ûṽ,

where v̂ ∈ V are introduced adjoint variables with an initial condition û = 0, v̂ =
∇ṽn(Θg)1 lGeo at t = 1. Here ad† is an adjoint operator to the negative Lie bracket of vector
fields, adṽw̃ = −[ṽ, w̃] = D̃ṽ ∗ w̃ − D̃w̃ ∗ ṽ.

2 Computational complexity analysis

In our framework, optimizing the loss of atlas building network with a low-dimensional geodesic
constraint Eq. (3) is significantly faster than solving Eq. (1) in high-dimensional image space. We list
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out the details of computational complexity for geodesic shooting of Geo-SIC and compare it with
Lagomorph (1) (a deep atlas learning approach using LDDMM in the spatial domain) in Table. 1.

Table 1: Computational complexity of batchwise geodesic shooting of Geo-SIC and Lagomorpch
(T : number of integration time steps; d: image dimension; q: number of low frequencies along each
dimension; Q: number of image voxels along each dimension; B: batch size.)

Complexity Memory
Geo-SIC Lagomorph Geo-SIC Lagomorph

(i). Forward shooting O(BTqd log q) O(BTQd logQ) O(BTqd) O(BTQd)
(ii). Compute gradient at t = 1 O(BQd logQ) O(BQd) O(BQd) O(BQd)
(iii). Backward shooting O(BTqd log q) O(BTQd logQ) O(BTqd) O(BTQd)

For steps (i) and (iii), the complexity of the existing methods for computing diffeomorphisms in the
high-dimensional image space is O(BTQd logQ); in contrast, it has been shown that the complexity
of Geo-SIC is O(BTqd log q). For step (ii), we convert the transformation into the spatial domain
via FFT (O(BQd logQ)). We consider steps (i) and (iii) computationally dominant along with the
integration of time-dependent transformation fields, and step (ii) is a one-time computation at the
fixed time point t = 1.

Our algorithm reduces the overall complexity from O(BTQd logQ) to O(BTqd log q) and memory
consumption from O(BTqd) to O(BTQd), where q ≪ Q and Q lies in a high-dimensional imaging
domain (e.g., a brain MRI with 2563 volxes). Please refer to our experimental section for a comparison
of the run time and memory consumption between Geo-SIC and Lagomorph.
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