
A Multimodal Task Details

Table 4 shows details about individual multimodal tasks, including hyperparameters used to train
ViLT for each task, and details about how low-shot versions of each task are sampled.

For NLVR2 and SNLI-VE, where the output labels are a small number of semantically meaningful
categories (True/False and Entailment/Contradiction/Neutral respectively), we sample N shots per
output label to construct our low-shot training data. The 4 output labels in VCR are not semantically
meaningful (since the options are interchangeable); hence, instead of sampling an equal number of
training samples per label, we sample a percentage of the full training data instead. For VQAv2, the
output label space is very large, and answers are not uniformly distributed across the training data,
so instead of sampling N shots per output label (answer) we again sample a percentage of the full
VQAv2 training data.

Task VQAv2 NLVR2 SNLI-VE VCR (Q→ A)

Task Details

Task Type Classification Classification Classification Multi-Choice
Visual Input 1 Image 2 Images 1 Image 1 Image, Object boxes
Text Input Question Statement Hypothesis 1 question, 4 answers
# Output Labels 3129 2 3 4
Random Score, Si

R (%) 0.0 50.0 33.33 25.0

Training Details/Hyperparameters

Learning Rate 10−4 10−4 5× 10−5 10−4

Weight Decay 10−2 10−2 10−2 10−2

Adam Epsilon 10−8 10−8 10−8 10−8

Num. Epochs 10 10 5 10
Batch Size 64 32 64 16

Low-Shot Task Transformation

Number of shots per class - 2048 2048 -
% of training data 5% 4.74% 1.16% 5%

Table 4: Task-specific implementation details

B ViLT Model Modification Details

B.1 Applying ViLT to Multi-Choice Tasks

B.1.1 Applying ViLT to VCR

The VCR task provides object boxes, with each box corresponding to a grounded entity in the
question. Unlike other pre-trained vision-language encoders [Su et al., 2019, Chen et al., 2020] that
use visual features from regions-of-interest (ROIs) in the image, ViLT is designed to operate over
image patches, thus making it challenging to use the object box inputs provided in the VCR task.
We follow previous work [Zellers et al., 2021, Hessel et al., 2022] and draw colored boxes directly
on the image corresponding to grounded references in the text. The grounded text references, e.g.
[person1], [car1], are replaced with gender-neutral names for persons and object class names
for all other objects. We use consistent mappings between the box colors and object names; for
example, the [person1] object is always referenced with a green box in the image, and the name
Casey in the text.

During training and inference, each possible answer ai is paired with the question q, to form a
sequence “[CLS] q [SEP] ai”. Each question-answer option is passed into the ViLT transformer, and
the classifier produces a scalar score for each choice on top of the [CLS] representation. The choice
with the maximum score is selected as the answer.

15



B.1.2 Applying ViLT to HellaSwag, PIQA, and CommonsenseQA

The inputs of language-only multiple-choice tasks consist of two parts: a sentence s (a sentence prefix
in HellaSwag; a question in PIQA and CommonsenseQA), and a set of choices A = {a1, a2, ..., an}.
We follow the original implementations [Zellers et al., 2019b, Bisk et al., 2020] to model these tasks,
which consider different choices independently. For each choice ai, we concatenate s and ai with
special tokens as the input: "[CLS] s [SEP] ai [SEP]". We build the classifier, which outputs a scalar
score for each choice, atop the [CLS] representation of ViLT transformer. During fine-tuning, we
aggregate the scores of different choices and train the model with cross-entropy loss over the choices.

B.2 Applying ViLT to Unimodal Tasks

Sub-sampling. We conduct low-shot experiments to test the model’s transferability to unimodal
tasks. However, different sub-samples the training set may lead to different results. To deal with this
issue, for every language-only task, we use three different random seeds for sub-sampling, leading to
three different training subsets, and then report the mean and standard deviation of the accuracy scores
on the full validation set. For vision-only tasks, however, we observed low variances in accuracy
across three sub-samplings (39.35± 0.4% on Places 365; 16-shot per class). Thus, we fix the random
seed and only use a single training subset for vision-only tasks due to the computational cost.

What’s the language input for vision-only tasks? For vision-only tasks, we found that simply
using "This is an image." as the language input works empirically well on all tasks. While the
performance could potentially be further improved by using more informative and contextualized
textual inputs, we leave it as future work as this is not the primary focus of this paper.

Figure 7: The average image
of the MS-COCO dataset.

What’s the visual input for language-only tasks? For language-
only tasks, to keep the visual input in-distribution, we first resize all
MS-COCO training images into 384× 384 and then average them
into a single image (see Fig 7) as the vacuous visual input, since
MS-COCO is one of the pre-training corpora of ViLT. 384 is the
shorter-edge image size used by ViLT, and with the default 32× 32
patch projection, it takes (384/32)× (384/32) = 144 image tokens
in the original implementation. We also conduct ablation studies
that include two baselines: (1) not inputting any image to ViLT at
all, and (2) inputting the zero-vector image instead of the average
image of the COCO dataset. The first three rows in Table 5 show
that inputting the average image is slightly better than the other two
baselines, presenting the benefit of using an in-distribution image, even when it is vacuous.

Language-and-vision token reallocation. In language-only tasks, we would like to focus on the
language inputs, which only accounts for 40 tokens in the original ViLT implementation, instead of
the vacuous visual input, which accounts for 144 tokens. Thus, we extend the language inputs by
extending the positional embeddings to a maximum of 160, which is jointly learned during fine-tuning,
and decrease the image tokens by downsample the image size to 128× 128, which now only takes
(128/32) × (128/32) = 16 image tokens. The last row in Table 5 shows that this re-allocation of
language-and-vision position embedding tokens notably improves the performance on language tasks.

16-shot 32-shot 128-shot

ViLT-40 -no image 51.2 ± 0.4 54.0 ± 1.2 56.8 ± 1.2
ViLT-40 -zero 53.8 ± 0.1 54.8 ± 0.3 56.7 ± 0.7
ViLT-40 -avg 53.7 ± 0.8 55.1 ± 1.0 58.0 ± 0.6
ViLT-160 -avg 55.9 ± 2.1 57.8 ± 1.5 62.3 ± 0.5

Table 5: Accuracy (%) of vacuous visual input variants on IMDb, with N = {16, 32, 128} shot per
class. −l means the maximum language sequence length is l, where ViLT-160 -avg is the proposed
method that reallocates the language-and-vision tokens and has fewer visual tokens than other rows.

16



B.3 VAuLT Implementation Details

The VAuLT model is a modification of the ViLT model that uses stronger language priors. Since
the ViLT Transformer was initialized using weights from the vision transformer ViT [Dosovitskiy
et al., 2020], and pre-trained only on image caption datasets, the language understanding of ViLT
is limited to a specific language domain of image captions, thus making it unsuitable for language-
only tasks. We perform additional experiments with a VAuLT model [Chochlakis et al., 2022] that
replaces the language input embeddings of the ViLT Transformer with language token representations
extracted from a frozen, pre-trained BERT model. VAuLT has more effective language understanding
ability due receiving inputs from BERT, but the more general language representations could hurt its
performance on vision-language tasks.

B.3.1 ViLT vs VAuLT Multimodal Task Comparison

Table 6 shows a comparison of pre-trained ViLT and VAuLT when directly trained on each of the
upstream vision-language tasks. VAuLT underperforms ViLT across all multimodal tasks.

Model VQAv2 NLVR2 SNLI-VE VCR

ViLT 67.70% 73.07% 76.31% 61.31%
VAuLT 65.80% 65.57% 74.12% 59.46%

Table 6: Comparison of pre-trained ViLT versus VAuLT when trained directly on each of the upstream
multimodal tasks. VAuLT consistently underperforms ViLT’s accuracy.

B.3.2 ViLT vs VAuLT Language-Only Task Comparison

Table 7 compares pre-trained ViLT and VAuLT when directly fine-tuned on downstream language-only
tasks, showing that VAuLT can significantly improve the accuracy over ViLT.

Model IMDb SST-2

16 32 16 32

ViLT 55.9 ± 2.1 57.8 ± 1.5 57.8 ± 3.6 58.5 ± 7.4
VAuLT 64.8 ± 2.0 70.0 ± 1.7 59.9 ± 3.0 67.0 ± 3.2

Model HellaSwag CommonsenseQA PIQA

1024 4096 1024 4096 1024 4096

ViLT 26.5 ± 0.3 27.7 ± 0.3 23.0 ± 2.0 26.3 ± 0.5 52.0 ± 0.7 54.8 ± 0.5
VAuLT 31.7 ± 0.5 32.9 ± 0.8 41.8 ± 0.6 43.4 ± 0.6 54.6 ± 1.0 58.0 ± 0.8

Table 7: Comparisons between ViLT and VAuLT on downstream language-only tasks. Each value is
the average accuracy (%) and standard deviation over 3 runs. We experiment with {16, 32}-shot per
class on IMDB, SST-2 and sub-sample {1024, 4096} training data for HellaSwag, CommonSenseQA,
and PIQA. VAuLT consistently achieves higher accuracy than ViLT.

Similarly, Figure 8 shows that VAuLT strictly improves absolute accuracy over ViLT in direct
fine-tuning and CL settings for downstream language-only tasks.

C Algorithm Implementation Details

For Sequential Fine-tuning, we fine-tune the shared encoder parameters when learning each task,
whereas for Frozen Encoder, we keep the shared encoder frozen and only fine-tune the task-specific
classification layers. In Frozen Bottom-K, the embedding parameters and the bottom K (< 12)
transformer layers are frozen; we set K=9 in our experiments.

The Experience Replay (ER) algorithm has two hyperparameters: the percentage of each task’s
training samples to be stored in the memory buffer, and the frequency with which to perform a “replay

17



Figure 8: Comparisons between ViLT and VAuLT with checkpoints from different CL algorithms on
downstream language-only tasks. We conduct three runs of different training sub-samplings and plot
the absolute accuracy with shaded standard deviation.

step”. We set these hyperparameters as 1% of training data and 100 training steps, respectively. We
sample training examples for the memory buffer randomly from the training dataset; alternatives
include sampling an equal number of training examples per output class.

Elastic Weight Consolidation (EWC) consists of computing the Fisher information matrix from the
training data, which determines the importance of each parameter in the shared encoder. Rather than
doing a full pass through the whole training data to construct the Fisher information matrix for each
task, we use only 1% of the training examples. During training an upstream task, we sample one of
the previous tasks and compute the L2 loss between parameter values in the current encoder and the
previous task’s encoder checkpoint. The L2 loss is weighted by that parameter’s Fisher information
and summed across all parameters. This EWC loss LEWC is multiplied by a constant λ and added to
the upstream task loss Ltask. We select λ = 102 based on a hyperparameter sweep.

Adapters add a 2-layer MLP, also known as an Adapter module, after every Self-Attention and Feed-
forward layer in each Transformer block. Following the original Houlsby configuration [Houlsby
et al., 2019], the first layer of each Adapter module is a downsampling layer, which reduces the
dimensionality of the input features by a factor of 16, followed by a GELU activation function, and
finally an upsampling layer which produces an output representation with the same dimensionality as
the Adapter input.

D Full ViLT Results

D.1 Full Catastrophic Forgetting Results

In Table 8, we present full forgetting transfer numbers for all six CL algorithms, which were reported
in a compact form in Figure 3a.

D.2 Full Results of Different Upstream Task Orders

Table 9a contains full results of upstream knowledge transfer TUK(i),when the ViLT encoder sees
different sequences of upstream tasks. We use Sequential Fine-tuning for all these experiments.
Table 9b shows the forgetting of previous tasks, for these different upstream task orders. We
previously summarized these results visually in Figure 3b.

D.3 Full Results of Low-Shot Multimodal Transfer

In Table 10, we present the full results when the CL-learned ViLT encoder, after training on the ith

task, is trained on future low-shot tasks T LS(j)
V L for j = {i + 1, ...,KV L}. The first section of the

table contains a comparison of ViLT’s performance when directly fine-tuned on each task, when both
full training data and low-shot versions of the task are available. The following sections show the
low-shot transfer when upstream checkpoints, trained using four of our six CL algorithms, are used to
fine-tuned on low-shot tasks. We do not perform experiments with the Frozen-Encoder and Adapter
algorithms, as the encoder parameters are identical to the pre-trained checkpoint.

18



CL Algorithm: Sequential Fine-tuning

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [67.79] [72.66] [74.89]
Task 2: NLVR2 40.97% [40.02] - -
Task 3: SNLI-VE 39.25% [41.18] 43.81% [62.73] -
Task 4: VCR 63.90% [24.47] 93.74% [51.24] 89.93% [37.52]

CL Algorithm: Frozen Encoder

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [58.15] [63.66] [69.45]
Task 2: NLVR2 -0.38% [58.37] - -
Task 3: SNLI-VE -0.38% [58.37] -0.31% [63.70] -
Task 4: VCR -0.38% [58.37] -0.42% [63.72] 0.00% [69.45]

CL Algorithm: Frozen Bottom-9

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [67.30] [72.94] [74.90]
Task 2: NLVR2 16.97% [55.90] - -
Task 3: SNLI-VE 21.36% [52.93] 29.32% [66.21] -
Task 4: VCR 71.61% [19.11] 78.52% [54.93] 35.01% [60.34]

CL Algorithm: Experience Replay

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [67.87] [73.20] [75.08]
Task 2: NLVR2 12.88% [59.13] - -
Task 3: SNLI-VE 12.96% [59.07] 17.10% [69.23] -
Task 4: VCR 43.62% [38.27] 78.27% [55.04] 33.45% [61.11]

CL Algorithm: Elastic Weight Consolidation

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [67.84] [72.39] [74.38]
Task 2: NLVR2 39.81% [40.83] - -
Task 3: SNLI-VE 31.52% [46.46] 25.73% [66.66] -
Task 4: VCR 65.25% [23.58] 81.03% [54.25] 73.61% [43.34]

CL Algorithm: Adapters

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [68.10] [73.66] [76.08]
Task 2: NLVR2 -0.01% [68.11] - -
Task 3: SNLI-VE 0.04% [68.07] 3.51% [72.83] -
Task 4: VCR 0.67% [67.64] 6.48% [72.13] 0.89% [75.70]

Table 8: Full numbers for forgetting transfer TF (j ← i) of previously seen tasks for each CL
algorithm. We also show the transfer score [Sj←i

A ] when evaluated on that task after training on future
task i. The first row contains task score [Sj

A] after originally training on jth task.

D.4 Full Results of Low-Shot Unimodal Transfer

Vision-only downstream tasks. Table 11 presents the full results of vision-only tasks in absolute
accuracy (%). Figure 9 plots the same results with Low-Shot Transfer (%). First, in single-task
fine-tuning, we only include a single task in the upstream phase and compare the influence of different
upstream tasks to downstream low-shot transfer. We found that across all vision-only downstream
tasks, SNLI-VE > VQAv2 > NLVR2 > VCR, where VCR as the upstream task significantly damages
the model performance. Second, current CL algorithms always hurt low-shot transfer compared to
direct fine-tuning. Among them, Frozen Bottom-9 is the least harmful algorithm. Experience Replay

19



Directly fine-tuning pre-trained ViLT on each task
VQAv2 NLVR2 SNLI-VE VCR
[67.70] [73.07] [76.31] [61.31]

Task Order: VQAv2→ NLVR2→ SNLI-VE→ VCR
Task 1 Task 2 Task 3 Task 4
VQAv2 NLVR2 SNLI-VE VCR

0.13% [67.79] -1.80% [72.66] -3.33% [74.89] -5.09% [59.47]

Task Order: SNLI-VE→ VCR→ VQAv2→ NLVR2
Task 1 Task 2 Task 3 Task 4

SNLI-VE VCR VQAv2 NLVR2
-0.07% [76.29] -1.55% [60.75] -6.55% [63.27] -21.35% [67.65]

Task Order: NLVR2→ VQAv2→ VCR→ SNLI-VE
Task 1 Task 2 Task 3 Task 4

NLVR2 VQAv2 VCR SNLI-VE
0.06% [73.25] -1.52% [66.55] -6.03% [59.10] -7.88% [73.07]

(a) Full knowledge transfer results with different task orders.

Task Order: VQAv2→ NLVR2→ SNLI-VE→ VCR

Checkpoint
Evaluated on Task 1 Task 2 Task 3

VQAv2 NLVR2 SNLI-VE
After training on that task [67.79] [72.66] [74.89]
Task 2: NLVR2 40.97% [40.02] - -
Task 3: SNLI-VE 39.25% [41.18] 43.81% [62.73] -
Task 4: VCR 63.90% [24.47] 93.74% [51.24] 89.93% [37.52]

Task Order: SNLI-VE→ VCR→ VQAv2→ NLVR2

Checkpoint
Evaluated on Task 1 Task 2 Task 3

SNLI-VE VCR VQAv2
After training on that task [76.29] [60.75] [63.27]
Task 2: VCR 84.50% [39.99] - -
Task 3: VQAv2 85.86% [39.40] 91.47% [28.05] -
Task 4: NLVR2 77.56% [42.97] 86.11% [29.97] 41.94% [36.73]

Task Order: NLVR2→ VQAv2→ VCR→ SNLI-VE

Checkpoint
Evaluated on Task 1 Task 2 Task 3

NLVR2 VQAv2 VCR
After training on that task [73.25] [66.55] [59.10]
Task 2: VQAv2 58.06% [59.68] - -
Task 3: VCR 90.63% [52.16] 68.69% [20.87] -
Task 4: SNLI-VE 91.75% [51.90] 62.59% [24.94] 34.04% [47.51]

(b) Full forgetting results with different task orders.

Table 9: Effects of CL task order on the ViLT encoder’s upstream knowledge transfer and forgetting.

and EWC perform similarly, and both are notably better than Sequential Fine-Tuning after training
on VCR. In conclusion, the pre-trained ViLT already achieves decent performance on low-shot
vision-only classification tasks. Meanwhile, with current CL algorithms, the model does not benefit
from training on more vision-and-language upstream tasks, but suffers from forgetting useful visual
representations, learned in pretraining, for downstream tasks.

Language-only downstream tasks. Table 12 presents the full results of language-only tasks in
absolute accuracy (%). First, ViLT performs poorly on language-only tasks. Similar to our findings
in vision-only tasks and multimodal tasks, including VCR as one of the upstream tasks hurts the
model performance on downstream tasks, most notably on SST-2 and IMDb. Although VCR is also a
multiple-choice commonsense reasoning task, it does not benefit HellaSwag, CommonsenseQA, and

20



Directly fine-tuning on each task
Task 2 Task 3 Task 4

Training Data presented NLVR2 SNLI-VE VCR
Full Training Data, Si

PT [73.07] [76.31] [61.31]
Low-Shot Transfer, SLS(i)

PT [62.46] [65.67] [43.23]

CL Algorithm: Sequential Fine-tuning
Low-Shot Transfer to Task 2 Task 3 Task 4

NLVR2 SNLI-VE VCR
After training on Task 1: VQAv2 -8.19% [61.44] -4.51% [64.21] -13.71% [40.73]
After training on Task 2: NLVR2 - -14.87% [60.86] -26.60% [38.48]
After training on Task 3: SNLI-VE - - -18.71% [39.82]

CL Algorithm: Frozen Bottom-9
Low-Shot Transfer to Task 2 Task 3 Task 4

NLVR2 SNLI-VE VCR
After training on Task 1: VQAv2 -15.73% [60.50] -0.87% [65.39] -4.22% [42.46]
After training on Task 2: NLVR2 - -0.99% [65.35] -10.48% [41.32]
After training on Task 3: SNLI-VE - - -4.00% [42.50]

CL Algorithm: Experience Replay
Low-Shot Transfer to Task 2 Task 3 Task 4

NLVR2 SNLI-VE VCR
After training on Task 1: VQAv2 -7.95% [61.47] -1.76% [65.10] -15.47% [40.41]
After training on Task 2: NLVR2 - -10.48% [62.28] -26.82% [38.34]
After training on Task 3: SNLI-VE - - -18.38% [39.88]

CL Algorithm: Elastic Weight Consolidation
Low-Shot Transfer to Task 2 Task 3 Task 4

NLVR2 SNLI-VE VCR
After training on Task 1: VQAv2 -13.24% [60.81] -2.01% [65.02] -15.52% [40.40]
After training on Task 2: NLVR2 - -17.53% [60.00] -29.29% [37.89]
After training on Task 3: SNLI-VE - - -22.87% [39.06]

Table 10: Full low-shot multiodal transfer results, when transferring ViLT checkpoints from upstream
CL training to future multimodal tasks.

Figure 9: Low-Shot Transfer (%) comparison between different CL algorithms on downstream
vision-only tasks (left: Places365; right: iNaturalist2019).

PIQA. On the other hand, continual learning sometimes improves the accuracy, especially on SST-2
and IMDb. CLiMB facilitates further investigation into these phenomena.

E Experiments Using Another Vision-Language Model: UNITER

We conduct CL experiments using UNITER Chen et al. [2020] as the encoder. UNITER uses region
features from a pre-trained Faster-RCNN as the visual input, in contrast to ViLT which directly

21



Checkpoint
Task ImageNet iNat2019 Places365 COCO

16 32 16 32 16 32 5% 10%

Direct Fine-Tuning

ViLT 64.4 67.7 46.3 54.1 39.2 41.7 77.1 78.5

CL: Singe-Task Fine-Tuning

After Task1: SNLI-VE 62.3 66.3 43.6 53.1 37.6 40.5 74.6 77.4
After Task1: VQAv2 58.8 63.3 40.0 49.1 36.3 39.4 73.2 75.7
After Task1: NLVR2 56.2 62.7 36.4 48.4 31.9 37.0 67.3 73.1
After Task1: VCR 25.2 45.8 10.3 34.4 17.6 26.6 60.7 66.8

CL: Sequential Fine-Tuning

After Task2: NLVR2 59.0 50.8 36.9 46.1 31.2 36.1 68.7 72.3
After Task3: SNLI-VE 51.5 59.1 34.6 45.5 32.5 36.4 70.3 72.6
After Task4: VCR 17.3 33.1 13.1 26.7 14.0 22.0 55.1 62.0

CL: Experience Replay

After Task2: NLVR2 52.0 59.1 36.1 45.6 31.5 36.2 70.1 72.4
After Task3: SNLI-VE 52.2 58.8 35.7 45.9 32.3 36.5 70.6 72.9
After Task4: VCR 31.6 45.0 23.6 35.6 20.4 27.1 59.7 65.9

CL: EWC

After Task2: NLVR2 52.6 59.6 36.1 46.3 31.7 36.0 69.5 72.6
After Task3: SNLI-VE 52.9 59.2 36.2 46.5 32.2 36.6 70.2 73.0
After Task4: VCR 30.4 45.0 21.0 35.8 21.4 27.6 60.4 65.6

CL: Frozen Bottom-9

After Task1: VQAv2 62.8 66.3 45.0 52.2 38.9 41.2 76.6 78.1
After Task2: NLVR2 62.2 66.0 43.9 52.1 38.1 40.9 76.1 78.1
After Task3: SNLI-VE 62.0 65.8 43.3 52.0 37.8 40.9 75.9 77.9
After Task4: VCR 60.2 65.1 40.6 50.8 37.1 40.3 75.4 77.8

Table 11: Comparisons between different CL algorithms on vision-only tasks. We experiment
with {16, 32}-shot per class on ImageNet-1000, iNaturalist 2019, and Places 365 datasets. For
COCO multi-label object detection task, we sub-sample {5%, 10%} of the training data. All CL
algorithms hurt the accuracy (%) compared to direct fine-tuning, while Frozen Bottom-9 is the least
harmful one. Comparing different upstream tasks, SNLI-VE > VQAv2 > NLVR2 > VCR across
all four downstream tasks, where VCR greatly damages the performance. Note that for Sequential
Fine-Tuning, Experience Replay, and EWC, the result of "After Task1: VQAv2" is shown under
Single-Task Fine-Tuning, as there are no differences between these CL algorithms in the first task.

operates on image patch tokens. We train UNITER on the same sequence of four upstream tasks
(VQA→ NLVR2→ SNLI-VE→ VCR), using all of our CL algorithms except Adapters.

In Table 13, we compare Upstream Knowledge Transfer between various CL algorithms, trained
using the UNITER model. We see that UNITER, similar to ViLT, has negative transfer for post-VQA
tasks, although UNITER typically has less negative transfer for the third task (SNLI-VE) than the
second task (NLVR2).

In Figure 10, we plot Forgetting of previous tasks when the UNITER model is continually learned. We
observe that Forgetting trends between algorithms are similar to our findings with ViLT: fine-tuning
fewer shared parameters leads to less forgetting, while Experience Replay performs best among the
algorithms that fine-tune all the shared parameters. In contrast to ViLT, we see that the VCR task does
not impact the UNITER model’s Forgetting as severely. This is likely due to the fact that UNITER
(which utilizes region features) directly uses the ground-truth bounding boxes from the VCR task as
part of the model, rather than drawing on the boxes onto the image as the image patch-based ViLT
model does.

22



Checkpoint
Task IMDb SST-2 HellaSwag ComQA PIQA

16 32 16 32 1024 4096 1024 4096 1024 4096

Direct Fine-Tuning

ViLT 55.9 57.8 57.8 58.5 26.5 27.7 23.0 26.3 52.0 54.8

CL: Singe-Task Fine-Tuning

After Task1: SNLI-VE 59.0 60.5 59.8 60.6 26.8 27.3 23.3 26.5 52.7 55.2
After Task1: VQAv2 58.4 59.6 58.6 60.2 26.4 26.7 22.5 23.6 50.8 51.8
After Task1: NLVR2 56.2 56.5 55.8 58.2 26.0 27.1 21.5 25.4 52.8 54.1
After Task1: VCR 49.9 51.1 51.3 51.5 26.6 26.7 21.9 24.3 49.3 51.9

CL: Sequential Fine-Tuning

After Task2: NLVR2 57.4 58.1 62.0 57.2 25.4 26.2 23.3 24.5 51.1 52.6
After Task3: SNLI-VE 52.3 56.8 60.2 63.3 26.1 26.4 22.2 23.8 51.1 53.2
After Task4: VCR 50.2 51.5 54.2 53.6 25.3 26.4 20.8 24.0 50.4 51.7

CL: Experience Replay

After Task2: NLVR2 53.2 57.4 57.3 58.1 25.4 25.9 22.4 23.8 50.6 52.4
After Task3: SNLI-VE 57.1 58.6 61.8 61.9 25.7 26.0 22.8 23.6 51.2 51.8
After Task4: VCR 50.1 50.1 54.0 53.2 26.4 27.4 24.1 25.9 51.5 52.5

CL: EWC

After Task2: NLVR2 51.0 55.1 59.7 57.0 25.2 26.4 21.6 24.1 50.0 52.1
After Task3: SNLI-VE 53.9 54.5 57.1 57.5 25.7 26.1 20.6 22.4 50.0 52.8
After Task4: VCR 49.7 49.8 51.3 51.1 25.9 27.0 22.0 23.8 51.5 52.1

CL: Frozen Bottom-9

After Task1: VQAv2 57.4 57.9 56.5 58.9 25.8 26.9 22.5 27.3 50.3 54.4
After Task2: NLVR2 53.9 55.7 56.2 58.7 26.6 27.2 24.8 27.0 51.3 54.0
After Task3: SNLI-VE 57.8 61.6 56.8 60.7 25.7 27.1 23.5 26.6 51.1 53.0
After Task4: VCR 54.2 55.7 56.5 58.2 26.1 27.2 24.3 27.4 51.5 53.6

Random 50.0 50.0 50.0 50.0 25.0 25.0 20.0 20.0 50.0 50.0
Table 12: Comparisons between different CL algorithms on language-only tasks. Each value is the
average accuracy (%) over 3 runs. We experiment with {16, 32}-shot per class on IMDB, SST-2. For
HellaSwag, CommonsenseQA, and PIQA, we sub-sample {1024, 4096} instances of training data.

Alg A Task 1 Task 2 Task 3 Task 4
VQAv2 NLVR2 SNLI-VE VCR

Direct FT [69.30] [75.25] [78.09] [69.97]
SeqFT 0.06% [69.34] -4.76% [74.05] -3.69% [76.44] -11.92% [64.61]
Frozen Enc -22.67% [53.59] -58.82% [60.40] -24.23% [67.24] -48.85% [48.01]
Frozen B9 -0.89% [69.91] -5.16% [73.95] -0.68% [77.79] -9.80% [65.57]
ER 0.06% [69.34] -3.35% [74.41] -2.26% [77.07] -11.24% [64.92]
EWC 0.06% [69.34] -4.71% [74.06] -3.52% [76.51] -12.41% [64.39]

Table 13: Upstream Knowledge Transfer TUK(i) relative to direct fine-tuning on each task, along
with task score [Si

A] (%), for different CL algorithms A applied to UNITER.

F Hardware and Resources Used

Our experiments were performed on an Exxact workstation containing four NVIDIA RTX 3090
GPUs. Each upstream continual learning experiment was run on a single GPU. While individual
tasks took between 12 hours and 2 days to train, the entire 4-task continual learning typically took
between 4 and 5 days. For downstream experiments, each (upstream checkpoint, downstream task,
sample size, random seed) run took between 30 minutes to 3 hours to train, depending on the tasks.

23



0

25

50

75

100

VQ
A

0

25

50

75

100

N
LV

R
2

Task 2: NLVR2 Task 3: SNLI-VE Task 4: VCR
Upstream Learning Task

0

25

50

75

100

SN
LI

-V
E

SeqFT
Frozen-B9
Frozen-Enc

ER
EWC

Fo
rg

et
tin

g 
of

 P
re

vi
ou

s 
Ta

sk
s 

(%
)

Figure 10: Forgetting TF (j ← i) (%) of the previous i − 1 tasks when the UNITER model is
trained using each algorithm. Each subplot denotes model performance on one of the previous tasks.
Similar to our findings with ViLT, ER best preserves past task performance among all algorithms that
fine-tune shared parameters.

24


	Multimodal Task Details
	ViLT Model Modification Details
	Applying ViLT to Multi-Choice Tasks
	Applying ViLT to VCR
	Applying ViLT to HellaSwag, PIQA, and CommonsenseQA

	Applying ViLT to Unimodal Tasks
	VAuLT Implementation Details
	ViLT vs VAuLT Multimodal Task Comparison
	ViLT vs VAuLT Language-Only Task Comparison


	Algorithm Implementation Details
	Full ViLT Results
	Full Catastrophic Forgetting Results
	Full Results of Different Upstream Task Orders
	Full Results of Low-Shot Multimodal Transfer
	Full Results of Low-Shot Unimodal Transfer

	Experiments Using Another Vision-Language Model: UNITER
	Hardware and Resources Used

