
Differentially Private Graph Learning via
Sensitivity-Bounded Personalized PageRank

Alessandro Epasto
Google Research

aepasto@google.com

Vahab Mirrokni
Google Research

mirrokni@google.com

Bryan Perozzi
Google Research

bperozzi@google.com

Anton Tsitsulin
Google Research

tsitsulin@google.com

Peilin Zhong
Google Research

peilinz@google.com

Abstract

Personalized PageRank (PPR) is a fundamental tool in unsupervised learning
of graph representations such as node ranking, labeling, and graph embedding.
However, while data privacy is one of the most important recent concerns, existing
PPR algorithms are not designed to protect user privacy. PPR is highly sensitive to
the input graph edges: the difference of only one edge may cause a large change in
the PPR vector, potentially leaking private user data.
In this work, we propose an algorithm which outputs an approximate PPR and
has provably bounded sensitivity to input edges. In addition, we prove that our
algorithm achieves similar accuracy to non-private algorithms when the input graph
has large degrees. Our sensitivity-bounded PPR directly implies private algorithms
for several tools of graph learning, such as, differentially private (DP) PPR ranking,
DP node classification, and DP node embedding. To complement our theoretical
analysis, we also empirically verify the practical performances of our algorithms.

1 Introduction
Personalized PageRank (PPR) [15], has been a workhorse of graph mining and learning for the past
twenty years. Given a graph G, and a source node s, the PPR vector of node s defines a notion of
proximity of the other nodes in the graph to it. More precisely, the proximity of s to v, is defined by
the probability that a biased random walk starting in s, visits node v.

This elegant variation of the celebrated PageRank algorithm [24] has found widespread use in
different application areas of computer science, including web search [7], link prediction [22],
network analysis [17, 13], graph clustering [3], natural language processing [27], spam and fake
account detection [1, 2]. More recently, PPR has also been used in graph neural networks [21] and
graph representation learning [26] including to speed up the computation of graph-based learning
algorithms [5, 6].

Despite the widespread use of PPR, and the extensive algorithmic literature dedicated to its efficient
approximation [4, 3, 12, 16], to the best of our knowledge no prior work has attempted to compute
PPR vectors in a privacy-preserving manner.

In this work, we address this limitation by defining the first approximate method for PPR computation
with differential privacy [8]. We focus on a standard notion of differential privacy (DP) for graphs
known as edge-level DP. In this notion, two unweighted, undirected graphs G = (V,E) and G′ =
(V,E′), are deemed neighbors if they differ only in the presence of a single edge [23, 10]. An
algorithm A is then said to be edge-level ε-differentially private if the difference in the probability of
observing any particular outcome from the algorithm when run on G vs G′ is bounded: Pr[A(G) ∈
S] ≤ eε · Pr[A(G′) ∈ S].
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Edge-level DP guarantees a strong notion of plausible deniability for the existence of an edge in
the graph. This is especially critical in graph-based learning applications, where nodes correspond
to humans, and edges depend on personal relationships, which can be highly private and sensitive.
Achieving edge-level DP ensures that an attacker observing the output of the algorithm is information-
theoretically bounded in their ability to uncover any specific user pair connection.

On top of this notion, we also explore a popular variation of differential privacy used in personal-
ization [18] that follows the concept of joint differential privacy [20]. More precisely we provide
Personalized PageRank algorithms that are joint, edge-level differentially-private with respect to the
neighborhood of the source node s. This means that we can provide the user corresponding to s, with
an approximate Personalized PageRank of s that depends on the edges incident to s but that protects
the information on edges of the rest of the graph. This notion is especially relevant in the context of
personalization of results in social networks using PPR, where user data can be safely used to provide
an output to the user, but must be protected from leaking to others.

1.1 Our results and outline of the paper
Differential privacy forces an algorithm to be insensitive to changes of an edge in the graph. This
makes the design of DP PPR algorithms especially challenging as a single edge removal or addition
may result in dramatically different PPR vectors, thus potentially exposing private user data. Our first
contribution is to propose an algorithm that approximates the PPR vector with a provably bounded
sensitivity to edge changes. This technical contribution directly leads to the design of edge-level DP
(and joint edge-level DP) algorithms for computing approximate PPR vectors. We believe that this
technique may have broader applications in the design of DP graph algorithms.

From a theoretical standpoint, we prove that our private algorithms achieve similar accuracy as
non-private approximation algorithms when the input graph has a large enough minimum degree
(while the privacy guarantee holds for all graphs of any degree). This dependency on the degree is
theoretically justified as we show non-trivial approximation requires large enough degrees.

The main ingredient of our DP algorithms is a novel (non-private) sensitivity-bounded approximate
PPR algorithm (Algorithm 2). For any input parameter 0 < σ < 1, the sensitivity of the output of the
algorithm in the (joint) edge-level DP case is always upper bounded by σ. In addition, we show that
the algorithm has an O(σ) additive error to the ground truth PPR when the minimum degree of the
graph is Ω(1/σ) in the DP case (resp. Ω(

√
1/σ) in the joint-DP case). We show that this requirement

on the minimum degree for approximation guarantees is almost tight due to hard instances that we
present in Appendix A. We then use our sensitivity-bounded algorithm to obtain an edge-level DP
(resp. joint edge-level DP) algorithm that, for a graph of minimum degree at least D, has O(1/D)
additive error (resp. O(1/D2) error). Then, we focus on applications of differentially-private PPR
including computing graph embeddings. We provide provably edge-level DP and joint edge-level
DP graph embedding algorithm in Section 5. Finally, in Section 6, we empirically evaluate the
performance of our differentially private PPR rankings, as well as that of the embedding methods we
design, in several down-stream graph-learning tasks such as node ranking and classification.

To the best of our knowledge, our paper presents the first approximation algorithm with theoretical
guarantees for differentially private PPR. This result contributes to the still quite short list of private
graph algorithms with provable approximation guarantees that have been developed so far [23, 10,
11, 31, 29],
2 Preliminaries
We consider an undirected and unweighted graph G with node set V = {v1, v2, · · · , vn} and edge
set E. Let A be the adjacency matrix where Ai,j = 1 indicates an edge between vi and vj , and
Ai,j = 0 otherwise. Let Λ be the diagonal matrix where Λi,i = d(vi) denotes the degree of
vi. We use 0n to denote an n-dimensional all-zero vector and use ei ∈ Rn to denote the one-
hot vector where the i-th entry is 1 and other entries are 0. Let [n] denote the set {1, 2, · · · , n}.
When there is no ambiguity, we sometimes abuse the notation between [n] and V , i.e., using
v ∈ [n] to denote a node or i ∈ V denotes an index between 1 and n. For x ∈ Rk, we denote
‖x‖1 =

∑
i∈[k] |xi| and ‖x‖∞ = maxi∈[k] |xi|. We use Lap(b) (b > 0) to denote the Laplace

distribution with density function f(x) = 1
2b · exp(−|x|/b). The cumulative distribution function of

Lap(b) is F (x) =

{
1
2 · exp(x/b), x < 0,
1− 1

2 · exp (−x/b) , x ≥ 0.
. We will use the following fact in our analysis.

Fact 2.1. Consider Y drawn from Lap(b). For any δ ∈ (0, 1), Pr[|Y | > b ln(1/δ)] = δ.
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2.1 Personalized PageRank
Personalized PageRank (PPR) takes an input distribution of starting nodes s ∈ Rn, and starts a lazy
random walk with teleport probability α ∈ (0, 1). Typically, s = ei for some i ∈ [n], which enforces
the random walk starting from the source node vi. If there is no ambiguity, we abuse the notation to
denote with s the source node. The output PPR vector is the stationary distribution of the random
walk. Precisely, let W = 1

2 (I + Λ−1A) be the lazy random walk transition matrix.1 The PPR vector
p(s) is defined recursively as: p(s) = α · s+ (1− α) · p(s) ·W . In many applications, it is good
enough to use approximate PPR vectors.

Definition 2.2 (ξ-approximate PPR, see e.g., [3]). For ξ > 0, a ξ-approximate PPR vector for p(s)
is a PPR vector p(s− r) where r is a non-negative n-dimensional vector called residual vector and
‖r‖∞ ≤ ξ.

We also study the following natural variant of the approximate PPR.

Definition 2.3 ((ξ, η)-approximate PPR). For ξ, η > 0, a (ξ, η)-approximate PPR vector p for p(s)
satisfies ‖p− p(s− r)‖∞ ≤ η where r is a non-negative n-dimensional vector and ‖r‖∞ ≤ ξ.

Note that ξ denotes the error introduced by the residual and η denotes the error introduced by the PPR
vector itself. Two types of errors are well studied in the literature: for residual error ξ, see e.g., [3];
for PPR vector error η, see e.g., [16].

2.2 Differential Privacy
We consider edge-level DP and joint edge-level DP for graph algorithms. Given a graph G, we denote
Γ(G) as the set of all neighboring graphs of G, i.e., ∀G′ ∈ Γ(G), G′ can be obtained from G by
either addition or removal of an edge.

Definition 2.4 (Edge-level DP [10] and joint edge-level DP [20]). A randomized graph algorithm
A is edge-level ε-DP if for any input graphs G, G′ satisfying G′ ∈ Γ(G), and for any subset S of
possible outputs of A, it holds Pr[A(G) ∈ S] ≤ eε · Pr[A(G′) ∈ S]. Let V be the set of n nodes
(users). For joint edge-level DP we assume that a family of n (personalized) graph algorithms
A = (A1,A2, · · · ,An) is run on the graph and the output of Ai is provided only to user (node)
vi ∈ V . The family A is joint edge-level ε-DP, if for any x, y ∈ V and for any two neighboring
graphs G,G′ that only differ on edge (x, y), for any v 6= x, y and for any subset S of possible outputs
of Av , it always holds Pr[Av(G) ∈ S] ≤ eε · Pr[Av(G′) ∈ S].2

For s ∈ V , let us denote Γs(G) as the set of graphs G′ ∈ Γ(G) satisfying that G′ and G differ
on an edge that is not incident to s. It is easy to verify that the joint edge-level ε-DP is equivalent
to asking for ∀s ∈ V, ∀ subset S of possible outputs of As, ∀G,G′ ∈ Γs(G), Pr[As(G) ∈ S] ≤
eε · Pr[As(G′) ∈ S]. In the remainder of the paper, we will simply call edge-level ε-DP as ε-DP and
joint edge-level ε-DP as joint ε-DP.

In the following, we will briefly review several other related definitions and theorems for DP.

Definition 2.5 (Sensitivity [8]). Consider a function f whose input is a graph and whose output is in
Rk. The sensitivity Sf is defined as Sf = maxG,G′:G′∈Γ(G) ‖f(G)− f(G′)‖1. Consider a family F
of functions f1, f2, · · · , fn where each takes a graph as input and outputs a vector in Rk. The joint
sensitivity SF is defined as SF = maxs∈[n],G,G′∈Γs(G) ‖fs(G)− fs(G′)‖1.

Moreover, when this simplifies the presentation, we will refer to ε-DP and sensitivity as non-joint DP
and non-joint sensitivity to oppose them to joint DP and joint sensitivity.

Theorem 2.6 (Laplace mechanism [8]). Consider a function f whose input is a graph and whose
output is in Rk. Suppose f has sensitivity Sf . Then the algorithm A(G) which outputs f(G) +
(Y1, Y2, · · · , Yk) is ε-DP where Yi are independent Lap(Sf/ε) random variables. Similarly, consider

1This is equivalent to the standard random walk matrix up to a change in α (see [3]). We use the lazy walk
for consistency with prior work.

2Note this is slightly weaker than the original definition of joint DP which asks for ∀ subsets S1, S2, · · · , Sn
of possible outputs of A1,A2, · · · ,An respectively, Pr[A−x,−y(G) ∈ S−x,−y] ≤ eε · Pr[A−x,−y(G′) ∈
S−x,−y], where A−x,−y is the tuple of n− 2 outputs of A1,A2, · · · ,An except Ax,Ay , and S−x,−y is the
cartesian product of S1, S2, · · · , Sn except Sx, Sy .

Our definition protects the privacy of each user, however, as we assume that output ofAi is available to (node)
vi ∈ V only.
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a familyF of functions f1, f2, · · · , fn with joint sensitivity SF . Then the family ofA1,A2, · · · ,An is
joint ε-DP whereAi(G) outputs fi(G)+(Yi,1, Yi,2, · · · , Yi,k), and Yi,j are independent Lap(SF/ε)
random variables.

Theorem 2.7 (Composition [9]). Consider two algorithmsA1 : X → Y,A2 : Y×X → Z . Suppose
A1(·) is ε1-DP, and A2(Y, ·) is ε2-DP for any given Y ∈ Y . Then the algorithm A3 : X → Z which
is defined as A3(X) = A2(A1(X), X) is (ε1 + ε2)-DP.

3 Warm-Up: Push-Flow on Graphs with High Degrees
As a warm-up, let us start with a standard push-flow algorithm for PPR [3] and provide a novel
analysis for bounding the sensitivity when each node has degree at leastD. The non-private push-flow
algorithm is described in Algorithm 1.3

Algorithm 1 PUSHFLOW(G, s, α, ξ)

1: Input: Graph G = (V,E), source node s ∈ V , teleport probability α, precision ξ.
2: Output: Approximate PPR vector for p(s).
3: Initialize S(0) ← {s},p(0) ← 0n, r(0) ← es, and R← dln(1/ξ)/αe.
4: for i := 1→ R do
5: Let S(i) ← S(i−1). Let p(i), r(i) ← 0n.
6: for Each node v ∈ S(i−1) do
7: p

(i)
v ← p

(i−1)
v + α · r(i−1)

v , r(i)v ← r
(i)
v + (1− α)/2 · r(i−1)

v

8: For each neighbor u, i.e., (v, u) ∈ E: r(i)u ← r
(i)
u + (1− α)/2 · r(i−1)

v /d(v), S(i) ← S(i) ∪ {u}.
9: end for

10: end for
11: Output p(R).

Lemma 3.1. Algorithm 1 outputs a ξ-approximate PPR vector in O(|E| log(1/ξ)/α) time.

The proof of Lemma 3.1 follows the analysis idea of [3]. For completeness, we put the proof in
Appendix B. Next, we prove the sensitivity of Algorithm 1 when every node has degree at least D.
Theorem 3.2 (Sensitivity of PUSHFLOW). Consider two graphs G = (V,E), G′ = (V,E′) where
G′ ∈ Γ(G). In addition, both G and G′ have a minimum degree at least D. Let p, p′ be the
output of PUSHFLOW(G, s, α, ξ) and PUSHFLOW(G′, s, α, ξ) respectively. Then if G′ ∈ Γs(G),
‖p− p′‖1 ≤ 2·(1−α)

α·D2 . Otherwise, ‖p− p′‖1 ≤ 2·(1−α)
α·D .

Proof. Without loss of generality, suppose G′ has one more edge (x, y) than G, i.e., E′ =
E ∪ {(x, y)}. Let p(i), r(i) be the same as described in Algorithm 1 when running PUSH-
FLOW(G, s, α, ξ). Similarly, let p′(i), r′(i) be the vectors p(i), r(i) described in Algorithm 1 when
running PUSHFLOW(G′, s, α, ξ). Thus, our goal is to bound ‖p(R) − p′(R)‖1. It suffices to bound
‖p(R) − p′(R)‖1 + ‖r(R) − r′(R)‖1. Let d(v) denote the degree of v in G and let d′(v) denote the
degree of v in G′. Consider i ∈ [R]. We have:

‖p(i) − p′(i)‖1 + ‖r(i) − r′(i)‖1 ≤
∑
v∈V

∣∣∣(p(i−1)
v + α · r(i−1)

v )− (p′(i−1)
v + α · r′(i−1)

v )
∣∣∣+∑

v∈V

1− α
2
·
∣∣∣r(i−1)
v − r′(i−1)

v

∣∣∣
+
∑
v∈V

1− α
2
·

∣∣∣∣∣∣
∑

u:(u,v)∈E

r
(i−1)
u

d(u)
−

∑
u′:(u′,v)∈E′

r
′(i−1)

u′

d′(u′)

∣∣∣∣∣∣
≤‖p(i−1) − p′(i−1)‖1 +

1 + α

2
· ‖r(i−1) − r′(i−1)‖1 (1)

+
1− α
2
·

∑
v∈V

∑
u:(u,v)∈E

∣∣∣∣∣r(i−1)
u

d(u)
− r

′(i−1)
u

d′(u)

∣∣∣∣∣+
(
r
′(i−1)
x

d′(x)
+
r
′(i−1)
y

d′(y)

) .

(2)

3The algorithm described in Algorithm 1 is slightly different from the original push-flow algorithm of [3]. In
each iteration, instead of pushing flow for the node with the largest residual, we push flows for all nodes that
were visited. This variant gives us a better bound of sensitivity.
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By reordering the terms, part (2) is equal to:

1− α
2
·

∑
u∈V \{x,y}

d(u) ·

∣∣∣∣∣r(i−1)
u

d(u)
− r

′(i−1)
u

d(u)

∣∣∣∣∣
+
1− α
2
·

((
d(x) ·

∣∣∣∣∣r(i−1)
x

d(x)
− r

′(i−1)
x

d(x) + 1

∣∣∣∣∣+ r
′(i−1)
x

d(x) + 1

)
+

(
d(y) ·

∣∣∣∣∣r(i−1)
y

d(y)
− r

′(i−1)
y

d(y) + 1

∣∣∣∣∣+ r
′(i−1)
y

d(y) + 1

))
.

Notice that d(x) ·
∣∣∣ r(i−1)
x

d(x) −
r′(i−1)
x

d(x)+1

∣∣∣+ r′(i−1)
x

d(x)+1 ≤ |r
(i−1)
x −r′(i−1)

x |+ 2·r′(i−1)
x

d(x)+1 . Similar arguments hold

for y. Thus, part (2) is at most (1−α)/2 · (‖r(i−1)− r′(i−1)‖1 + 2 · (r′(i−1)
x /d′(x) + r

′(i−1)
y /d′(y))).

Therefore (1)+(2)≤ ‖p(i−1) − p′(i−1)‖1 + ‖r(i−1) − r′(i−1)‖1 + (r
′(i−1)
x /d′(x) + r

′(i−1)
y /d′(y)).

Since d′(x), d′(y) ≥ D, we have: ‖p(i)−p′(i)‖1 +‖r(i)−r′(i)‖1 ≤ ‖p(i−1)−p′(i−1)‖1 +‖r(i−1)−
r′(i−1)‖1 + (1− α) ·

(
r
′(i−1)
x + r

′(i−1)
y

)
/D.

In Appendix C, we show that r′(i−1)
x , r′(i−1)

y ≤ (1 − α)i−1 and if in addition s 6= x, y,

r′(i−1)
x , r′(i−1)

y ≤ (1 − α)i−1/D. Thus, if s 6= x, y, we have: ‖p(R) − p′(R)‖1 ≤ 2 · (1 − α)/D ·∑R
i=1(1− α)i−1/D ≤ 2·(1−α)

α·D2 . Otherwise, we have ‖p(R) − p′(R)‖1 ≤ 2 · (1− α)/D ·
∑R
i=1(1−

α)i−1 ≤ 2·(1−α)
α·D

In Appendix A, we show that the analysis in Theorem 3.2 is tight as the sensitivity of the ground
truth PPR in graphs with minimum degree D can be Ω(1/D) (or Ω(1/D2) for joint sensitivity).

If input graphs were always guaranteed to have minimum degree at least D, we could obtain a DP
or a joint DP PPR algorithm by applying the Laplace mechanism on the output of Algorithm 1
(see Appendix D). However, in practice the input graphs can have low degree nodes. In this case, the
sensitivity of the vanilla push-flow algorithm (Algorithm 1) can be very high. In the next section, we
address the question of how to modify the algorithm to ensure low sensitivity for any input graph.

4 Push-Flow with Bounded Sensitivity in General Graphs

In this section, we propose a variant of the push-flow algorithm of which sensitivity (resp. joint
sensitivity) is always bounded by an input parameter σ. As a result, we can apply Laplace mechanism
(Theorem 2.6) to obtain a DP PPR (resp. a joint DP PPR) algorithm for all possible general input
graphs and thus the added noise is controlled by σ. In addition, our new algorithm achieves the same
approximation as Algorithm 1 when every node in the input graph has a relatively high degree.

We explain the intuition of our algorithm as the following. Recall the analysis of the sensitivity
of Algorithm 1 (the proof of Theorem 3.2). The reason that it may introduce a large sensitivity is
because every node x with residual r′x

(i−1) may push ∼ r′x
(i−1)

/d′(x) amount of flow along each
of its incident edges. If d′(x) is small, the sensitivity introduced by an edge incident to x can be
very large. Therefore, to control the sensitivity, a natural idea is to set a threshold for each edge
such that the total pushed flow along each edge can never be above the threshold. We present our
sensitivity-bounded push-flow algorithm in Algorithm 2. For sake of presentation, this algorithm and
the following ones have a parameter type ∈ {joint, non-joint} indicating whether we are working in
the joint DP case or in the non-joint DP case.

Firstly, we show that the joint/non-joint sensitivity of PUSHFLOWCAP(G, s, α, ξ, σ, joint/non-joint)
is indeed bounded by σ. We will use the following observation.

Observation 4.1. Consider p(i), h(i), f (i) in PUSHFLOWCAP(G, s, α, ξ, σ, joint/non-joint). Then
∀v ∈ V, i ∈ [R]: (1) h(i)

v =
∑i
j=1 f

(j)
v . (2) h(i)

v = min(
∑i−1
j=0 r

(j)
v , d(v) · Tv). (3) p(i)

v = α · h(i)
v .

Using this observation we show the following lemma on h(i)
v .

Lemma 4.2. Consider h(i) and r(i) in PUSHFLOWCAP(G, s, α, ξ, σ, joint/non-joint). ∀v ∈ V, i ∈
[R], h(i)

v = min
(
r

(0)
v + 1−α

2 ·
(
h

(i−1)
v +

∑
u:(u,v)∈E

h(i−1)
u

d(u)

)
, d(v) · Tv

)
.
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Algorithm 2 PUSHFLOWCAP(G, s, α, ξ, σ, type)

1: Input: Graph G = (V,E), source node s ∈ V , teleport probability α, precision ξ, sensitivity parameter σ,
and type ∈ {joint, non-joint} indicating whether joint DP sensitivity or (vanilla) DP sensitivity is required.

2: Output: Approximate PPR vector for p(s).
3: Initialize the set of nodes with positive residual S(0) ← {s}, PPR p(0) ← 0n, residual r(0) ← es, total

pushed flow h(0) ← 0n, number of rounds R← dln(1/ξ)/αe, and thresholds T ∈ Rn such that
1. If type = joint, Ts ←∞ and ∀u 6= s, Tu ← σ/(2 · (2− α)).
2. Otherwise, ∀u ∈ V, Tu ← σ/(2 · (2− α)).

4: for i := 1→ R do
5: for Each node v ∈ S(i−1) do
6: f

(i)
v ← min(r

(i−1)
v , d(v) · Tv − h(i−1)

v ). //Compute the flow to push for node v.
7: h

(i)
v ← h

(i−1)
v + f

(i)
v . //Update the total pushed flow of node v.

8: p
(i)
v ← p

(i−1)
v , r

(i)
v ← r

(i−1)
v − f (i)

v .
9: end for

10: S(i) ← S(i−1).
11: for Each node v ∈ S(i−1) with f (i)

v > 0 do
12: p

(i)
v ← p

(i)
v + α · f (i)

v , r
(i)
v ← r

(i)
v + (1− α)/2 · f (i)

v . // Do actual flow push
13: For each neighbor u, i.e., (v, u) ∈ E : r

(i)
u ← r

(i)
u + (1− α)/2 · f (i)

v /d(v), S(i) ← S(i) ∪ {u}.
14: end for
15: end for
16: Output p(R).

Theorem 4.3 (Sensitivity and joint sensitivity of PUSHFLOWCAP). Consider two graphs G =
(V,E), G′ = (V,E′). Let p, p′ be the output of PUSHFLOWCAP(G, s, α, ξ, σ, type) and
PUSHFLOWCAP(G′, s, α, ξ, σ, type) respectively. For type = joint and G′ ∈ Γs(G), or type =
non-joint and G′ ∈ Γ(G), then ‖p− p′‖1 ≤ σ.

Proof. Without loss of generality, let G′ ∈ Γ(G) has exactly one more edge (x, y) than G, i.e.,
E′ = E ∪ {(x, y)}. Let p(i), h(i) be the same as described in Algorithm 2 when running PUSH-
FLOWCAP(G, s, α, ξ, σ, type). Similarly, let p′(i), h′(i) be the vectors p(i), h(i) described in Al-
gorithm 2 when running PUSHFLOWCAP(G′, s, α, ξ, σ, type). Let d(v) denote the degree of v
in G and let d′(v) denote the degree of v in G′. To prove the lemma, our goal is to bound
‖p(R) − p′(R)‖1. According to Observation 4.1, we have ‖p(R) − p′(R)‖1 = α · ‖h(R) − h′(R)‖1.
It suffices to bound ‖h(R) − h′(R)‖1. Notice that ∀a1, a2, a3, a4 ∈ R, it is easy to verify that
|min(a1, a2)−min(a3, a4)| ≤ |a1 − a3|+ |a2 − a4|. Consider i ∈ [R]. According to Lemma 4.2,
for every v 6= x, y, we have:

|h(i)
v − h′(i)v | ≤|r(0)v − r′(0)v |+

1− α
2

|h(i−1)
v − h′(i−1)

v |+
∑

u:(u,v)∈E

∣∣∣∣∣h(i−1)
u

d(u)
− h

′(i−1)
u

d′(u)

∣∣∣∣∣+ ∣∣(d(v)− d′(v))Tv∣∣


=
1− α
2
·

∣∣∣h(i−1)
v − h′(i−1)

v

∣∣∣+ ∑
u:(u,v)∈E

∣∣∣∣∣h(i−1)
u

d(u)
− h

′(i−1)
u

d′(u)

∣∣∣∣∣
 ,

where the last step follows from r
(0)
v = r

′(0)
v and d(v) = d′(v). Suppose v ∈ {x, y}. Let v′ be the

other node in x, y, i.e., v′ ∈ {x, y} \ {v}. We have:

|h(i)
v − h′(i)v |

≤|r(0)v − r′(0)v |+
1− α
2
·

|h(i−1)
v − h′(i−1)

v |+
h
′(i−1)

v′

d′(v′)
+

∑
u:(u,v)∈E

∣∣∣∣∣h(i−1)
u

d(u)
− h

′(i−1)
u

d′(u)

∣∣∣∣∣
+ |(d(v)− d′(v))Tv|

=
1− α
2
·

∣∣∣h(i−1)
v − h′(i−1)

v

∣∣∣+ ∑
u:(u,v)∈E

∣∣∣∣∣h(i−1)
u

d(u)
− h

′(i−1)
u

d′(u)

∣∣∣∣∣
+

1− α
2
·
h
′(i−1)

v′

d′(v′)
+ Tv,

where the last step follows from |d(v)− d(v′)| = 1 and r(0)
v = r

′(0)
v . Therefore,

‖h(i) − h′(i)‖1
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≤

∥∥∥h(i−1) − h′(i−1)
∥∥∥
1
+
∑
v∈V

∑
u:(u,v)∈E

∣∣∣∣∣h(i−1)
u

d(u)
− h

′(i−1)
u

d′(u)

∣∣∣∣∣+ h
′(i−1)
x

d′(x)
+
h
′(i−1)
y

d′(y)

 · 1− α
2

+ Tx + Ty

=

∥∥∥h(i−1) − h′(i−1)
∥∥∥
1
+

∑
u∈V \{x,y}

∣∣∣h(i−1)
u − h′(i−1)

u

∣∣∣
+d(x) ·

∣∣∣∣∣h(i−1)
x

d(x)
− h

′(i−1)
x

d(x) + 1

∣∣∣∣∣+ d(y) ·

∣∣∣∣∣h(i−1)
y

d(y)
− h

′(i−1)
y

d(y) + 1

∣∣∣∣∣+ h
′(i−1)
x

d′(x)
+
h
′(i−1)
y

d′(y)

)
· 1− α

2
+ Tx + Ty.

Notice that d(x) ·
∣∣∣h(i−1)
x

d(x) −
h′(i−1)
x

d(x)+1

∣∣∣ ≤ |h(i−1)
x − h

′(i−1)
x | +

h′(i−1)
x

d(x)+1 . Similarly, d(y) ·∣∣∣∣h(i−1)
y

d(y) −
h′(i−1)
y

d(y)+1

∣∣∣∣ ≤ |h(i−1)
y − h′(i−1)

y |+ h′(i−1)
y

d(y)+1 . Therefore, we have:

‖h(i) − h′(i)‖1 ≤(1− α) ·

(∥∥∥h(i−1) − h′(i−1)
∥∥∥
1
+
h
′(i−1)
x

d′(x)
+
h
′(i−1)
y

d′(y)

)
+ Tx + Ty.

According to Observation 4.1, we have h′(i−1)
x

d′(x) ≤ Tx and
h′(i−1)
y

d′(y) ≤ Ty. Therefore, ‖h(i) −
h′(i)‖1 ≤ (1 − α) ·

∥∥h(i−1) − h′(i−1)
∥∥

1
+ (2 − α) · (Tx + Ty). Since ‖h(0) − h′(0)‖1 = 0, we

have ‖h(R) − h′(R)‖1 ≤ (2 − α) · (Tx + Ty)/α. Hence, ‖p(R) − p′(R)‖1 ≤ (2 − α) · (Tx + Ty).
If G′ ∈ Γs(G), i.e., s 6= x, y, Tx + Ty = 2 · σ

(2·(2−α)) . If non-joint sensitivity is considered and
G′ 6∈ Γs(G), i.e., s ∈ {x, y}, Tx + Ty ≤ 2 · σ

(2·(2−α)) . We conclude the proof.

The following lemma shows the running time and the approximation guarantee of Algorithm 2.
See Appendix F for the proof.
Lemma 4.4. PUSHFLOWCAP(G, s, α, ξ, σ, type) runs in O(|E| log(1/ξ)/α) time. Furthermore,

if the minimum degree of G is at least max
(

1/(α · Ts),
√

1/(α · Tu)
)

(u 6= s), the output of

PUSHFLOWCAP(G, s, α, ξ, σ, type) is exactly the same as the output of PUSHFLOW(G, s, α, ξ), i.e.,
it is a ξ-approximate PPR vector for p(s).
Remark 4.5. According to the choice of Ts and Tu, the above lemma shows that if σ ≥ Ωα(1/D2)
(resp. σ ≥ Ωα(1/D)), the output of PUSHFLOWCAP(G, s, α, ξ, σ, type = joint) (resp. for type =
non-joint) is a ξ-approximate PPR vector for p(s). This is near optimal since we show in Appendix A
that the joint sensitivity (resp. non-joint sensitivity) of the ground truth PPR of a graph with minimum
degree D can be at least Ω(1/D2) (resp. Ω(1/D)).

We apply Laplace mechanism to Algorithm 2 and obtain a DP or joint DP PPR algorithm for general
input graphs (see Algorithm 3). We conclude the theoretical guarantees of our algorithm.

Algorithm 3 DPPUSHFLOWCAP(G, s, α, ξ, σ, ε, type)

1: Input: Graph G = (V,E), source s ∈ V , teleport probability α, precision ξ, sensitivity parameter σ, DP
parameter ε, and type ∈ {joint, non-joint} indicating whether joint ε-DP or ε-DP is required.

2: Output: ε-DP approximate PPR vector for p(s).
3: p← PUSHFLOWCAP(G, s, α, ξ, σ, type).
4: Let Y1, Y2, · · · , Yn drawn independently from Lap

(
σ
ε

)
5: Output p+ (Y1, Y2, · · · , Yn).

Corollary 4.6 (Joint DP and DP PPR). The family of (personalized) algorithms
{As(G) := DPPUSHFLOWCAP(G, s, α, ξ, σ, ε, joint) | s ∈ V } is joint ε-DP, and
DPPUSHFLOWCAP(G, s, α, ξ, σ, ε, non-joint) is ε-DP with respect to G for any s ∈ V . In
addition, if the input graph G has a minimum degree at least D, the joint ε-DP (resp. ε-DP) output
is a

(
ξ,Oα,ε(σ ln n

δ )
)
-approximate PPR with probability at least 1 − δ for any δ ∈ (0, 1) when

σ ≥ Ωα(1/D2) (resp. σ ≥ Ωα(1/D)).

According to above corollary, we want the sensitivity parameter σ to be as small as possible since
smaller σ leads to smaller additive error. On the other hand, too small σ may make the approximate
PPR obtained by PUSHFLOWCAP (Algortihm 2) deviate from the ground truth PPR. Therefore, if a
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graph has a minimum degree D, our joint ε-DP PPR (resp. ε-DP PPR) algorithm provides the best
theoretical approximation guarantees when σ = Θα(1/D2) (resp. σ = Θα(1/D)). This matches the
lower bound shown in Appendix A: the ground truth PPR has sensitivity Ωα(1/D) and joint sensitivity
Ωα(1/D2). Thus, our results are actually theoretically optimal up to constant factors. The implication
of Corollary 4.6 is hence tight, and it is impossible to have a good theoretical approximation guarantee
if σ < oα(1/D) for ε-DP or σ < oα(1/D2) for joint ε-DP. In the experimental section we show,
however, that in practice the algorithm performs well for a vast range of the parameter setting.

5 Differentially Private Graph Embeddings
As we discussed before, PPR has plenty of applications in graph learning [21, 26, 6]. In this section,
to show the potentiality of our algorithms, we focus on a recent example of the use of PPR for
computing graph embedding. We consider InstantEmbedding [26] (see Algorithm 4) which is one
practical PPR-based graph embedding algorithm. The algorithm proceeds computing the PPR vector
of s and then hashing them to obtain an embedding in Rk for the node s. Using our DP PPR algorithm
output as input to InstantEmbedding leads trivially to a DP embedding algorithm. However, in this
section, we show a better implementation which reduces the amount of noise added using in a slightly
more sophisticated way our sensitivity bounded PPR algorithm. We think that this technique could be
adapted to other uses of PPR.

First we provide a sensitivity bound for the InstantEmbedding algorithm when applying the sensitivity-
bounded PPR. As a result, we show how to obtain differentially private InstantEmbedding. The proof
of the following theorem (the sensitivity bound) can be found in Appendix H.

Algorithm 4 INSTANTEMBEDDING(p, k)

1: Input: An approximate PPR vector p for p(s), dimension k, and uniform random hash functions hk : V →
[k], hsgn : V → {−1, 1}.

2: Output: Embedding vector w ∈ Rk.
3: Initialize w ← 0k.
4: for v ∈ V do
5: whk(v) ← whk(v) + hsgn(v) ·max(log(pv · n), 0).
6: end for
7: Output w.

Theorem 5.1 (Sensitivity-bounded InstantEmbedding). Consider two neighboring graphs G =
(V,E), G′ = (V,E′) and source node s. Let p, p′ be approximate PPR vectors for p(s) with
respect to G and G′ respectively. Let w, w′ be the output of INSTANTEMBEDDING(p, k) and
INSTANTEMBEDDING(p′, k) respectively. Let m be the number of non-zero entries of p− p′. Then,
‖w − w′‖1 ≤ m · log

(
1 + ‖p− p′‖1 · nm

)
.

Non-zero entries of p − p′ in the above theorem can be at most n. Thus, ‖w − w′‖1 is always at
most ‖p− p′‖1 · n. If we compute p← PUSHFLOWCAP(G, s, α, ξ, σ), according to Theorem 4.3,
the (joint) sensitivity of p is at most σ. Then, according to Theorem 5.1, the (joint) sensitivity of
output w of Algorithm 4 (using as approximate ppr p) is at most σ · n. This allows us to obtain a
(joint) ε-DP version of InstantEmbedding by using the Laplace mechanism (Theorem 2.6) to add
Lap (σ · n/ε) to each entry of w.

6 Experiments
In this section, we complement our theoretical analysis with an experimental study of our algorithms
in terms of the accuracy of the PPR ranking and node classification. In this experimental section we
only consider the joint DP setting due to its practicality in personalization applications typical of PPR
and its better performance. Hence all private algorithms reported are joint DP.

Hyperparameter settings. Unless otherwise specified, we ran all experiments that use our PUSH-
FLOWCAP algorithm (or the non-private PUSHFLOW algorithm [3]) to obtain PPR rankings consistent
to the setting commonly used in the literature of α = 0.15.4 Moreover, we set ξ so that the number
of iterations R = 100 in all algorithms. We use embedding dimensionality k = 256. We observe
that our algorithm’s utility is not strongly affected by the sensitivity parameter σ. For simplicity,
we always set σ = 10−6, as this parameter generalized across different datasets tested. Detailed
experiments on the effects of the sensitivity parameter can be found in the Appendix.

4The algorithms use the lazy random walk [3], so we set α = 0.08 to match the non-lazy α of 0.15.
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Figure 1: PPR approximation on two datasets.

Baselines. To the best of our knowledge, this is the first PPR paper with differential privacy. To
compare with relevant joint DP baselines we use the standard randomized response [9] (edge-flipping)
baseline applied to the graph. Given the source node s, for each (unordered) pair {u, v} of nodes
(u, v 6= s) we apply the randomized response mechanism on the corresponding entry in the adjacency
matrix: with probability p = 2/(1 + exp(ε/2)), the entry is replaced by a uniform at random {0, 1},
otherwise we keep the true entry. This results in a joint ε-DP output over which we run the non-private
PPR algorithm [3]. Note that this baseline, for ε = Θ(1), requires Θ(n2) time to generate a DP
adjacency matrix, and makes the output matrix dense. This limits the applicability of the baseline
mechanism, whereas our approach remains scalable for larger graphs.

We also evaluated another simple joint DP baseline: adding Lap
(

1
ε

)
noise5 to all PPR values obtained

by the non-private PUSHFLOW algorithm. We omit these results as they were close to random.

Table 1: Dataset characteristics: number of vertices |V |,
number of edges |E|; number of node labels |L|; average
node degree; density defined as |E|/

(|V |
2

)
.

Size Statistics

dataset |V | |E| |L| Avg. deg. Density

POS 5k 185k 40 38.7 8.1× 10−3

Blogcatalog 10k 334k 39 64.8 6.3× 10−3

Datasets. We experiment on 2 publicly
available datasetsavailable from [14, 28].
Table 1 reports basic statistics about these
datasets. POS is a word co-occurrence
network built from Wikipedia. BlogCata-
log a social network of bloggers from the
blogcatalog website.

6.1 PPR Approximation Accuracy
We verify that our algorithms can rank the
nodes of real-world graphs in a private way. We randomly sample 1000 nodes and compute “ground-
truth” PPR values with the standard power iteration algorithm. Then, we run DPPUSHFLOWCAP
algorithm in the joint DP setting. Figure 1 presents the results on the datasets studied. We examine
the performance of Joint DP PPR from two standard metrics: Recall@k and normalized discounted
cumulative gain (NDCG) [19]. We select Recall@100 and NDCG since the top PPR values are the
most important in practical applications of ranking. We observe that the joint DP rankings offer
significantly better top-k predictions across datasets and metrics tested than the private baseline.

6.2 Node Classification via Private Embeddings
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Figure 2: Private embeddings introduced in this
paper outperform other competitors and achieve
much higher performance on a tight privacy budget.

Last, we examine the performance of our joint DP
embedding algorithm. We follow the procedure
of [25, 14] and evaluate our embeddings on a node
classification task in real-world graphs. We report
the results in Figure 2. Here, Joint DP and DP rep-
resents our respective implementations of Instant-
Embedding; DP Baseline + InstantEmbedding rep-
resents the obvious baseline of computing Baseline
DP PPR followed by the hashing procedure; Non-DP
InstantEmbedding is the original non-DP embedding
and Random represents a uniform random embed-
ding. Our joint DP algorithm has significantly better
performance than the baseline and has non-trivial
Micro-F1 even for small ε. In contrast, the base-
line does not extract any useful information from the
graph in this range for ε .

5This calibration of noise is needed even in the joint DP setting because of the high sensitivity of PPR.
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7 Conclusion
In this work, we showed that it is possible to compute approximate PPR rankings with differential
privacy. We believe that the techniques developed for bounding the sensitivity of PPR can find
applications in other areas of graph-learning. As a future work, we would like to extend the use of
our DP PPR algorithm to more machine learning tasks.

Societal impact and limitations Our work focuses on developing DP algorithms for data analysis.
If used correctly, DP provides strong protection, but has limitations (we refer to standard textbooks
on the subject [9]). Moreover, while privacy is a requirement of a responsible computational system,
it is not the only one. We encourage reviewing holistically the safety of any application of our work.
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A Tightness of the Sensitivity Bound for PPR

In this section, we show examples that the sensitivity of a PPR vector of a graph with minimum
degree D can be Ω(1/D) and the sensitivity for joint DP can be Ω(1/D2). For simplicity, consider
α = 0.5. Consider a clique with D + 1 nodes. Thus, each node has degree D. Let us choose an
arbitrary node as the source node. Let p be the PPR vector for s. Then it is easy to verify ps = 2D+1

3D+1

and pv = 1
3D+1 for v 6= s.

Suppose we remove the edge between node s and node x. Let p′ be the new PPR vector for s. We
can verify that p′s = 6D+5

9D+6 , p
′
x = 1

9D+6 and p′v = D
3D2−D+2 for v 6= s, x. It is easy to see that

|px − p′x| = |1/(3D + 1)− 1/(9D + 6)| is already Ω(1/D).

Suppose we remove the edge between nodes x, y 6= s. Let p′′ be the new PPR vector for s. We can
verify that p′′s = 6D3+D2−5D

9D3−7D−2 , p
′′
x = p′′y = 1

3D+2 , and p′′v = 3D2−D
9D3−7D−2 for v 6= x, y. It is easy to see

that |px − p′′x| = |1/(3D + 1)− 1/(3D + 2)| is already Ω(1/D2).

B Proof of Lemma 3.1

As defined in Section 2.1, let W be the lazy random walk matrix of G.

Lemma B.1 (Linearity of PPR vector [3]). Given any x ∈ Rn, p(x) ·W = p(x ·W ). Given any
x, y ∈ Rn, p(x+ y) = p(x) + p(y). Given any x ∈ Rn, a ∈ R, p(a · x) = a · p(x).

Similar to Lemma 3.4 of [3], we have the following lemma.

Lemma B.2 (Push flow operation). Consider n-node graph G = (V,E). Let s ∈ Rn be the starting
distribution vector. Given vectors p ∈ Rn and r ∈ Rn satisfying p = p(s− r). For any x ∈ Rn, if
p′, r′ are computed as the following:

1. ∀v ∈ V, p′v = pv + α · xv ,

2. ∀v ∈ V, r′v = rv − xv + (1− α)/2 ·
(
xv +

∑
(v,u)∈E xu/d(u)

)
,

then we have p′ = p(s− r′).

Proof. We can rewrite the computation of p′, r′ as the following:

1. p′ = p+ α · x,

2. r′ = r − x+ (1− α) · x ·W .

Thus, we have:

p(r) = p(r − x) + p(x)

= p(r − x) + αx+ (1− α)p(x)W

= p(r − x) + αx+ p((1− α)xW )

= p(r − x+ (1− α)xW ) + αx

= p(r′) + p′ − p,

where the first equality follows from linearity (Lemma B.1), the second equality follows from the
definition of PPR p(x), the third and the forth equalities follow from linearity (Lemma B.1) again,
and the last equality follows from the definition of p′ and r′.

Therefore, we have p+ p(r) = p′ + p(r′). Due to linearity (Lemma B.1), we have p− p(s− r) =
p′ − p(s− r′). Since p = p(s− r), p′ = p(s− r′).

We are now able to prove Lemma 3.1.
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Proof of Lemma 3.1. Let us first consider the running time. The algorithm has R = O(ln(1/ξ)/α)
iterations. In each iteration, the algorithm can visit each neighbor of each node at most once. Thus,
the running time needed for each iteration is O(|E|). The total running time is O(|E| · ln(1/ξ)/α).

Next, let us focus on the accuracy of the output. Notice that ∀i ∈ [R], we have

1. ∀v ∈ V, p(i)
v = p

(i−1)
v + α · r(i−1)

v ,

2. ∀v ∈ V, r(i)
v = (1− α)/2 ·

(
r

(i−1)
v +

∑
(v,u)∈E r

(i−1)
u /d(u)

)
.

Since p(0) = p(s−r(0)), according to Lemma B.2, ∀i ∈ [R], p(i) = p(s−r(i)). Next we want to show
that each entry of r(R) is non-negative and is at most ξ. It is easy to verify that any operation during
the algorithm will not create a negative value of any entry of r(j) for j ∈ {0, 1, · · · , R}. Next consider
the maximum value of r(j) for j ∈ {0, 1, · · · , R}. The proof is by induction. It is obvious that
‖r(0)‖1 = 1. Consider j > 0. We have ‖r(j)‖1 =

∑
v∈V r

(j)
v = (1−α)/2·

∑
v∈V r

(j−1)
v +(1−α)/2·∑

v∈V
∑
u:(u,v)∈E r

(j−1)
u /d(u) = (1−α)/2 ·

∑
v∈V r

(j−1)
v + (1−α)/2 ·

∑
u∈V d(u) · r(j−1)

u /d(u)

= (1− α) · ‖r(j−1)‖1 ≤ (1− α)j . Thus, ‖r(R)‖∞ ≤ ‖r(R)‖1 ≤ (1− α)R ≤ ξ.

According to Definition 2.2, since p(R) = p(s− r(R)) and each entry of r(R) is non-negative and is
at most ξ, p(R) is an ξ-approximate PPR vector for p(s).

C Bound of r′x, r′y in the Proof of Theorem 3.2

Claim C.1. ∀j ∈ [R], ‖r′(j)‖1 ≤ (1− α)j .

Proof of Claim C.1. The proof is by induction. It is obvious that ‖r′(0)‖1 = 1. Consider
j > 0. We have ‖r′(j)‖1 =

∑
v∈V r

′(j)
v = (1 − α)/2 ·

∑
v∈V r

′(j−1)
v + (1 − α)/2 ·∑

v∈V
∑
u:(u,v)∈E′ r

′(j−1)
u /d′(u) = (1 − α)/2 ·

∑
v∈V r

′(j−1)
v + (1 − α)/2 ·

∑
u∈V d

′(u) ·
r
′(j−1)
u /d′(u) = (1− α) · ‖r′(j−1)‖1 ≤ (1− α)j .

Claim C.2. ∀j ∈ [R],∀u 6= s, r′(j)u ≤ (1− α)j/D.

Proof of Claim C.2. The proof is by induction. When j = 0, ∀u 6= s, r
′(0)
u = 0. Consider j > 0.

We have r′(j)u ≤ (1 − α)/2 · r′(j−1)
u + (1 − α)/2 ·

∑
v∈V r

′(j−1)
v /d′(v) ≤ (1 − α)/2 · r′(j−1)

u +

(1 − α)/2 · ‖r′(j−1)‖1/D. According to Claim C.1 and induction hypothesis, we have r′(j)u ≤
(1− α) · (1− α)j−1/D = (1− α)j/D.

D Naïve DP PPR for High Degree Graphs

Algorithm 5 DPPUSHFLOW(G, s, α, ξ, ε)

1: Input: Graph G = (V,E) with minimum degree at least D, source node s ∈ V , teleport probability α,
precision ξ, DP parameter ε.

2: Output: ε-DP approximate PPR vector for p(s).
3: p← PUSHFLOW(G, s, α, ξ).
4: // If considering joint ε-DP:
5: Let Y1, Y2, · · · , Yn drawn independently from Lap

(
2(1−α)
ε·α·D2

)
6: // Otherwise for ε-DP:
7: Let Y1, Y2, · · · , Yn drawn independently from Lap

(
2(1−α)
ε·α·D

)
8: Output p+ (Y1, Y2, · · · , Yn).

14



Corollary D.1. Suppose the input graph G is guaranteed to have minimum degree at least
D. For any given source node s, the output of DPPUSHFLOW(G, s, α, ξ, ε) is ε-DP and is a(
ξ,Oα,ε(D

−1 ln n
δ )
)
-approximate PPR for p(s) with probability at least 1 − δ for any δ ∈ (0, 1).

The family of (personalized) algorithms {As(G) := DPPUSHFLOW(G, s, α, ξ, ε) | s ∈ V } is joint
ε-DP and the output of As(G) is a

(
ξ,Oα,ε(D

−2 ln n
δ )
)
-approximate PPR for p(s) with probability

at least 1− δ for any δ ∈ (0, 1).

Proof of Corollary D.1. The ε-DP guarantee follows from Laplace mechanism (Theorem 2.6). The
sensitivity bound is given by Theorem 3.2. Next, consider the accuracy of Algorithm 5. According
to Lemma 3.1, the vector p is a ξ-approximate PPR vector. Let ∆ be the sensitivity of p, i.e.,
∆ = 2·(1−α)

α·D2 if joint DP is considered, and ∆ = 2·(1−α)
α·D otherwise. Consider i ∈ [n]. By Fact 2.1,

with probability at least 1 − δ/n, |Yi| ≤ ∆
ε · ln(n/δ). By taking union bound over i ∈ [n], with

probability at least 1 − δ, maxi∈[n] |Yi| ≤ ∆
ε · ln(n/δ). Thus, the output of Algorithm 5 is a(

ξ, ∆
ε · ln(n/δ)

)
-approximate PPR for p(s) with probability at least 1− δ.

E Proof of Lemma 4.2

Proof of Lemma 4.2. According to the description of Algorithm 2, we have ∀i ∈ [R], v ∈

V, r
(i)
v = 1−α

2 ·

(
f

(i)
v +

∑
u:(u,v)∈E

f(i)
u

d(u)

)
. Due to h

(i)
v =

∑i
j=1 f

(j)
v and Observation 4.1,

∑i−1
j=0 r

(j)
v = r

(0)
v + 1−α

2 ·

(
h

(i−1)
v +

∑
u:(u,v)∈E

h(i−1)
u

d(u)

)
. For Observation 4.1 again, we can conclude

h
(i)
v = min

(
r

(0)
v + 1−α

2 ·

(
h

(i−1)
v +

∑
u:(u,v)∈E

h(i−1)
u

d(u)

)
, d(v) · Tv

)
.

F Proof of Lemma 4.4

Proof of Lemma 4.4. Let us consider the running time. The algorithm has R iterations. In each
iteration, the algorithm can visit each neighbor of each node at most once. Thus, the running time for
each iteration is O(|E|). The total running time is O(|E| ·R) = O(|E| · ln(1/ξ)/α).

Let D = max
(

1/(αTs),
√

1/(αTu)
)

(u 6= s). In the remaining of the proof, we consider the
input graph G with minimum degree at least D. Firstly, we observe that the value R is the same in
Algorithm 1 and Algorithm 2, i.e., both algorithms have the same number of iterations. Then notice
that if f (i)

v is equal to r(i−1)
v for all i and v, then we have ∀i ∈ [R],

1. ∀v ∈ V, p(i)
v = p

(i−1)
v + α · r(i−1)

v ,

2. ∀v ∈ V, r(i)
v = (1− α)/2 ·

(
r

(i−1)
v +

∑
(v,u)∈E r

(i−1)
u /d(u)

)
.

Therefore, when f (i)
v is equal to r(i−1)

v for all i and v, vectors p(i), r(i) in both Algorithm 1 and
Algorithm 2 are equal respectively. Thus, when f (i)

v is equal to r(i−1)
v for all i and v, the output of

Algorithm 2 is the same as the output of Algorithm 1. It suffices to show that ∀i ∈ [R], v ∈ V, f (i)
v =

r
(i−1)
v when G has minimum degree at least D.

The proof is by contradiction. Consider the first time that f (i)
v 6= r

(i−1)
v during the execution of

Algorithm 2. We have d(v) · Tv − h(i−1)
v < r

(i−1)
v . Since it is the first time f (i)

v 6= r
(i−1)
v , we know

h
(i−1)
v =

∑i−2
j=0 r

(j)
v according to Observation 4.1. Therefore, we know that

∑i−1
j=0 r

(j)
v > d(v)·Tv . If

v 6= s, according to the choice of Tv , we have
∑i−1
j=0 r

(j)
v > D/(α ·D2) = 1/(αD) which contradicts

to Claim C.2. If v = s, according to the choice of Tv, we have
∑i−1
j=0 r

(j)
v > D/(α · D) = 1/α
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which contradicts to Claim C.1. Thus, we always have ∀i ∈ [R], v ∈ V, f (i)
v = r

(i−1)
v when G has

minimum degree at least D. We conclude that the output of Algorithm 2 is the same as the output of
Algorithm 1 in this case. According to Lemma 3.1, the output is a ξ-approximate PPR vector.

G Proof of Corollary 4.6

Proof of Corollary 4.6. Since the joint sensitivity and non-joint sensitivity of Algorithm 2 are given
by Theorem 4.3. Thus, the ε-DP and joint ε-DP guarantees follow from the Laplace mechanism
(Theorem 2.6).

Next, consider the accuracy of Algorithm 3. If considering joint ε-DP, according to Lemma 4.4, the
output p of PUSHFLOWCAP (Algorithm 2) is a ξ-approximate PPR vector when the minimum degree
of G is at least

√
(2 · (2− α))/(α · σ). Otherwise, the output p of PUSHFLOWCAP (Algorithm 2)

is a ξ-approximate PPR vector when the minimum degree of G is at least (2 · (2 − α))/(α · σ).
Consider i ∈ [n]. By Fact 2.1, with probability at least 1− δ/n, |Yi| ≤ σ

ε · ln(n/δ). By taking union
bound over i ∈ [n], with probability at least 1− δ, maxi∈[n] |Yi| ≤ σ

ε · ln(n/δ). Thus, the output of
Algorithm 3 is a

(
ξ, σε · ln(n/δ)

)
-approximate PPR for p(s) with probability at least 1− δ.

H Proof of Theorem 5.1

Proof of Theorem 5.1. For v ∈ V , consider |max(log(pv · n), 0)−max(log(p′v · n), 0)|. There are
several cases. Without loss of generality, we suppose pv > p′v . In the first case, if both pv, p′v ≤ 1/n,
then we have |max(log(pv · n), 0) − max(log(p′v · n), 0)| = 0 ≤ log(1 + |pv − p′v| · n). In the
second case, pv > 1/n and p′v ≤ 1/n. Then, |max(log(pv · n), 0) − max(log(p′v · n), 0)| =
log(1 + (pv − 1/n) · n) ≤ log(1 + |pv − p′v| · n). In the third case, both pv, p′v > 1/n. Then
|max(log(pv · n), 0) − max(log(p′v · n), 0)| = log(pv/p

′
v) = log(1 + (pv − p′v)/p′v) ≤ log(1 +

|pv − p′v| · n). By combining the above cases, we always have:

|max(log(pv · n), 0)−max(log(p′v · n), 0)|
≤ log(1 + |pv − p′v| · n) (3)

Now, we are able to bound ‖w − w′‖1.

‖w − w′‖1

=

k∑
i=1

|
∑

v∈V :hk(v)=i

hsgn(v) · (max(log(pv · n), 0)

−max(log(p′v · n), 0))|

≤
∑

v∈V :pv 6=p′v

|max(log(pv · n), 0)−max(log(p′v · n), 0)|

≤
∑

v∈V :pv 6=p′v

log(1 + |pv − p′v| · n)

≤m · log(1 + ‖p− p′‖1 · n/m),

where the first inequality follows from triangle inequality, the second inequality follows from
Equation (3), and the last inequality follows from the concavity of log(·).

I Differentially Private InstantEmbedding via Sparse Personalized
PageRank

Theoretically Improved InstantEmbedding via Sparse Personalized PageRank. Notice that
due to Theorem 5.1, a sparser approximate PPR may give lower sensitivity of the InstantEmbedding.
Therefore, we show how the embedding algorithm can be further improved by sparsifying the PPR
vector in a differentially private way. The sparsification procedure is reported in Algorithm 6 which
keeps large entries with good probabilites and will drop small entries of the input vector.
Lemma I.1. DPSPARSIFICATION(p, σ, ε, γ) is ε-DP.
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Proof. Consider a neighboring vector p′ of p i.e., ‖p − p′‖1 ≤ σ. Let S and S′ be the
output of DPSPARSIFICATION(p, σ, ε, γ) and DPSPARSIFICATION(p′, σ, ε, γ) respectively. For
i ∈ [n], Pr[i ∈ S]/Pr[i ∈ S′] =

∫ pi
−∞

ε
2σ e
− ε
σ |x−γ|dx/

∫ p′i
−∞

ε
2σ e
− ε
σ |x−γ|dx. Notice that

exp
(
− ε
σ |x− γ|

)
/ exp

(
− ε
σ |x+ p′i − pi − γ|

)
≤ exp

(
ε
σ |p
′
i − pi|

)
. Therefore, Pr[i ∈ S]/Pr[i ∈

S′] ≤ exp
(
ε
σ |p
′
i − pi|

)
. By similar argument, we can also prove that Pr[i 6∈ S]/Pr[i 6∈ S′] ≤

exp
(
ε
σ |p
′
i − pi|

)
. Hence, ∀X ⊆ [n], Pr[S = X]/Pr[S′ = X] ≤ exp

(
ε
σ‖p

′ − p‖1
)
≤ exp(ε) that

concludes the proof.

Lemma I.2 (Sparisity of DPSPARSIFICATION(p, σ, ε, γ)). If ‖p‖1 ≤ 1 and γ ≥ 3σ
ε ln(n), with

probability at least 1− 1/n, the output S of DPSPARSIFICATION(p, σ, ε, γ) satisfies (1) |S| ≤ 3/γ,
(2) ∀i ∈ S, pi ≥ γ/3, (3) ∀i with pi ≥ 2γ, i ∈ S.

Proof. If pi < γ/3, since γ ≥ 3σ
ε ln(n), the probability that i is added to S is at most

1
2 exp(−2 lnn) = 1/(2n2). By taking union bound over all i ∈ [n], with probability at least
1/(2n), ∀i with pi < γ/3, i 6∈ S. Since ‖p‖1 ≤ 1, |S| ≤ 3/γ. If pi ≥ 2γ, the probability that i is
added to S is at least 1− 1/(2n2). By taking union bound over all i ∈ [n], with probability at least
1/(2n), ∀i with pi ≥ 2γ, i ∈ S.

As a side result, we obtain DP sparse approximate PPR vector by applying composition (Theorem 2.7)
of the sparsification (Algorithm 6) and Laplace mechanism (Theorem 2.6) on our senstivity-bounded
PPR vector (Algorithm 2). We refer readers to Appendix J for more details. In Algorithm 7, we show

Algorithm 6 DPSPARSIFICATION(p, σ, ε, γ)

1: Input: An (approximate PPR) vector p ∈ Rn, a sensitivity upper bound σ of p, a parameter ε for DP, and a
threshold γ.

2: Output: An ε-differentially private set of indices S ⊆ [n].
3: Initialize S ← ∅.
4: For each i ∈ [n], if pi ≤ γ, add i into S with probability 1

2
· exp

(
− ε
σ
· (γ − pi)

)
, otherwise add i into S

with probability 1− 1
2
· exp

(
ε
σ
· (γ − pi)

)
.

5: Output S.

how to get DP InstantEmbedding via DP sparse approximate PPR vector. We record the theoretical

Algorithm 7 DPEMBEDDINGSPARSE(G, s, α, ξ, σ, k, ε, type)

1: Input: Graph G = (V,E), source s ∈ V , teleport probability α, precision ξ, sensitivity parameter σ,
embedding dimension k, DP parameter ε, and type ∈ {joint, non-joint} indicating whether joint ε-DP or
ε-DP is required.

2: Output: ε-DP k-dimensional embedding vector.
3: ε0 ← ε/2.
4: p̂← PUSHFLOWCAP(G, s, α, ξ, σ, type).

5: S ← DPSPARSIFICATION
(
p̂, σ, ε0,

3σ
ε0

lnn
)

.

6: Construct p such that pi = p̂i for i ∈ S and pi = 0 for i ∈ [n] \ S.
7: w ← INSTANTEMBEDDING(p, k).
8: Draw Y1, Y2, · · · , Yk independently from Lap(|S| · log (1 + σ · n/|S|) /ε0).
9: Output w + (Y1, Y2, · · · , Yk).

guarantees of the algorithm in Theorem I.3.
Theorem I.3. The family of (personalized) algorithms {As(G) :=
DPEMBEDDINGSPARSE(G, s, α, ξ, σ, k, ε, joint) | s ∈ V } is joint ε-DP, and
DPEMBEDDINGSPARSE(G, s, α, ξ, σ, k, ε, non-joint) is ε-DP with respect to G for any s ∈ V . In
addition, if the input graph G has a minimum degree at least D, then the joint ε-DP (resp. ε-DP)
output is a (ξ,Oα,ε(σ log(n)))-approximate PPR for p(s) with Oα,ε

(
1

σ logn

)
non-zero entries with

probability at least 1−O(1/n) when σ ≥ Ωα(1/D2) (resp. σ ≥ Ωα(1/D)).

Proof. Firstly, let us consider the DP guarantee. According to Lemma I.1, S is ε0-DP. Since p has |S|
non-zero entries, the sensitivity of w is at most |S| · log(1 + σ · n/|S|). Due to Laplace mechanism
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(Theorem 2.6), given S, the final output is ε0-DP. Since S is also ε0-DP, according to composition
theorem (Theorem 2.7), the overall algorithm is (ε0 + ε0)-DP, i.e., ε-DP.

Due to the proof of Theorem J.1 (see Appendix J), with probability at least 1 − O(1/n), p is a
(ξ,O(σ log(n)/ε))-approximate PPR vector for p(s), and |S| ≤ O

(
ε

σ logn

)
. Due to Fact 2.1 and

union bound, with probability at least 1 − O(1/n), maxi∈[k] |Yi| ≤ |S| · log (1 + σ · n/|S|) /ε0 ·
log n ≤ O(σ−1 log(1 + σ · n)).

J Differetially Private Sparse Approximate PPR

Theorem J.1. Given source s, teleport probability α, precision ξ, sensitivity bound σ and DP
parameter ε, there is an algorithm which is always ε-DP with respect to the input n-node graph G
and in addition outputs (ξ,Oα,ε(σ lnn))-approximate PPR vector with Oα,ε(1/(σ lnn)) non-zero
entries for p(s)with probability at least 1−O(1/n) when G has minimum degree at least Ωα(1/σ).
There is a family of (personalized) algorithms {A1,A2, · · · ,An} which is joint ε-DP with respect
to the input n-node graph G and in addition ∀s ∈ V , As(G) outputs (ξ,Oα,ε(σ lnn))-approximate
PPR vector with Oα,ε(1/(σ lnn)) non-zero entries for p(s) when G has minimum degree at least
Ωα(

√
1/σ) with probability at least 1−O(1/n).

The algorithm that outputs the ε-DP sparse approximate PPR is given in Algorithm 8.

Algorithm 8 DPSPARSEPPR(G, s, α, ξ, σ, ε, joint/non-joint)
1: Input: Graph G = (V,E), source s ∈ V , teleport probability α, precision ξ, sensitivity bound σ, DP

parameter ε, and type ∈ {joint, non-joint} indicating whether joint ε-DP or ε-DP is considered.
2: Output: ε-DP or joint ε-DP approximate PPR vector for p(s).
3: ε0 ← ε/2.
4: p̂← PUSHFLOWCAP(G, s, α, ξ, σ, type).

5: S ← DPSPARSIFICATION
(
p̂, σ, ε0,

3σ
ε0

lnn
)

.

6: For each i ∈ S, let Yi be drawn independently from Lap (σ/ε0)
7: Construct p such that pi = p̂i for i ∈ S. Let pi = Yi = 0 for i ∈ [n] \ S.
8: Output p+ (Y0, Y1, · · · , Yn).

Proof of Theorem J.1. According to Theorem 4.3, the (joint) sensitivity of p̂ is σ. According to
Lemma I.1, set S is ε0-DP. For any fixed set S, the sensitivity of p is always bounded by the
sensitivity of p̂. Therefore, given S, p + (Y0, Y1, · · · , Yn) is ε0-DP due to Laplace mechanism
(Theorem 2.6). According to the composition theorem, Theorem 2.7, the final output is (ε0 + ε0)-DP
which is ε-DP. According to Lemma I.2, with probability at least 1− 1/n, the number of non-zero
entries of the output is O(ε/(σ lnn)).

Next, let us consider the accuracy of the output. Suppose joint ε-DP is considered. If G has minimum
degree at least Ωα(

√
1/σ), according to Lemma 4.4, p̂ is a ξ-approximate PPR vector for p(s).

Suppose ε-DP is considered. If G has minimum degree at least Ωα(1/σ), according to Lemma 4.4, p̂
is a ξ-approximate PPR vector for p(s).

Notice that γ = 3σ
ε0
· lnn. According to Lemma I.2, ‖p− p̂‖∞ ≤ O(γ). According to Fact 2.1, with

probability at least 1− 1/n, maxi∈[n] |Yi| ≤ O(γ). Thus, with probability at least 1−O(1/n), the
output is a (ξ,O(γ))-approximate PPR vector for p(s).

K Additional Experimental Results

Additional baselines We also considered DPNE [30] in our evaluation as a potential baseline.
However, the DPNE algorithm as described [30] is not DP in the setting of edge-DP or joint-DP
unless certain assumptions on the input graph are made.6 Since the paper does not provide edge-DP
or joint-edge DP on arbitrary inputs, like our paper, we omit it from our empirical evaluation.

6This has been confirmed in a personal communication with the authors.
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Figure 3: Sensitivity to the σ parameter measured across three different datasets and three different
metrics – L1 similarity, Recall@100, and Spearman rank correlation coefficient ρ. Best viewed in
colour.

Details on the datasets We provide more detailed description of the datasets. PPI is a protein-
protein interaction dataset, where labels represent hallmark gene sets of specific biological states.
Blogcatalog is a social networks of bloggers, where labels are self-identified topics of their blogs.
Flickr is a photo-based social network, where labels represent self-identified interests of users and
edges represent messages between users.

Additional studies on parameter settings. We report in Figure 3 an extended version of our
analysis of the accuracy of DP PPR in approximating the PPR rankings. We are especially interested
in a reliable mechanism for setting the parameter σ of our algorithm. We present the result according
to three different metrics: L1 similarity (1−L1 distance), Recall@100, and Spearman rank correlation
coefficient ρ. The most indicative metric of the three is Recall@100, since it evaluates the quality of
the nearest neighborhood of the node. We observe good performance across wide range of σ.

We report in Figure 4 comparative analysis of the total residual in the joint DP and non-joint DP
versions. We observe that for almost all range of the sensitivity parameter σ, joint DP offers more
push compared to non-joint DP version of the algorithm.
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Figure 4: PPR residual statistics on two datasets.

20


	Introduction
	Our results and outline of the paper

	Preliminaries
	Personalized PageRank
	Differential Privacy

	Warm-Up: Push-Flow on Graphs with High Degrees
	Push-Flow with Bounded Sensitivity in General Graphs
	Differentially Private Graph Embeddings
	Experiments
	PPR Approximation Accuracy
	Node Classification via Private Embeddings

	Conclusion
	Tightness of the Sensitivity Bound for PPR
	Proof of Lemma 3.1
	Bound of r'x,r'y in the Proof of Theorem 3.2
	Naïve DP PPR for High Degree Graphs
	Proof of Lemma 4.2
	Proof of Lemma 4.4
	Proof of Corollary 4.6
	Proof of Theorem 5.1
	Differentially Private InstantEmbedding via Sparse Personalized PageRank
	Differetially Private Sparse Approximate PPR
	Additional Experimental Results

