
Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS504

A.1 DT-MEM NETWORK ARCHITECTURE505

Table 3 summarizes the different model configurations used for evaluation. In this section, we506

describe these model configurations in detail. While Table 3 provides a summary, we will also507

provide additional information here. DT-Mem, PDT and HDT are all share the same transformer508

architectures. However, for task-adaptation, HDT utilizes a pre-trained 2.3M hyper-network, while509

DT-Mem introduces 147K LoRA parameters. To compare with MDT, we use the same parameter510

size as reported in Lee et al. (2022).511

Model Layers Hidden size (d) Heads Params Memory Size Memory Module Params
HDT 4 512 8 13M N.A. N.A.

MDT-200M 10 1280 20 200M N.A. N.A.
DT-Mem 4 512 8 13M 559K 7M

Table 3: Detailed Model Sizes

A.2 HYPER-PARAMETERS512

In this section, we will delve into the specifics of the model parameters. Understanding these513

parameters is key to understanding the workings of the model. It is worth noting that the514

source code for this model is publicly available at https://anonymous.4open.science/r/515

DT-Mem-Submission277/README.md. This allows for a deeper understanding of the model’s516

inner workings and may facilitate the replication of its results.517

Hyperparameters Value
K (length of context) 28

dropout rate 0.1
maximum epochs 1000

steps for each epoch 1000
optimizer learning rate 1e-4

weight decay 1e-4
gradient norm clip 1.

data points for each dataset 500,000
batch size 64

memory slots 1290
activation GELU
optimizer AdamW
scheduler LambdaLR

Table 4: Hyperparameters for DT-Mem training

A.3 TRAINING AND FINE-TUNING ALGORITHM518

In this section, we present the pre-training DT-Memin Appendix A.3 and fine-tuning DT-Mem with519

LoRA in Appendix 5.5.520

We pre-train DT-Mem on multiple offline datasets. Each gradient update of the DT-Memmodel521

considers information from each training task.522

We fine-tune the memory module to adapt to each downstream task. To achieve this, we fix the523

pre-trained DT-Mem model parameters and add additional LoRA parameters for the memory module524

feed-forward neural networks. The fine-tuning dataset is used to update these LoRA parameters only.525

13

https://anonymous.4open.science/r/DT-Mem-Submission277/README.md
https://anonymous.4open.science/r/DT-Mem-Submission277/README.md
https://anonymous.4open.science/r/DT-Mem-Submission277/README.md

Under review as a conference paper at ICLR 2024

Algorithm 1 Pre-train DT-Mem
1: for T episodes do
2: for Task Ti 2 T

train do
3: Sample trajectories ⌧ = (s0, a0, r0, · · · , sH , aH , rH) from the dataset Di.
4: Split trajectories into different segments with length K and calculate return-to-go in the

input sequence.
5: Given ⌧̂t+1:t+K , compute the sequence embedding eseq .
6: Update the memory module and retrieve the relative information as Eout

7: Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.
8: Compute the loss according to Eqn. 1.
9: Update all module parameters.

10: end for
11: end for

Algorithm 2 Fine-tuning DT-Mem
Require: Fine-tuning dataset T i 2 T

test dataset Di for T i. Initialize LoRA parameters
B̂q

, B̂k
, B̂v

, Âq
, Âk

, Âv
,Bq

,Aq
,Bk

,Ak.
1: for T steps do
2: Split trajectories into different segments with length K and calculate return-to-go in the input

sequence.
3: Given ⌧̂t+1:t+K , compute the sequence embedding eseq .
4: Update memory module using Q̂ = M(Ŵ q + B̂qÂq), K̂ = M(Ŵ k + B̂kÂk),V̂ =

M(Ŵ v + B̂vÂv), Q = M(W q +BqAq),K = M(W k +BkAk)
5: Retrieve the relative information as Eout

6: Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.
7: Compute the loss according to Eqn. 1.
8: Update LoRA parameters only.
9: end for

14

Under review as a conference paper at ICLR 2024

Algorithm 3 Memory Operations
1: Step 0: Memory Module Initialization
2: Initialize memory as a random matrix M where each row mi 2 Rd and i 2 [0, N].
3:
4: Step 1: Input Sequence Organizing
5: Restructure input sequence into format < r̂t, st, at >.
6: Define embedding functions gs(s) = es, ga(a) = ea, gr(r̂) = er̂.
7: Concatenate embeddings to form input sequence E = [· · · ; est , eat , er̂t ; · · ·].
8:
9: Step 2: Content-based Address

10: Use attention to locate memory slot for new input.
11: Calculate position address w = softmax

⇣
QKT
p
d

⌘
.

12: Define Q = MW q and K = EW k.
13:
14: for N Times memory operations do do
15: Step 3: Memory Update
16: Calculate erasing vector ✏e and adding vector ✏a.
17: Define Q̂ = MŴ q , K̂ = EŴ k, V̂ = EŴ v .
18: Compute writing strength � = softmax

⇣
Q̂K̂T
p
d

⌘
.

19: Calculate ✏e = w � (1� �).
20: Calculate ✏a = (w � �)Ŵ vx.
21: Update memory Mn = Mn�1 � (1� ✏e) + ✏a.
22:
23: Step 4: Memory Retrieve
24: Retrieve information from memory for decision-making.
25: Compute read position vector using content-based address.
26: Retrieve memory Eout = w �Mn.
27: E = Eout

28: end for
29: output E for action decoder.

15

Under review as a conference paper at ICLR 2024

Figure 7: This graph shows the prediction accuracy during training. Each curve represents three runs
with different random seeds. For better visualization, MDT-200M is displayed in a separate figure.

B ADDITIONAL EXPERIMENTS526

B.1 EVALUATION PARAMETERS527

To evaluate the performance of our model on Atari games, we randomly selected 16 different random528

seeds for evaluation. We chose the random seed by multiplying the number of runs by 100. For529

example, the random seed for run 6 is 6⇥ 100 = 600.530

B.2 TRAINING EFFICIENCIES531

To demonstrate training efficiency, we illustrate the model training curve in Figure 7. For the532

training curve, it is reasonable to report the prediction loss on the training dataset since we use a533

supervised loss. Here, the prediction accuracy consists of three parts: action prediction accuracy,534

reward prediction accuracy and return prediction accuracy. The y-axis shows the average value of535

these three predictions, and the x-axis is the relative walltime based on same computing resources.536

B.3 THE ANALYSIS OF MEMORY SIZE537

In this section, we investigate the impact of the memory module size on the performance of DT-Mem.538

We employ the Bayes optimization strategy to tune the parameters. It’s worth noting that the memory539

16

Under review as a conference paper at ICLR 2024

Figure 8: The parameter tuning results for the number of memory slots. The blue curve shows the
like from left to right over the x axis and plots the running average y value.

size is calculated by multiplying the number of memory slots by the size of each slot, which is fixed540

at 512 dimensions for the sake of evaluation simplicity. To expedite the hyper-parameter tuning541

process, we present the evaluation results based on 100k training steps of the StarGunner game. We542

assess various configurations of memory slots and calculate their corresponding average rewards543

over 16 runs. Figure 8 reveals several key findings: (1)Increasing the size of memory slots leads to544

a higher reward accumulation. Notably, there is a significant performance boost when the number545

exceeds 1200. (2)In summary, when the number of memory slots exceeds 1800, the performance of546

the system decreases. This decline occurs because there is a trade-off between the number of memory547

slots and the training steps. With a larger number of memory slots, it becomes necessary to allocate548

more training time.549

B.4 ABLATION STUDY OF LORA ADAPTOR550

Meta-World ML45 Performances Data size Model
Train Test (no-FT) Test (FT) Adap. Per.

DT-Mem (hyper-net) 0.92± 0.01 0.23± 0.10 0.81± 0.15 30 5.7M 43.8%
DT-Mem 0.92± 0.00 0.20± 0.01 0.95± 0.10 10 147K 0.7%

Table 5: Ablation study results on Meta-World ML45 benchmarks. DT-Mem (hyper-net) denotes the
variation of DT-Mem, which substitute LoRA adaptation module with hyper-networks. Adap. stands
for adaptation parameters, and Per. stands for percentage of original model.

In this section, we conduct an ablation study of LoRA-based memory adaptor. We substitute LoRA551

adaptor with hyper-networks. Specifically, the parameters of the memory module are generated from552

hyper-networks. This approach is based on von Oswald et al. (2020), where hyper-networks take553

task-related information as input and generate the corresponding networks for the downstream MLP.554

We use the same approach and generate parameters that are conditioned on two types of inputs: the555

task embedding from the task encoder and the sequence embeddings from the Transformer module.556

To generate task embeddings, we adopt the same idea from PDT (Xu et al., 2022), which demonstrates557

that a small part of trajectories can represent the task-related information. We further extend558

this idea to fully extract the task information. To achieve this goal, we use a Neural Networks559

(NNs) as a task encoder. Specifically, this task encoder is implemented as a transformer encoder-560

like structure Vaswani et al. (2017). We first formulate the first i steps of collected trajectories561

17

Under review as a conference paper at ICLR 2024

⌧0:i = (s0, a0, r0, · · · , si, ai, ri) as a task specific information. The task trajectory ⌧0:i is treated562

as a sequence of inputs to the task encoder. The output of the task encoder is a task embedding563

etask 2 Rd, where d is the dimension of the embedding.564

Then, we concatenate the task embedding and sequence embedding e = [etask; eseq] and input them565

to the hyper-networks. Specifically, we define the hyper-network as a function of f!(·) parameterized566

by !. The output ⇥ = f!(e) is a set of parameters for the memory module.567

According to the evaluation results in Table 5, the inclusion of a hyper-network in the DT-Memmodel568

improves generalization without the need for fine-tuning. However, it is worth noting that the569

hyper-network variant of DT-Mem(hyper-net) exhibits higher variance compared to DT-Mem. The570

primary reason for this higher variance is the uncertainty arising from the task information. In each571

run, different task-related sequences are collected, resulting in varying generated parameters for572

the memory module. Regarding the task fine-tuning results, we observe that the LoRA module573

outperforms other methods. This finding indicates that fine-tuning with LoRA enhances the model’s574

adaptability. We hypothesize that the size of the hyper-networks model plays a role in these results.575

Fine-tuning a large model size (5.7M) with a small step-size (100k steps in our case) becomes576

challenging. In an effort to improve hyper-networks fine-tuning performance, we increased the577

fine-tuning dataset from 10k episodes to 30k episodes. These findings suggest that LoRA-based578

fine-tuning demonstrates better data efficiency.579

The motivations for using LoRA to fine-tune the model can be concluded in the following two580

reasons:581

Hu et al. (2022) suggests that the LoRA method, in contrast to other adapters, maintains model quality582

without introducing inference latency or shortening input sequence length. Furthermore, it facilitates583

rapid task-switching in service deployments by sharing most model parameters. Parameter-efficient584

fine-tuning (PEFT) refines a limited number of model parameters, preserving most of the pre-trained585

LLM parameters, which reduces computational and storage demands (Hu et al., 2022). This approach586

also addresses catastrophic forgetting [4] and has outperformed standard fine-tuning in low-data and587

out-of-domain situations [5]. Besides, the results of full parameter fine-tuning vs. PEFT are shown in588

Table 6:589

Game PEFT FFT-Single FFT-All
Alien 127.4% 116.8% 113.9%

MsPacman 130.8% 122.8 77.1%
Pong 97.8% 93.7% 90.5%

SpaceInvaders 100.8% 86.8% 73.4%
StarGunner 158.3% 55.7% 40.6%

Table 6: Performance comparison of PEFT across various games

where PEFT stands for LoRA fine-tuning for all games together, FFT-single means full-parameter590

fine-tuning on a single game only, FFT-All stands for full-tine-tuning on all games together. Results591

are DQN-normalized score.592

B.5 LORA HYPER-PARAMETERS TUNING593

In this section, we explore the impact of LoRA hyper-parameters on the final fine-tuning results.594

LoRA employs three hyper-parameters: rank, lora_dropout, and lora_alpha. The rank parameter,595

denoted as m, determines the low-rank of adaptation matrices B 2 Rn⇥m and A 2 Rm⇥d, as596

described in Section 4.4. The lora_dropout refers to the dropout rate applied to the LoRA neural597

networks, while lora_alpha controls the scaling factor of the LoRA outputs. Figure 9 presents the598

fine-tuning results, with the last column (eval/rew_mean/StarGur) specifically showcasing the599

fine-tuning results for the StarGunner game. To obtain the optimal set of parameters, we employ the600

Bayesian optimization method for parameter tuning, which suggests various parameter combinations601

that maximize the fine-tuning results.602

18

Under review as a conference paper at ICLR 2024

Figure 9: LoRA hyper-parameters tuning results.

Parameter Importance score Correlation score
rank 0.486 -0.132

lora_dropout 0.285 -0.561
lora_alpha 0.229 0.550

Table 7: Analysis of LoRA hyper-parameters

We further analyze these parameters and present the findings in Table 7. To gain insights, we utilize603

two widely used metrics in the MLOps platform Weights&Biases1.604

Regarding the importance score, we train a random forest model with the hyper-parameters as inputs605

and the metric as the target output. We report the feature importance values derived from the random606

forest. This hyper-parameter importance panel disentangles complex interactions among highly607

correlated hyper-parameters. It facilitates fine-tuning of hyper-parameter searches by highlighting the608

hyper-parameters that significantly impact the prediction of model performance.609

The correlation score represents the linear correlation between each hyper-parameter and the chosen610

metric (in this case, val_loss). A high correlation indicates that when the hyper-parameter has a611

higher value, the metric also tends to have higher values, and vice versa. Correlation is a useful612

metric, but it does not capture second-order interactions between inputs and can be challenging to613

compare when inputs have widely different ranges.614

As shown in Table 7, rank emerges as the most important hyper-parameter that requires careful615

tuning. The correlation score of rank is -0.132, indicating that a smaller rank number leads to better616

fine-tuning results. Based on our findings, a rank value of 4 yields the best outcome. Lora_dropout617

and lora_alpha exhibit similar importance scores, suggesting that these two parameters can be treated618

equally. The correlation score reveals that a smaller lora_dropout value and a larger lora_alpha value619

result in improved performance.620

B.6 ABLATION STUDIES ON DIFFERENT INPUT SEQUENCE ORGANIZING CHOICES621

We examine two distinct approaches to input organization. The first approach is adopted from622

the trajectory transformer as outlined in (Janner et al., 2021), which organizes the inputs as623

(s1, . . . , st, a1, . . . , at, r1, . . . , rt), grouping states, actions, and rewards accordingly. The second624

approach is derived from the decision transformer as described in (Chen et al., 2021), and is the625

method utilized in this study.626

1For better understanding, please refer to https://docs.wandb.ai/
guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_
ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w

19

https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w

Under review as a conference paper at ICLR 2024

Game Choice one Choice two (Ours)

Alien 211.9 239.6
MsPacman 637.1 713.4

Pong 19.0 19.1
SpaceInvaders 165.7 171.2

StarGunner 620.7 709.3

Table 8: Ablation studies on different choices of organizing. Each value represents raw scores in
Atari games.

From the table above, we observe minor differences between the two sets of inputs. However, the627

variance in outcomes between the two methodologies is not significant. Therefore, in this paper, we628

empirically adopt the second approach for our design.629

B.7 ABLATION STUDIES WITH DT630

DT-Mem (Ave) DT-Mem FT (Ave) DT-20M (Ave)
10k - - 10.1%
20k - - 9.8%
30k - - 15.3%
40k - - 22.6%
50k 51.0% 127.4% 41.8%
100k - - 83.1%
200k - - 120.3%
500k - - 170.7%

Table 9: Comparison with DT in different fine-tuning datasets

As shown in Table 9, the left-most column represents the size of the dataset used for training. As631

seen in the table above, the generalized agent DT-Mem outperforms when compared to training on632

the DT-20M 50k datasets. Fine-tuning DT-Mem on 50k datasets yields better results than training633

DT-20M on 200k datasets.634

B.8 FULL FINE-TUNING VS. LORA635

Full Fine-tuning (FFT) vs. LoRA: To assess whether the use of LoRA adversely affects636

performance, we conducted experiments contrasting Full Fine-Tuning (FFT) of memory parameters637

with LoRA. In this context, FFT-single refers to fine-tuning all parameters exclusively on a single638

game, whereas FFT-All represents fine-tuning on the entire set of games simultaneously. Results are639

DQN-normalized score. Based on above results, we conclude the following observations:

Game PEFT FFT-Single FFT-All
Alien 127.4% 116.8% 113.9%

MsPacman 130.8% 122.8 77.1%
Pong 0% 0% 0%

SpaceInvaders 100.8% 86.8% 73.4%
StarGunner 158.3% 55.7% 40.6%

640

- LoRA appears to be the most consistently effective strategy across the games provided. - While641

FFT-Single occasionally outperforms PEFT (like in Alien), **FFT-All** consistently trails642

behind the other two.643

The reason full fine-tuning is not comparable to PEFT comes from the following parts: 1. Fine-tuning644

dataset size. Note that we only use 50k data in LoRA and full fine-tuning compares on 500k used in645

MDT paper 2. The benefits of LoRA is: "This approach also addresses catastrophic forgetting and646

has outperformed standard fine-tuning in low-data and out-of-domain situations”647

20

Under review as a conference paper at ICLR 2024

B.9 ANALYZE OF INPUT MISLEADING648

we conducted an experiment to assess the robustness of the proposed method against input distortion.649

This involved adding Gaussian noise to the input frames of Atari games. Specifically, we set the650

mean to 0 and experimented with various standard deviation values. The results are detailed in the651

table below:652

Alien MsPacman SpaceInvaders StarGunner
MDT 3.8% 13.2% 8.6% 2.3%

DT-Mem 51.0% 69.3% 53.6% 62.2%
DT-Mem (std=0.5) 55.3% 67.6% 53.0% 57.8%
DT-Mem (std=1) 35.6% 56.1% 40.0% 34.6%
DT-Mem (std=2) 25.9% 35.6% 30.5% 21.1%

From the results above, we conclude that the proposed DT-Mem demonstrates greater robustness to653

noisy inputs compared to the MDT method. This is evident as the DT-Mem consistently outperforms654

MDT under various levels of Gaussian noise. Notably, the performance with a standard deviation of655

0.5 shows minimal difference compared to the no-noise scenario, illustrating DT-Mem’s effectiveness656

in mitigating the impact of varying input distortions.657

C MEMORY MODULE VISUALIZATION658

Figure 10 illustrates the visualization of the memory module. Since memory operations are trained in659

conjunction with the transformer module, we select a later training episode at random to mitigate660

uncertainties regarding operational parameters. Due to time constraints, we trained on only two661

games simultaneously. In the revised version of the paper, we intend to provide visualizations for all662

games. For clearer visualization, we opted for a memory module of a smaller size, containing 128663

memory slots.664

Let’s first discuss how memory modules update within the same game. As observed in the figure, for665

the Amidar game, the actively updated memory slots concentrate around rows 18, 84, and 117. This666

pattern is consistent across episodes, albeit with reduced activity. Such a trend indicates that during667

each training iteration, the transformer agent tends to overwrite the same memory slot contents. We668

note a similar observation in the Assault game. Furthermore, we observe that the memory module’s669

activity diminishes in later episodes. For instance, in the Assault game, the active memory slot in670

row 12 during episode 200k becomes less active by episode 201k. We hypothesize that as training671

progresses, the accumulated knowledge becomes sufficiently robust for retrieval, reducing the need672

for updates.673

Moving on, when comparing the activity of memory slots across different games, there are intriguing674

overlaps. For instance, comparing Amidar 200k and Assault 200k reveals that memory slots around675

row 120 are active in both games. We surmise that this region retains cross-task knowledge shared676

between games. Additionally, the varying attention across other memory slots demonstrates how677

these slots assist the agent in decision-making across diverse games.678

D LIMITATIONS AND SOCIETAL IMPACT679

Limitations The first limitation of our work is the sample efficiency of memory fine-tuning. The680

10% fine-tuning dataset is still sizeable, and we plan to explore more sample-efficient methods in the681

future. We could, for instance, consider a setting with more tasks, each one with less data, so that the682

inter-task generalization would be even more crucial to its performance. Additionally, this work does683

not propose a control strategy for collecting data on a new task. For future work, we plan to investigate684

online data collection methods, which include the design and learning of exploration strategies for an685

efficient fine-tuning on new tasks. Finally, the approach has been intuitively motivated, but it would686

be valuable to have a theoretical grounding that would show the structural limits of large models and687

how equipping them with a memory component overcomes them.688

Societal Impact We do not foresee any significant societal impact resulting from our proposed689

method. The current algorithm is not designed to interact with humans or any realistic environment690

21

Under review as a conference paper at ICLR 2024

Figure 10: This visualization represents the memory module. In the figure, each row is derived from
the mean of a vector that signifies a memory slot. Each depiction calculates the variation between
two write operations in a single episode for each memory slot. Lighter shades indicate memory slots
that have been actively updated post-write operations. The encircled areas highlight the comparison
of active memory slots across different episodes.

22

Under review as a conference paper at ICLR 2024

yet. If one chooses to extend our methods to such situations, caution should be exercised to ensure691

that any safety and ethical concerns are appropriately addressed. As our work is categorized in the692

offline-RL domain, it is feasible to supplement its training with a dataset that aligns with human693

intents and values. However, one must be wary that the way our architecture generalizes across tasks694

is still not well understood, and as a consequence, we cannot guarantee the generalization of its695

desirable features: performance, robustness, fairness, etc. By working towards methods that improve696

the computational efficiency of large models, we contribute to increasing their access and reducing697

their ecological impact.698

E COMPARISON OF DT-MEM AND NEURAL EPISODIC CONTROL (NEC) IN699

WRITING AND READING MEMORY700

MEMORY MECHANISM701

• NEC: Utilizes a Differentiable Neural Dictionary (DND) for storing experiences with702

separate memories for each action, containing state representations (keys) and value function703

estimates (values).704

• DT-Mem: Integrates an internal memory module within a transformer framework, focusing705

on storing, blending, and retrieving information for improving training efficiency and706

generalization.707

WRITING TO MEMORY708

• NEC: Continuously adds new experiences and rapidly updates value function estimates in709

memory.710

• DT-Mem: Modifies or replaces existing information in the memory matrix using an attention711

mechanism to calculate correlations and update memory with the attended weight of the712

input sequence.713

READING FROM MEMORY714

• NEC: Implements context-based lookups in the DND to retrieve values, outputting a715

weighted sum based on the similarity between the current state and stored keys.716

• DT-Mem: Employs content-based addressing for memory retrieval, using attention mecha-717

nisms to read from the updated memory and inform decision-making.718

DISTINCTIVE FEATURES AND ADVANTAGES719

• NEC: Designed for rapid assimilation and action upon new experiences with specialized720

and swift updates for each action.721

• DT-Mem: Aims to enhance generalization across tasks and reduce catastrophic forgetting722

by integrating memory with the transformer’s sequential data handling capabilities.723

23

