
A Proof of results in Section 4
A.1 Auxiliary lemmas
Given a function f which is convex, L-Lipschitz and β-smooth. Define the update rule Gf,η as

Gf,η(w) = w − η∇f(w)− η∆(w)

where ∆(w) is the error in estimating ∇f(w), we assume that ∥∆(w)∥ ≤ b for some b > 0. Next
we show the expansiveness of Gf,η.

Lemma 7. For any η ≤ 2/β, we have

∥Gf,η(w)−Gf,η(v)∥ ≤ ∥w − v∥+ 2ηb

Proof.

∥Gf,η(w)−Gf,η(v)∥
= ∥w − η∇f(w)− η∆(w)− v + η∇f(v) + η∆(v)∥
≤ ∥w − η∇f(w)− v + η∇f(v)∥+ η(∥∆(w)∥+ ∥∆(v)∥)
≤ ∥w − v∥+ η(∥∆(w)∥+ ∥∆(v)∥)
≤ ∥w − v∥+ 2ηb

where the last equality holds because of the expansiveness of the conventional GD.

Now we can present the stability result of Ameta-NSGD.

Lemma 8. (Stability of Ameta-NSGD) In Ameta-NSGD, suppose η ≤ 2/β, where β is the smoothness
parameter of LZ(h). Then Ameta-NSGD is α-uniformly stable with α = L2 Tη

K + LηTb.

Proof. Consider T steps of Ameta-NSGD. Let G1, G2 . . . GT be the noise vector, ∆t =
1
m

∑
Z∈Bt

(∇LZ(ht) − ∇̂LZ(ht)) for t ∈ [T ] and we have ∥∆t∥ ≤ b. We further denote the
I1, . . . IT be the index sets of the mini-batch selected in T iterations. Consider any pair of datasets
S and S′ that differ on kth element. Let h0, h1, . . . hT and h0, h

′
1, . . . h

′
T denote the trajectories of

Ameta-NSGD corresponding to S and S′ respectively. Let ξt = ht − h′
t.

The proof mainly follows from Lemma 3.4 in [19]. For any iteration τ , we fix and the randomness of
Gτ and Iτ . Denote r be the number of occurrences of index k in Iτ . By the expansiveness property
of approximate gradient in Lemma 7, we have

∥ξτ+1∥ ≤ ∥ξτ∥+ 2Lη
r

m
+ 2ηb

Then we can release the randomness of Gτ and Iτ , and note that r is a Binomial random variable
with mean m/K, then

E [∥ξτ+1∥] ≤ E [∥ξτ∥] +
2Lη

K
+ 2ηb

Since ξ0 = 0, then E [∥ξτ∥] ≤ 2Lητ
K + 2ητb

Then since LZ(h) is L-Lipshtiz, thus for any Z, we have

E[LZ(h̄T )− LZ(h̄
′
T )] ≤ L

1

T

T∑
t=1

E[∥ξt∥]

≤ L
1

T

T∑
t=1

2Lηt

K
+ 2ηtb

≤ L2 η(T + 1)

K
+ Lη(T + 1)b

which completes the proof.

14



Algorithm 3: Approximate SGD
input :Initial iterate w0, number of iterations T , parameter spaceW

1 for t = 1, . . . , T do
2 choose vt such that E[vt|w(t)] = ∇f(w(t))

3 update w(t+1) = ProjW
(
w(t) − η(vt +Gt +∆t)

)
where Gt ∼ N (0, σ2Id)

4 end
5 where the Gt is added Gaussian noise to preserve privacy and ∆t is the error in estimating vt.

output :w̄ = 1
T

∑T
t=1 w

(t)

Next we show the convergence rate of SGD with approximate gradients. Consider an SGD algorithm
on a differentiable convex function f ,

Lemma 9. Let M,L, b > 0. Let f be a convex function,W = B(0,M) and w∗ ∈ argminw∈W f(w).
Assume that for all t, ∥vt∥ ≤ L and ∥∆t∥ ≤ b with probability 1. Then

E[f(w̄)]− f(w∗) ≤ M2

2ηT
+

η(L+ b)2

2
+ ησ2d+ 2bM,

where the expectation is taken over the randomness in vt, Gt and ∆t.

Proof. Denote v̂t = vt +Gt +∆t, then by Lemma 14.1 in [29], we have

E
v̂1:T

[
1

T

T∑
t=1

⟨w(t) − w∗, v̂t⟩

]
≤ ∥w

∗∥2

2Tη
+

η

2T

T∑
t=1

E
[
∥v̂t∥2

]
≤ M2

2ηT
+

η(L+ b)2

2
+ ησ2d

For any t > 1, we fix the randomness of v̂1:t−1. Since w(t) only depends on v̂1:t−1, then w(t) is
fixed.

Therefore,

E
v̂t

[
⟨w(t) − w∗, v̂t⟩

]
= ⟨w(t) − w∗,∇f(w(t)) +E[∆t]⟩

= ⟨w(t) − w∗,∇f(w(t))⟩+ ⟨w(t) − w∗,E[∆t]⟩
≥ ⟨w(t) − w∗,∇f(w(t))⟩ − 2bM

≥ f(wt)− f(w∗)− 2bM

The second to the last step holds because
∥∥w(t) − w∗

∥∥ ≤ 2M and ∥∆t∥ ≤ b. The last step is due to
the convexity of f .

By releasing the randomness of v̂1:t−1, summing over t and dividing T , we have

E
v̂1:T

[
1

T

T∑
t=1

(f(w(t))− f(w∗))

]
≤ E

v̂1:T

[
1

T

T∑
t=1

⟨w(t) − w∗, v̂t⟩

]
+ 2bM

≤ M2

2ηT
+

η(L+ b)2

2
+ ησ2d+ 2bM

Combining with the fact that Ev̂1:T [f(w̄) − f(w∗)] ≤ Ev̂1:T

[
1
T

∑T
t=1(f(w

(t))− f(w∗))
]
, we

complete the proof.

A.2 Proof of Theorem 4

Proof. Denote Ên(h, Z̄) be the empirical counterpart of Ên(h; ρ), which is written as

Ên(h, Z̄) =
1

K

∑
Z∈Z̄

LZ(h)

15



Then we have

E[Ên(h̄T ; ρ)]− min
h∈W

Ên(h; ρ) ≤ E[Ên(h̄T , Z̄)]− min
h∈W

Ên(h; ρ) + 4L2 ηT

K
+ 2LηTb (10)

≤ E

[
Ên(h̄T , Z̄)− min

h∈W
Ên(h, Z̄)

]
+ 4L2 ηT

K
+ 2LηTb (11)

≤ M2

2ηT
+

η(2L+ b)2

2
+ ησ2d+ 2bM + 4L2 ηT

K
+ 2LηTb (12)

where (10) is based on the stability result in Lemma 8, (11) follows from the fact that
E
[
minh∈W Ên(h, Z̄)

]
≤ minh∈W E[Ên(h, Z̄)] = minh∈W Ên(h; ρ). Finally, (12) is due to Lemma

9 on the convergence result of SGD with approximate gradient.

By plugging into the value of T , η and b, we obtain the stated bound.

A.3 Proof of Theorem 5

Proof. The excess risk defined in equation (2) can be decomposed into three parts:

E[En(h̄T ; ρ)]− Eρ = A+B + C

where

A = E
[
En(h̄T ; ρ)− Ên(h̄T ; ρ)

]
B = E

[
Ên(h̄T ; ρ)

]
− Ên(w̄; ρ)

C = Ên(w̄; ρ)− Eρ

To bound A, we fix the randomness of the task specific distribution µ and training output h, then

EZ∼µnRµ(wh(Z))−EZ∼µnLZ(h)

= EZ∼µnRµ(wh(Z))−EZ∼µn

[
RZ (wh) +

λ

2
∥wh − h∥2

]
≤ EZ∼µn (Rµ(wh(Z))−RZ(wh(Z)))

≤ 2L2

λn

The first inequality holds since the norm is always non-negative, and the second inequality holds
because wh(Z) is a minimizer of a regularized ERM thus 2L2

λn -replace one stable. Then we release
the randomness of µ and h and obtain

A ≤ 2L2

λn

To bound B, since w̄ ∈ W , by Theorem 4, we have

B = E
[
Ên(h̄T )

]
− Ên(w̄)

≤ E
[
Ên(h̄T )

]
− min

h∈W
Ên(h)

= O

(
ML ·

(
1√
K

+

√
d log(1/δ)

ϵK

))

16



Finally to bound C, given the task µ, we let wµ = ProjWµ
(w̄), then we have

Ên(w̄)− Eρ
= Eµ∼ρEZ∼µn [LZ(w̄)−Eµ∼ρEZ∼µnRµ(wµ)]

= Eµ∼ρEZ∼µn

[
LZ(w̄)−Rµ(wµ)−

λ

2
∥wµ − w̄∥2 + λ

2
∥wµ − w̄∥2

]
= Eµ∼ρEZ∼µn

[
LZ(w̄)−RZ(wµ)−

λ

2
∥wµ − w̄∥2 + λ

2
∥wµ − w̄∥2

]
(13)

≤ λ

2
Eµ∼ρ ∥wµ − w̄∥2 (14)

=
λ

2
V 2

where equation (13) is due to the independence of wµ and Z conditioned on µ, therefore
EZ∼µnRµ(wµ) = EZ∼µnRZ(wµ). Equation (14) holds because LZ(w̄) minimizes RZ(w) +
λ
2 ∥w − w̄∥2.

By combining everything together, we have

E
[
En(wh̄T

)
]
− Eρ ≤

2L2

λn
+O

(
ML ·

(
1√
K

+

√
d log(1/δ)

ϵK

))
+

λ

2
V 2

Let λ = 2L
V

√
1
n , the overall bound becomes

2LV√
n

+O

(
ML ·

(
1√
K

+

√
d log(1/δ)

ϵK

))

B Communication-efficient Meta-learning with DP-FTMRL
In this section, we present the DP-FTMRL algorithm and the guarantee it provides.

Algorithm 4: ADP-FTMRL: Differentially Private Follow-the-Meta-Regularized-Leader

input :Collection of datasets Z̄ = [Z1, . . . ZK ] arriving in a stream, noise variance σ2,
regularization parameter λmeta, approximation error b

1 h1 ← argminh∈W λmeta ∥h∥2. output :h1

2 Server do: T ← InitializeTree(n, σ2, 2L)
3 for t = 1, . . . ,K − 1 do
4 Server sends ht to task t.
5 for task t do
6 Solve RZt,λ(w;ht) and give an estimate ŵht

(Zt) such that ∥ŵht
(Zt)− wht

(Zt)∥ ≤ b
λ

7 Send ∇̂LZt(ht) = −λ(ŵht(Zt)− ht) back to server
8 end
9 Server adds ∇̂LZt(ht) to T : T ← AddToTree(T , t, ∇̂LZt(ht))

10 Server aggregates the gradients: st ← GetSum(T , t)
11 Server computes ht+1 = argminh∈W⟨st, h⟩+ λm

2 ∥h∥
2 output :ht+1

12 end
output :h̄K = 1

K

∑K
t=1 ht

where the functions InitializeTree, AddToTree and GetSum are associated with the tree aggregation
protocol. Roughly speaking, InitializeTree initializes the tree structure T and AddtoTree adds the
gradient L̂Zt(ht) in to T . GetSum returns the sum of {∇L̂Zi(hi)}ti=1 privately, and the returned
value can be expressed as

∑t
i=1∇L̂Zi

(hi) + bt where gt is a zero mean Gaussian random variable.
More details of these functions can be found in Appendix B of [23].

17



Theorem 10. (privacy guarantee) Let ϵ ≤ 2 ln(1/δ). Under Assumption 1, let [h1, . . . hK ]

and h̄K be the outputs of Algorithm 4. By setting σ = 2⌈log(n+1)⌉ ln(1/δ)
ϵ and b =

min

{
L,

Lσ
√

d⌈log(n+1)⌉ ln(n)
K

}
, Algorithm 4 guarantees (ϵ, δ) task-level differential privacy.

Note that since b ≤ L, then we have
∥∥∥∇̂LZt

(ht)
∥∥∥ ≤ ∥∇LZt

(ht)∥+ b ≤ 2L. Thus, the proof of the
privacy guarantee follows similar lines to that of [23, Theorem 4.1].

We measure the performance of ADP-FTMRL by regrets against any w∗ ∈ W defined as

RZ̄(ADP-FTMRL;w
∗) =

1

K

K∑
t=1

LZt
(ht)−

1

K

K∑
t=1

LZt
(w∗)

We rely on the following lemma to provide a regret guarantee of DP-FTMRL, which is stated as
follows

Lemma 11. ([30, Lemma 7]) Let ϕ1 : C → R be a convex function s.t. θ1 ∈ argminθ∈C ϕ1(θ)
exists. Let Ψ(θ) be a convex function s.t. ϕ2(θ) = ϕ1(θ) + Ψ(θ) is 1-strongly convex w.r.t. ∥·∥-norm.
Let θ2 ∈ argminθ∈C ϕ2(θ). Then for any b in the subgradient of Ψ at θ1, the following is true:
∥θ1 − θ2∥∗ ≤ ∥b∥∗. Here ∥·∥∗ is the dual norm of ∥·∥.
Theorem 12. (Regret guarantee) Recall the settings in Theorem 10. Let {h1, . . . hK} be the outputs
of ADP-FTMRL. Then, for any w∗ ∈ W , w.p. at least 1− β over the algorithm’s randomness, we have

R(ADP-FTMRL;w
∗) = O

LM ·

 1√
K

+

√
d1/2 ln2(1/δ) ln(1/β)

ϵn


The proof follows similar lines to the proof of [23, Theorem 5.1] with a slight modification, where
we take into account the effect of the gradient approximation error. The proof is provided here for
completeness.

Proof. By the end of iteration t, we have

ht+1 = argmin
h∈W

⟨st, h⟩+
λm

2
∥h∥2 + ⟨bt, h⟩

= argmin
h∈W

t∑
i=1

⟨∇̂LZi
(hi), h⟩+

λm

2
∥h∥2 + ⟨bt, h⟩

= argmin
h∈W

t∑
i=1

⟨∇LZi
(hi) + ∆i, h⟩+

λm

2
∥h∥2 + ⟨bt, h⟩

= argmin
h∈W

t∑
i=1

⟨∇LZi
(hi), h⟩+

λm

2
∥h∥2 + ⟨bt +

t∑
i=1

∆i, h⟩

where ∆i is the approximation error for ∇̂LZi(hi). Denote et = bt +
∑t

i=1 ∆i, since we have

∥∆i∥ ≤ b ≤ Lσ
√

d⌈log(n+1)⌉ ln(n)
K and ∥bt∥ ≤ Lσ

√
d⌈log(n+ 1)⌉ ln(n/β) with probability 1− β.

Therefore, with probability over 1− β, the norm of nt is bounded by

∥et∥ ≤
t∑

i=1

∥∆i∥+ ∥bt∥ = O
(
Lσ
√
d⌈log(n+ 1)⌉ ln(n/β)

)
Therefore, by denoting the non-private objective as h̃t = argminh∈W

∑t
i=1⟨∇LZi(hi), h⟩ +

λm

2 ∥h∥
2. By Lemma 11, we can bound

∥∥∥h̃t+1 − ht+1

∥∥∥ by∥∥∥h̃t+1 − ht+1

∥∥∥ ≤ ∥et∥
λ

18



Finally, we can bound the regret as

RZ̄(ADP-FTMRL;w
∗) =

1

K

K∑
t=1

LZt
(ht)−

1

K

K∑
t=1

LZt
(w∗)

≤ 1

K

K∑
t=1

⟨∇LZt(ht), ht − h∗⟩

=
1

K

K∑
t=1

⟨∇LZt
(ht), ht − h̃t + h̃t − h∗⟩

=
1

K

K∑
t=1

⟨∇LZt
(ht), h̃t − h∗⟩+ 1

K

K∑
t=1

⟨∇LZt
(ht), ht − h̃t⟩ (15)

The first term of (15) can be bounded by
(

L2

λ + λ
2n

(
∥h∗∥2 − ∥h1∥2

))
[[31], Theorem 5.2]. The

second term can be bounded by the concentration bound of ∥et∥, such that

1

K

K∑
t=1

⟨∇LZt(ht), ht − h̃t⟩ ≤
1

K

K∑
t=1

L
∥∥∥h̃t+1 − ht+1

∥∥∥ ≤ O

(
Lσ
√

d⌈log(n+ 1)⌉ ln(n/β)
λ

)
By setting λ optimally and plugging into the value of σ, we complete the proof.

The utility guarantee of ADP-FTMRL is therefore derived via online-to-batch conversion [32].

Theorem 13. (Utility guarantee) Recall the settings in Theorem 10. With probability 1− β over the
algorithm’s randomness, we have

E[Ê(h̄K ; ρ)]− min
h∈W

Ê(h; ρ) ≤ O

LM ·

 1√
K

+

√
d1/2 ln2(1/δ) ln(1/β)

ϵn


Finally we can obtain the transfer risk in a similar way as in Section 4, which is stated as follows:

Theorem 14. (Transfer risk) Recall the settings in Theorem 10. We have

E[En(h̄K ; ρ)]− Eρ ≤
2L2

λn
+

λ

2
V 2 +O

LM ·

 1√
K

+

√
d1/2 ln2(1/δ) ln(1/β)

ϵn


By letting λ = 2L

V

√
1
n , we have

E[En(h̄K ; ρ)]− Eρ ≤
2LV√

n
+O

LM ·

 1√
K

+

√
d1/2 ln2(1/δ) ln(1/β)

ϵn


where h̄K is the output of ADP-FTMRL and the expectation is taken w.r.t. Z̄ and the inner randomness
of the algorithm.

C Additional Experiments
We evaluate our single- and multi-cluster meta learning algorithms on the Omniglot [28] benchmark
dataset for few-shot classification tasks. Omniglot contains 1623 characters (i.e., 1623 classes)
and each character contains 20 (28× 28) black and white images. This benchmark dataset is split
into training and testing data as follows: the training dataset contains all data samples from 1461
characters while the testing dataset contains the data points of the remaining 162 characters. The
training dataset is used in the meta training to obtain the meta models, and the testing dataset is used
to evaluate the accuracy of the base learner (for a given task) with respect to the learned meta models.

In our experiments, we set the total number of tasks (users) K = 50000. For any given task, the goal
is to perform an M -shot N -way classification. In an M -shot N -way classification, we sample N

19



classes (N characters) uniformly from the testing classes (i.e., out of 162 characters) and subsequently
sample M + 1 data points from each class. Among these M + 1 data points, M of them are used for
training and the remaining one is for testing. We use the same network structure as in [1, 2, 4] with 4
convolutional modules. The code is partly based on the public repo in [33].

We focus on the 5-shot 5-way classification setting. We use SGD as the base learner for the single
cluster algorithm and Adam as the base learner for the multi-cluster algorithm. We follow similar
hyperparameter settings for the step size and the number of iterations for the base learner as in [2]. In
the meta training phase of our algorithms, we sample K = 50000 few-shot classifications tasks as
our training task datasets. We set the number of iterations for the meta training as T = 20000 and the
training shots (the number of training data points per class) as 10. We set the regularization parameter
λ = 0.1, the clip norm L̂ = 0.5, the batch size = 25, the privacy parameter ϵ ∈ {3, 10,∞}, where
ϵ =∞ refers to the non-private setting, and the number of clusters q ∈ {1, 2}. That is, we report the
accuracy resulting from different settings of the privacy parameter (corresponding to different values
of the noise variance) in both the single-cluster (q = 1) and the 2-cluster (q = 2) cases. We report
results with 95% confidence interval.

Table 1: Accuracy results on Omniglot few-shot classification task, q is the number of meta models
and ϵ is the privacy parameters

(q, ϵ) 5-shot 5-way

(1, 3) 75± 1.7%
(1, 10) 85.4± 1.4%
(1,∞) 94.2± 0.9%

(2, 3) 78.5± 2.1%
(2, 10) 79.3± 1.8%
(2,∞) 85.4± 2%

Compared to the non-private baseline (ϵ =∞), our single-cluster private algorithm has about 8.8%
accuracy drop for ϵ = 10. This accuracy loss increases to 19.2% with higher privacy (ϵ = 3).
Similar accuracy gaps of 6.1% for ϵ = 10 and 6.9% for ϵ = 3 are also reported in the multi-cluster
algorithm. We note that the multi-cluster algorithm does not lead to any noticeable improvement in
accuracy compared to the single-cluster algorithm. One explanation for that is that the underlying task
distribution of the Omniglot benchmark seems to be well represented by a single meta model, and
hence, using the clustering-based algorithm does not necessarily yield an improved performance (let
alone the fact that the algorithm will also have a slower convergence to a good solution). This is indeed
what we observe in our experiments for the 2-cluster setting. In particular, in these experiments, we
observed that almost all the users eventually fall into one cluster as the algorithm converges. For
example, in the setting where q = 2 and ϵ = 3, our results showed that 97.7% of the sampled users
(tasks) eventually chose the same meta model to update.

In [8], the authors report accuracy around 65% for the 5-shot 5-way Omniglot few-shot classification
with ϵ = 9.5 and 106 sampled tasks. Our algorithm attains a noticeable improvement in accuracy
(85.4%) with comparable privacy guarantee (ϵ = 10) and only 5 × 104 sampled tasks. Even with
stronger privacy guarantee (ϵ = 3), our algorithms still achieve better performance (75% for single-
cluster training and 78.5% for 2-cluster training). Moreover, we provide task-level differential privacy
guarantee while [8] provides record-level differential privacy.

20


	Introduction
	Preliminaries
	Learning with Meta Regularization
	Meta Loss and proxy transfer risk

	Private Meta Learning with Noisy SGD
	Private Clustering-Based Meta Learning
	Experiments
	Conclusion and Future Work
	Proof of results in Section 4
	Auxiliary lemmas
	Proof of Theorem 4
	Proof of Theorem 5

	Communication-efficient Meta-learning with DP-FTMRL
	Additional Experiments

