
Appendix469

In Sec. A, we present the proofs for the lemmas, theorems, and corollaries presented in the main body470

of our work. Sec. B discusses the correspondence of existing methods to specific cases within our471

framework. In Sec. C, we provide a detailed presentation of our final algorithm, UDIL, including an472

algorithmic description, a visual diagram, and implementation details. We introduce the experimental473

settings, including the evaluation metrics and specific training schemes. Finally, in Sec. D, we present474

additional empirical results with varying memory sizes and provide more visualization results.475

A Proofs of Lemmas, Theorems, and Corollaries476

Before proceeding to prove any lemmas or theorems, we first introduce three crucial additional lemmas477

that will be utilized in the subsequent sections. Among these, Lemma A.1 offers a generalization478

bound for any weighted summation of ERM losses across multiple domains. Furthermore, Lemma A.2479

provides a generalization bound for a weighted summation of labeling functions within a given domain.480

Lastly, we highlight Lemma 3 in [4] as Lemma A.3, which will be used to establish the upper bound481

for Lemma 3.3.482

Lemma A.1 (Generalization Bound of ↵-weighted Domains). Let H be a hypothesis space of483

VC dimension d. Assume Nj denotes the number of the samples collected from domain j, and484

N =
P
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Nj is the total number of the examples collected from all domains. Then for any ↵j > 0485

and � 2 (0, 1), with probability at least 1� �:486
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Proof. Suppose each domain Dj has a deterministic ground-truth labeling function fj : Rn
! {0, 1}.487

Denote as b✏↵ ,P
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where Rj,k = (↵jNj

N
) · h(xk) 6=fj(xk) is a random variable that takes the values in {

↵jNj

N
, 0}. By the489

linearity of the expectation, we have ✏↵(h) = E[b✏↵(h)]. Following [2, 36], we have490
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where in Eqn. 20, b✏0
↵
(h) is the ↵-weighted empirical loss evaluated on the “ghost” set of examples491

{X
0

j
}; Eqn. 22 is yielded by applying Hoeffding’s inequalities [23] and introducing the growth492

function ⇧H [2, 36, 56] at the same time; Eqn. 24 is achieved by using the fact ⇧H(2N) 493

(e·2N/d)d  (2N)d, where d is the VC-dimension of the hypothesis set H. Finally, by setting Eqn. 24494

to � and solve for the error tolerance ✏ will complete the proof.495

Lemma A.2 (Generalization Bound of �-weighted Labeling Functions). Let D be a single domain496

and X = {xi}
N

i
be a collection of samples drawn from D; H is a hypothesis space of VC dimension497
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d. Suppose {fj : Rn
! {0, 1}}j is a set of different labeling functions. Then for any �j > 0 and498

� 2 (0, 1), with probability at least 1� �:499
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Proof. Denote as ✏�(h) ,
P

j
�j✏D(h, fj) the �-weighted error on domain D and {fj}j the set of500

the labeling functions , and b✏� , P
j
�jb✏D(h, fj) as the �-weighted empirical loss evaluated on501

different labeling functions. We have502
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where Ri =
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�j h(xi) 6=fj(xi) 2 [0,

P
j
�j ] is a new random variable.503

Then we have504
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where in Eqn. 28, b✏0
�
(h) is the �-weighted empirical loss evaluated on the “ghost” set of examples505

X
0; Eqn. 30 is yielded by applying Hoeffding’s inequalities [23] and introducing the growth function506

⇧H [2, 36, 56] at the same time; Eqn. 31 is achieved by using the fact ⇧H(2N)  (e·2N/d)d  (2N)d,507

where d is the VC-dimension of the hypothesis set H. Finally, by setting Eqn. 31 to � and solve for508

the error tolerance ✏ will complete the proof.509

Lemma A.2 asserts that altering or merging multiple target functions does not impact the generaliza-510

tion error term, as long as the sum of the weights for each loss
P

j
�j remains constant and the same511

dataset X is used for estimation. Next we highligt the Lemma 3 in [4] again, as it will be utilized for512

proving 3.3.513

Lemma A.3. For any hypothesis h, h0
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0,514

|✏D(h, h
0)� ✏D0(h, h0)|  1

2dH�H(D,D
0). (32)

Proof. By definition, we have515

dH�H(D,D
0) = 2 sup

h,h02H

|Px⇠D[h(x) 6= h
0(x)]� Px⇠D0 [h(x) 6= h

0(x)]|

= 2 sup
h,h02H

|✏D(h, h
0)� ✏D0(h, h0)|

� 2 |✏D(h, h
0)� ✏D0(h, h0)| .

Now we are ready to prove the main lemmas and theorems in the main body of our work.516

Lemma 3.1 (ERM-Based Generalization Bound). Let H be a hypothesis space of VC dimension517

d. When domain t arrives, there are Nt data points from domain t and eNi data points from each518

previous domain i < t in the memory bank. With probability at least 1� �, we have:519
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Proof. Simply using Lemma A.1 and setting ↵i = 1 for every i 2 [t] completes the proof.520

Lemma 3.2 (Intra-Domain Model-Based Bound). Let h 2 H be an arbitrary function in the521

hypothesis space H, and Ht�1 be the model trained after domain t� 1. The domain-specific error522

✏Di(h) on the previous domain i has an upper bound:523
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where ✏Di(h,Ht�1) , Ex⇠Di [h(x) 6= Ht�1(x)].524

Proof. By applying the triangle inequality [4] of the 0-1 loss function, we have525
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Lemma 3.3 (Cross-Domain Model-Based Bound). Let h 2 H be an arbitrary function in the526

hypothesis space H, and Ht�1 be the function trained after domain t� 1. The domain-specific error527

✏Di(h) evaluated on the previous domain i then has an upper bound:528
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divergence between distribution P and Q, and ✏Dt(h,Ht�1) , Ex⇠Dt [h(x) 6= Ht�1(x)].530

Proof. By the triangle inequality used above and Lemma A.3, we have531
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Theorem 3.4 (Unified Generalization Bound for All Domains). Let H be a hypothesis space of532

VC dimension d. Let N = Nt +
P

t�1
i

eNi denoting the total number of data points available to the533

training of current domain t, where Nt and eNi denote the numbers of data points collected at domain534

t and data points from the previous domain i in the memory bank, respectively. With probability at535

least 1� �, we have:536
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Proof. By applying Lemma 3.2 and Lemma 3.3 to each of the past domains, we have539
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Table 4: Unification of Existing Methods under UDIL.

↵i �i �i Transformed Objective Condition

UDIL (Ours) [0, 1] [0, 1] [0, 1] - -

LwF [29] 0 1 0 LLwF(h) = b̀Xt(h) + �o
b̀
Xt(h,Ht�1) �o = t� 1
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Re-organizing the terms will give us540
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Then applying Lemma A.1 and Lemma A.2 jointly to Eqn. 37 will complete the proof.541

B UDIL as a Unified Framework542

In this section, we will delve into a comprehensive discussion of our UDIL framework, which serves543

as a unification of numerous existing methods. It is important to note that we incorporate methods544

designed for task incremental and class incremental scenarios that can be easily adapted to our domain545

incremental learning. To provide clarity, we will present the corresponding coefficients {↵i,�i, �i}546

of each method within our UDIL framework (refer to Table 4). Furthermore, we will explore the547

conditions under which these coefficients are included in this unification process.548

Learning without Forgetting (LwF) [29] was initially proposed for task-incremental learning,549

incorporating a combination of shared parameters and task-specific parameters. This framework can550

be readily extended to domain incremental learning by setting all “domain-specific” parameters to be551

the same in a static model architecture. LwF was designed for the strict continual learning setting,552

where no data from past tasks is accessible. To overcome this limitation, LwF records the predictions553

of the history model Ht�1 on the current data Xt at the beginning of the new task t. Subsequently,554

knowledge distillation (as defined in Definition 4.2) is performed to mitigate forgetting:555
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[Ht�1(x)]k · [log([h(x)]k)] = b̀Xt(h,Ht�1), (38)

where Ht�1(x), h(x) 2 RK are the class distribution of x over K classes produced by the history556

model and current model, respectively. The loss for learning the current task Lnew is defined as557

Lnew(h) , � 1
Nt

X

(x,y)2St

KX
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y=k · [log([h(x)]k)] = b̀Xt(h). (39)

LwF uses a “loss balance weight” �o to balance two losses, which gives us its final loss for training:558

LLwF(h) , Lnew(h) + �o · Lold(h,Ht�1). (40)

In LwF, the default setting assumes the presence of two domains (tasks) with �o = 1. However, it559

is possible to learn multiple domains continuously using LwF’s default configuration. To achieve560
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this, the current domain t can be weighed against the number of previous domains (1 versus t� 1).561

Specifically, if there is no preference for any particular domain, �o should be set to t�1. Remarkably,562

this is equivalent to setting {�i = 1,↵i = �i = 0} in our UDIL framework (Row 2 in Table 4).563

Experience Replay (ER) [46] serves as the fundamental operation for replay-based continual learning564

methods. It involves storing and replaying a subset of examples from past domains during training.565

Following the description and implementation provided by [6], ER operates as follows: during each566

training iteration on domain t, a mini-batch Bt of examples is sampled from the current domain,567

along with a mini-batch B
0

t
from the memory. These two mini-batches are then concatenated into a568

larger mini-batch (Bt [B
0

t
), upon which average gradient descent is performed:569
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0
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Suppose that each time the mini-batch of past-domain data is perfectly balanced, meaning that each570

domain has the same number of examples in B
0

t
. In this case, Eqn. 43 can be further decomposed as571

follows:572

LER(h) =
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where B
0

i
= {(x, y)|(x, y) 2 (B0

t
\Mi)} is the subset of the mini-batch that belongs to domain i.573

Now, by dividing both sides of Eqn. 44 by (|Bt|+|B
0
t|/|Bt|) and comparing it to Theorem 3.4, we can574

include ER in our UDIL framework when the condition |Bt| = |B
0
t|/(t�1) is satisfied. In this case,575

ER is equivalent to {↵i = �i = 0, �i = 1} in UDIL (Row 3 in Table 4). It is important to note that576

this condition is not commonly met throughout the entire process of continual learning. It can be577

achieved by linearly scaling up the size of the mini-batch from the memory (which is feasible in the578

early domains) or by linearly scaling down the mini-batch from the current-domain data (which may579

cause a drop in model performance). It is worth mentioning that this incongruence highlights the580

intrinsic bias of the original ER setting towards current domain learning and cannot be rectified by581

adjusting the batch sizes of the current domain or the memory. However, it does not weaken our582

claim of unification.583

Dark Experience Replay (DER++) [6] includes an additional dark experience replay, i.e., knowledge584

distillation on the past domain exemplars, compared to ER [46]. Now under the same assumptions585

(balanced sampling strategy and |Bt| = |B
0
t|/(t�1)) as discussed for ER, we can utilize Eqn. 44 to586

transform the DER++ loss as follows:587
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In this scenario, DER++ is equivalent to {↵i = �i = 1/2,�i = 0} in UDIL (Row 4 in Table 4).588

Complementary Learning System based Experience Replay (CLS-ER) [3] involves the mainte-589

nance of two history models, namely the plastic model H(p)
t�1 and the stable model H(s)

t�1, throughout590

the continual training process of the working model h. Following each update of the working model,591

the two history models are stochastically updated at different rates using exponential moving averages592

(EMA) of the working model’s parameters:593

H
(i)
t�1  ↵

(i)
·H

(i)
t�1 + (1� ↵

(i)) · h, i 2 {p, s}, (46)

where ↵
(p)
 ↵

(s) is set such that the plastic model undergoes rapid updates, allowing it to swiftly594

adapt to newly acquired knowledge, while the stable model maintains a “long-term memory” spanning595

multiple tasks. Throughout training, CLS-ER assesses the certainty generated by both history models596

and employs the logits from the more certain model as the target for knowledge distillation.597

In the general formulation of the UDIL framework, the history model Ht�1 is not required to be a598

single model with the same architecture as the current model h. In fact, if there are no constraints on599
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memory consumption, we have the flexibility to train and preserve a domain-specific model Hi for600

each domain i. During testing, we can simply select the prediction with the highest certainty from each601

domain-specific model. From this perspective, the “two-history-model system” employed in CLS-ER602

can be viewed as a specific and limited version of the all-domain history models. Consequently, we603

can combine the two models used in CLS-ER into a single history model Ht�1 as follows:604

Ht�1(x) ,

8
<

:
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(p)
t�1(x) if [H(p)

t�1(x)]y > [H(s)
t�1(x)]y

H
(s)
t�1(x) o.w.

(47)

where (x, y) 2M is an arbitrary exemplar stored in the memory bank.605

At each iteration of training, CLS-ER samples a mini-batch Bt from the current domain and a606

mini-batch B
0

t
from the episodic memory. It then concatenates Bt and B

0

t
for the cross entropy loss607

minimization with the ground-truth labels, and uses B0

t
to minimize the MSE loss between the logits608

of h and Ht�1. To align the loss formulation of CLS-ER with that of ESM-ER [50], here we consider609

the scenarios where the losses evaluated on Bt and B
0

t
are individually calculated, i.e., we consider610

b̀
Bt(h) + b̀B0

t
(h) instead of b̀Bt[B

0
t
(h). Based on the assumption from [20], the MSE loss on the611

logits is equivalent to the cross-entropy loss on the predictions under certain conditions. Therefore,612

following the same balanced sampling strategy assumptions as in ER, the original CLS-ER training613

objective can be transformed as follows:614

LCLS-ER(h) = b̀Bt(h) + b̀B0
t
(h) + �b̀B0

t
(h,Ht�1) (48)
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i
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�

t�1
b̀
B

0
i
(h,Ht�1). (49)

Therefore, by imposing the constraint ↵i+�i+�i = 1, we find that � = t�2. Substituting this value615

back into �/t�1 yields the equivalence that CLS-ER corresponds to {↵i = �/�+1,�i = 0, �i = 1/�+1}616

in UDIL, where � = t� 2 (Row 5 in Table 4).617

Error Sensitivity Modulation based Experience Replay (ESM-ER) [50] builds upon CLS-ER by618

incorporating an additional error sensitivity modulation module. The primary goal of ESM-ER is to619

mitigate sudden representation drift caused by excessively large loss values during current-domain620

learning. Let’s consider (x, y) ⇠ Dt, which represents a sample from the current domain batch. In621

ESM-ER, the cross-entropy loss value of this sample is evaluated using the stable model H(s)
t�1 and622

can be expressed as:623

`(x, y) = � log([H(s)
t�1(x)]y). (50)

To screen out those samples with a high loss value, ESM-ER assigns each sample a weight � by624

comparing the loss with their expectation value, for which ESM-ER uses a running estimate µ as its625

replacement. This can be formulated as follows:626

�(x) =

(
1 if `(x, y)  � · µ

µ

`(x,y) o.w.
(51)

where � is a hyperparameter that determines the margin for a sample to be classified as low-loss.627

For the sake of analysis, we make the following assumptions: (i) � = 1; (ii) the actual expected loss628

value Ex,y[`(x, y)] is used instead of the running estimate µ; (iii) a hard screening mechanism is629

employed instead of the current re-scaling approach. Based on these assumptions, we determine the630

sample-wise weights �? according to the following rule:631

�
?(x) =

(
1 if `(x, y)  Ex,y[`(x, y)]

0 o.w.
(52)

Under the assumption that the loss value `(x, y) follows an exponential distribution, denoted632

as `(x, y) ⇠ Exp(�0), where the probability density function is given by f(`(x, y),�0) =633

�0e
��0`(x,y), we can calculate the expectation of the loss as Ex,y[`(x, y)] = 1/�0. Based on634

19



this, we can now determine the expected ratio r of the unscreened samples in a mini-batch using the635

following equation:636

r =

Z 1
�0

0
1 · �0e

��0`(x,y) d`(x, y) =

Z 1

0
e
�y

dy = (1� e
�1). (53)

The ratio r represents the proportion of effective samples in the current-domain batch, as the weights637

�
?(x) of the remaining samples are set to 0 due to their high loss value. Consequently, the original638

training loss of ESM-ER can be transformed as follows:639

LESM-ER(h) = r · b̀Bt(h) + b̀B0
t
(h) + �b̀B0

t
(h,Ht�1) (54)

= r · b̀Bt(h) +
t�1X

i=1

1
t�1
b̀
B

0
i
(h) +

t�1X

i=1

�

t�1
b̀
B

0
i
(h,Ht�1). (55)

After applying the constraint of ↵i + �i + �i = 1, we obtain � = r · (t� 1)� 1. Substituting this640

value back into �/r(t�1), we find that ESM-ER is equivalent to {↵i = �/�+1,�i = 0, �i = 1/�+1} in641

UDIL, where � = r · (t� 1)� 1 = (1� e
�1)(t� 1)� 1 should be set (Row 6 in Table 4).642

Algorithm 1 Unified Domain Incremental Learning (UDIL) for Domain t Training
Require: history model Ht�1 = Pt�1 � Et�1, current model h✓ = p � e, discriminator model d�;
Require: dataset from the current domain St, memory bank M = {Mi}

t�1
i=1;

Require: training steps S, batch size B, learning rate ⌘;
Require: domain alignment strength coefficient �d, hyperparameter for generalization effect C.

1: h✓  Ht�1 . Initialization of the current model.
2: ⌦ , {↵i,�i, �i} {1/3, 1/3, 1/3}, for 8i 2 [t� 1] . Initialization of the replay coefficient ⌦.
3: for s = 1, · · · , S do
4: Bt ⇠ St;Bi ⇠Mi, 8i 2 [t� 1] . Sample a mini-batch of data from all domains.

5: � �� ⌘ · �d ·r�Vd(d, e,
�

⌦) . Discriminator training with Eqn. 16.

6: ⌦ ⌦� ⌘ ·r⌦V0-1(
�

h,⌦) . Find a tighter bound with Eqn. 15.

7: ✓  ✓ � ⌘ ·r✓(Vl(h✓,

�

⌦)� �dVd(d, e,
�

⌦)) . Model training with Eqn. 14 and Eqn. 16.
8: end for
9: Ht  h

10: M BalancedSampling(M,St)
11: return Ht . For training on domain t+ 1.

C Implementation Details of UDIL643

This section delves into the implementation details of the UDIL algorithm. The algorithmic descrip-644

tion of UDIL is presented in Alg. 1 and a diagram is presented in Fig. 2. However, there are several645

practical issues to be further addressed here, including (i) how to exert the constraints of probability646

simplex ([↵i,�i, �i] 2 S2) and (ii) how the memory is maintained. These two problems will be647

addressed in Sec. C.1 and Sec. C.2. Next, Sec. C.3 will cover the evaluation metrics used in this648

paper. Finally, Sec. C.4 and Sec. C.5 will present a detailed introduction to the main baselines and649

the specific training schemes we follow for empirical evaluation.650

C.1 Modeling the Replay Coefficients ⌦ = {↵i,�i, �i}651

Instead of directly modeling ⌦ in a way such that it can be updated by gradient descent and satisfies652

the constraints that ↵i+�i+�i = 1 and ↵i,�i, �i � 0 at the same time, we use a set of logit variables653

{↵̄i, �̄i, �̄i} 2 R3 and the softmax function to indirectly calculate ⌦ during training. Concretely, we654

have:655

"
↵i

�i

�i

#
= softmax

0

@

2

4
↵̄i

�̄i

�̄i

3

5

1

A =

"exp(↵̄i)/Zi

exp(�̄i)/Zi

exp(�̄i)/Zi

#
, (56)
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Figure 2: Diagram of UDIL. M = Mi
t�1
i=1 represents the memory bank that stores all the past

exemplars. St corresponds to the dataset from the current domain t, and the current model h = p � e

is depicted separately in the diagram. The three different categories of losses are illustrated in the
dark rectangles, while the weighting effect of the learned replay coefficient ⌦ = {↵i,�i, �i}

t�1
i=1 is

depicted using dashed lines.

where Zi = exp(↵̄i) + exp(�̄i) + exp(�̄i) is the normalizing constant. At the beginning of training656

on domain t, the logit variables {↵̄i, �̄i, �̄i} = {0, 0, 0} are initialized to all zeros, since we do not657

have any bias towards any upper bound. During training, they are updated in the same way as the658

other parameters with gradient descent.659

C.2 Memory Maintenance with Balanced Sampling660

Different from DER++ [6] and its following work [3, 50] that use reservoir sampling [58] to maintain661

the episodic memory, UDIL adopts a random balanced sampling after training on each domain. To662

be more concrete, given a memory bank with fixed size |M|, after domain t’s training is complete,663

we will assign each domain a quota of |M|/t. For the current domain t, we will randomly sample664

b|M|/tc exemplars from its dataset; for all the previous domains i 2 [t� 1], we will randomly swap665

out d|M|/t�1� |M|/te exemplars from the memory to make sure each domain has roughly the same666

number of exemplars. To ensure a fair comparison, we use the same random balanced sampling667

strategy for all the other baselines. The following Alg. 2 shows the detailed procedure of random668

balanced sampling.

Algorithm 2 Balanced Sampling for UDIL

Require: memory bank M = {Mi}
t�1
i=1 , current domain dataset St, domain ID t.

1: for i = 1, · · · , t� 1 do
2: for j = 1, · · · , d|M|/t�1� |M|/te do
3: (x, y) RandomSample(Mi)
4: (x0

, y
0) RandomSample(St)

5: Swap (x0
, y

0) into M, replacing (x, y)
6: end for
7: end for
8: return M

669

C.3 Evaluation Metrics670

In continual learning, many evaluation metrics are based on the Accuracy Matrix R 2 RT⇥T ,671

where T represents the total number of tasks (domains). In the accuracy matrix R, the entry Ri,j672

corresponds to the accuracy of the model when evaluated on task j after training on task i. With this673

definition in mind, we primarily focus on the following specific metrics:674
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Average Accuracy (Avg. Acc.) up until domain t represents the average accuracy of the first t675

domains after training on these domains. We denote it as At and define it as follows:676

At , 1
t

tX

i=1

Rt,i. (57)

In most of the continual learning literature, the final average accuracy AT is usually reported. In our677

paper, this metric is reported in the column labeled “overall”. The average accuracy of a model is a678

crucial metric as it directly corresponds to the primary optimization goal of minimizing the error on679

all domains, as defined in Eqn. 3.680

Additionally, to better illustrate the learning (and forgetting) process of a model across multiple681

domains, we propose the use of the "Avg. of Avg. Acc." metric At1:t2 , which represents the average682

of average accuracies for a consecutive range of domains starting from domain t1 and ending at683

domain t2. Specifically, we define this metric as follows:684

At1:t2 , 1
t2�t1+1

t2X

i=t1

Ai. (58)

This metric provides a condensed representation of the trend in accuracy variation compared to685

directly displaying the entire series of average accuracies {A1, A2, · · · , AT }. We report this Avg. of686

Avg. Acc. metric in all tables (except in Table 2 due to the limit of space).687

Average Forgetting (i.e., ‘Forgetting’ in the main paper) defines the average of the largest drop of688

accuracy for each domain up till domain t. We denote this metric as Ft and define it as follows:689

Ft , 1
t�1

t�1X

j=1

ft(j), (59)

where ft(j) is the forgetting on domain j after the model completes the training on domain t, which690

is defined as:691

ft(j) , max
l2[t�1]

{Rl,j �Rt,j}. (60)

Typically, the average forgetting is reported after training on the last domain T . Measuring forgetting692

is of great practical significance, especially when two models have similar average accuracies. It693

indicates how a model balances stability and plasticity. If a model P achieves a reasonable final694

average accuracy across different domains but exhibits high forgetting, we can conclude that this695

model has high plasticity and low stability. It quickly adapts to new domains but at the expense of696

performance on past domains. On the other hand, if another model S has a similar average accuracy697

to P but significantly lower average forgetting, we can infer that the model S has high stability and698

low plasticity. It sacrifices performance on recent domains to maintain a reasonable performance699

on past domains. Hence, to gain a comprehensive understanding of model performance, we focus700

on evaluating two key metrics: Avg. Acc. and Forgetting. These metrics provide insights into701

how models balance stability and plasticity and allow us to assess their overall performance across702

different domains.703

Forward Transfer Wt quantifies the extent to which learning from past t� 1 domains contributes to704

the performance on the next domain t. It is defined as follows:705

Wt , 1
t�1

tX

i=2

Ri�1,i � ri, (61)

where ri is the accuracy of a randomly initialized model evaluated on domain i. For domain706

incremental learning, where the model does not have access to future domain data and does not707

explicitly optimize for higher Forward Transfer, the results of this metric are typically random.708

Therefore, we do not report this metric in the complete tables presented in this section.709

C.4 Introduction to Baselines710

We compare UDIL with the state-of-the-art continual learning methods that are either specifically711

designed for domain incremental learning or can be easily adapted to the domain incremental learning712
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setting. Exemplar-free baselines include online Elastic Weight Consolidation (oEWC) [51], Synaptic713

Intelligence (SI) [66], and Learning without Forgetting (LwF) [29]. Memory-based domain incremen-714

tal learning baselines include Gradient Episodic Memory (GEM) [34], Averaged Gradient Episodic715

Memory (A-GEM) [8], Experience Replay (ER) [46], Dark Experience Replay (DER++) [6], and716

two recent methods, Complementary Learning System based Experience Replay (CLS-ER) [3] and717

Error Senesitivity Modulation based Experience Replay (ESM-ER) [50]. In addition, we implement718

the fine-tuning (Fine-tune) [29] and joint-training (Joint) as the performance lower bound and upper719

bound (Oracle). Here we provide a short description of the primary idea of the memory-based domain720

incremental learning baselines.721

• GEM [34]: The baseline method that uses the memory to provide additional optimization722

constraints during learning the current domain. Specifically, the update of the model cannot723

point towards the direction at which the loss of any exemplar increases.724

• A-GEM [8]: The improved baseline method where the constraints of GEM are averaged as725

one, which shortens the computational time significantly.726

• ER [46]: The fundamental memory-based domain incremental learning framework where727

the mini-batch of the memory is regularly replayed with the current domain data.728

• DER++ [6]: A simple yet effective replay-based method where an additional logits distilla-729

tion (dubbed “dark experience replay”) is applied compared to the vanilla ER.730

• CLS-ER [3]: A complementary learning system inspired replay method, where two expo-731

nential moving average models are used to serve as the semantic memory, which provides732

the logits distillation target during training.733

• ESM-ER [50]: An improved version of CLS-ER, where the effect of large errors when734

learning the current domain is reduced, dubbed “error sensitivity modulation”.735

C.5 Training Schemes736

Training Process. For each group of experiments, we run three rounds with different seeds and737

report the mean and standard deviation of the results. We follow the optimal configurations (epochs738

and learning rate) stated in [6, 50] for the baselines in P-MNIST and R-MNIST dataset. For HD-Balls739

and Seq-CORe50, we first search for the optimal training configuration for the joint learning, and then740

grid-search the configuration in a small range near it for the baselines listed above. For our UDIL741

framework, as it involves adversarial training for the domain embedding alignment, we typically need742

a configuration that has larger number of epochs and smaller learning rate. We use a simple grid743

search to achieve the optimal configuration for it as well.744

Model Architectures. For the baseline methods and UDIL in the same dataset, we adopt the same745

backbone neural architectures to ensure fair comparison. In HD-Balls, we adopt the same multi-layer746

perceptron with the same separation of encoder and decoder as in CIDA [59], where the hidden747

dimension is set to 800. In P-MNIST and R-MNIST, we adopt the same multi-layer perceptron748

architecture as in DER++ [6] with hidden dimension set to 800 as well. In Seq-CORe50, we use the749

ResNet18 [19] as our backbone architecture for all the methods, where the layers before the final750

average pooling are treated as the encoder e, and the remaining part is treated as the predictor p.751

Hyperparameter Setting. For setting the hyper-parameter embedding alignment strength coeffi-752

cient �d and parameter C that models the combined effect of VC-dimension d and error tolerance �,753

we use grid search for each dataset, where the range �d 2 [0.01, 100] and C 2 [0, 1000] are used.754

D Additional Empirical Results755

This section presents additional empirical results of the UDIL algorithm. Sec. D.1 will show the756

additional results on different constraints with varying memory sizes. Sec. D.2 provides additional757

qualitative results: visualization of embedding distributions, to showcase the importance of the758

embedding alignment across domains.759
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Figure 3: More Results on HD-Balls. Data is colored according to domain ID. All data is plotted after
PCA [5]. (a-h) Accuracy and embeddings learned by Joint (oracle), UDIL, and six baselines with
memory. Joint, as the oracle, naturally aligns different domains, and UDIL outperforms all baselines
in terms of embedding alignment and accuracy.

D.1 Empirical Results on Varying Memory Sizes760

Here we present additional empirical results to validate the effectiveness of our UDIL framework761

using varying memory sizes. The evaluation is conducted on three real-world datasets, as shown762

in Table 5, Table 6, and Table 7. By increasing the memory size from 400 to 800 in Table 5 and 6763

and from 500 to 1000 in Table 7, we can investigate the impact of having access to a larger pool of764

past experiences on the continual learning performance, which might occur when the constraint on765

memory capacity is relaxed. This allows us to study the benefits of a more extensive memory in terms766

of knowledge retention and performance improvement. On the other hand, by further decreasing the767

memory size to the extreme of 200 in Table 5 and 6, we can explore the consequences of severely768

limited memory capacity. This scenario simulates situations where memory constraints are extremely769

tight, and the model can only retain a small fraction of past domain data, for example, a model770

deployed on edge devices. To ensure a fair comparison, here we use the same best configuration771

found in the main body of this work.772

The results in all three tables demonstrate a clear advantage of our UDIL framework when the773

memory size is limited. In P-MNIST and R-MNIST, when the memory size |M| = 200, the overall774

performance of UDIL reaches 91.483% and 82.796% respectively, which outperforms the second775

best model DER++ by 0.757% and a remarkable 6.125%. In Seq-CORe50, when the memory776

size |M| = 500 is set, UDIL holds a 3.474% lead compared to the second best result. When the777

memory size is larger, the gap between UDIL and the baseline models is smaller. This is because778

when the memory constraint is relaxed, all the continual learning models should be at least closer779

to the performance upper bound, i.e., joint learning or ‘Joint (Oracle)’ in the tables, causing the780

indistinguishable results among each other. Apparently, DER++ favors larger memory more than781

UDIL, while UDIL can still maintain a narrow lead in the large scale dataset Seq-CORe50.782

D.2 Visualization of Embedding Spaces783

Here we provide more embedding space visualization results for the baselines with the utilization784

of memory, shown in Fig. 3. As one of the primary objectives of our algorithm, embedding space785

alignment across multiple domains naturally follows the pattern shown in the joint learning and786

therefore leads to a higher performance.787
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Table 5: Performances (%) evaluated on P-MNIST. Average Accuracy (Avg. Acc.) and Forgetting
are reported to measure the methods’ performance. “"” and “#” mean higher and lower numbers
are better, respectively. We use boldface and underlining to denote the best and the second-best
performance, respectively. We use “-” to denote “not appliable”.

Method Buffer D1:5 D6:10 D11:15 D16:20 Overall
Avg. Acc (") Avg. Acc (") Forgetting (#)

Fine-tune - 92.506±2.062 87.088±1.337 81.295±2.372 72.807±1.817 70.102±2.945 27.522±3.042

oEWC [51] - 92.415±0.816 87.988±1.607 83.098±1.843 78.670±0.902 78.476±1.223 18.068±1.321
SI [66] - 92.282±0.862 87.986±1.622 83.698±1.220 79.669±0.709 79.045±1.357 17.409±1.446
LwF [29] - 95.025±0.487 91.402±1.546 83.984±2.103 76.046±2.004 73.545±2.646 24.556±2.789

GEM [34]

200

93.310±0.374 91.900±0.456 89.813±0.914 87.251±0.524 86.729±0.203 9.430±0.156
A-GEM [8] 93.326±0.363 91.466±0.605 89.048±1.005 86.518±0.604 85.712±0.228 10.485±0.196
ER [46] 94.087±0.762 92.397±0.464 89.999±1.060 87.492±0.448 86.963±0.303 9.273±0.255
DER++ [6] 94.708±0.451 94.582±0.158 93.271±0.585 90.980±0.610 90.333±0.587 6.110±0.545
CLS-ER [3] 94.761±0.340 93.943±0.197 92.725±0.566 91.150±0.357 90.726±0.218 5.428±0.252
ESM-ER [50] 95.198±0.236 94.029±0.427 91.710±1.056 88.181±1.021 86.851±0.858 10.007±0.864
UDIL (Ours) 95.747±0.486 94.695±0.256 93.756±0.343 92.254±0.564 91.483±0.270 4.399±0.314

GEM [34]

400

93.557±0.225 92.635±0.306 91.246±0.492 89.565±0.342 89.097±0.149 6.975±0.167
A-GEM [8] 93.432±0.333 92.064±0.439 90.038±0.726 87.988±0.335 87.560±0.087 8.577±0.053
ER [46] 93.525±1.101 91.649±0.362 90.426±0.456 88.728±0.353 88.339±0.044 7.180±0.029
DER++ [6] 94.952±0.403 95.089±0.075 94.458±0.328 93.257±0.249 92.950±0.361 3.378±0.245
CLS-ER [3] 94.262±0.649 93.195±0.148 92.623±0.195 91.839±0.187 91.598±0.117 3.795±0.144
ESM-ER [50] 95.413±0.139 94.654±0.314 93.353±0.588 91.022±0.781 89.829±0.698 6.888±0.738
UDIL (Ours) 95.992±0.349 95.026±0.250 94.212±0.280 93.094±0.326 92.666±0.108 2.853±0.107

GEM [34]

800

93.717±0.177 93.116±0.206 92.166±0.335 91.076±0.342 90.609±0.364 5.393±0.417
A-GEM [8] 93.612±0.241 92.523±0.375 90.718±0.739 88.543±0.391 88.020±0.851 8.081±0.867
ER [46] 93.827±0.871 92.457±0.217 91.688±0.277 90.617±0.289 90.252±0.056 5.188±0.045
DER++ [6] 95.295±0.317 95.539±0.041 95.099±0.187 94.423±0.151 94.227±0.261 2.106±0.161
CLS-ER [3] 94.463±0.537 93.567±0.093 93.182±0.137 92.744±0.112 92.578±0.152 2.803±0.183
ESM-ER [50] 95.567±0.150 95.136±0.202 94.301±0.347 92.981±0.397 92.408±0.387 4.170±0.357
UDIL (Ours) 96.082±0.313 95.207±0.196 94.642±0.156 93.997±0.194 93.724±0.043 1.633±0.035

Joint (Oracle) 1 - - - - 96.368±0.042 -

25



Table 6: Performances (%) evaluated on R-MNIST. Average Accuracy (Avg. Acc.) and Forgetting
are reported to measure the methods’ performance. “"” and “#” mean higher and lower numbers
are better, respectively. We use boldface and underlining to denote the best and the second-best
performance, respectively. We use “-” to denote “not appliable”.

Method Buffer D1:5 D6:10 D11:15 D16:20 Overall
Avg. Acc (") Avg. Acc (") Forgetting (#)

Fine-tune - 92.961±2.683 76.617±8.011 60.212±3.688 49.793±1.552 47.803±1.703 52.281±1.797

oEWC [51] - 91.765±2.286 76.226±7.622 60.320±3.892 50.505±1.772 48.203±0.827 51.181±0.867
SI [66] - 91.867±2.272 76.801±7.391 60.956±3.504 50.301±1.538 48.251±1.381 51.053±1.507
LwF [29] - 95.174±1.154 83.044±5.935 65.899±4.061 55.980±1.296 54.709±0.515 45.473±0.565

GEM [34]

200

93.441±0.610 88.620±2.381 81.034±2.704 73.112±1.922 70.545±0.623 27.684±0.645
A-GEM [8] 92.667±1.352 82.772±5.503 70.579±4.028 60.462±2.001 57.958±0.579 40.969±0.580
ER [46] 94.705±0.790 89.171±2.883 79.962±3.365 71.787±1.608 69.627±0.911 28.749±0.993
DER++ [6] 94.904±0.414 91.637±1.871 84.915±2.315 78.373±1.244 76.671±0.391 21.743±0.409
CLS-ER [3] 95.131±0.523 91.421±1.732 84.773±2.665 77.733±1.480 75.609±0.418 22.483±0.456
ESM-ER [50] 95.378±0.531 90.800±2.528 83.438±2.581 76.987±1.219 75.203±0.143 23.564±0.157
UDIL (Ours) 95.097±0.447 93.101±1.305 89.194±1.472 84.704±1.722 82.796±1.882 12.971±2.389

GEM [34]

400

93.842±0.313 90.663±1.856 85.392±1.856 79.061±1.578 76.619±0.581 21.289±0.579
A-GEM [8] 92.820±1.274 83.564±5.024 72.616±3.865 62.223±2.081 59.654±0.122 39.196±0.171
ER [46] 94.916±0.457 91.491±1.878 86.029±2.176 78.688±1.323 76.794±0.696 20.696±0.744
DER++ [6] 95.246±0.228 93.627±1.147 90.011±1.289 85.601±0.982 84.258±0.544 13.692±0.560
CLS-ER [3] 95.233±0.271 92.740±1.268 89.111±1.305 83.678±1.388 81.771±0.354 15.455±0.356
ESM-ER [50] 95.825±0.303 93.378±1.480 89.290±1.604 83.868±1.163 82.192±0.164 16.195±0.150
UDIL (Ours) 95.274±0.469 94.043±0.759 91.511±0.990 87.809±0.849 86.635±0.686 8.506±1.181

GEM [34]

800

94.212±0.322 92.482±1.125 89.191±1.346 84.866±1.317 82.772±1.079 14.781±1.104
A-GEM [8] 92.902±1.194 84.611±4.451 75.150±3.421 64.510±2.437 61.240±1.026 37.528±1.089
ER [46] 95.144±0.281 92.997±1.195 89.319±1.365 84.352±1.681 81.877±1.157 15.285±1.196
DER++ [6] 95.496±0.261 94.960±0.568 93.013±0.689 90.820±0.687 89.746±0.356 7.821±0.371
CLS-ER [3] 95.462±0.174 93.927±0.881 91.275±0.930 87.816±0.988 86.418±0.215 10.598±0.228
ESM-ER [50] 96.086±0.361 94.746±0.915 92.393±0.974 89.745±0.712 88.662±0.263 9.409±0.255
UDIL (Ours) 95.354±0.480 94.711±0.563 92.776±0.695 90.399±0.755 89.191±0.685 6.351±1.304

Joint (Oracle) 1 - - - - 97.150±0.036 -
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Table 7: Performances (%) evaluated on Seq-CORe50. Avg. Acc. and Forgetting are reported
to measure the methods’ performance. “"” and “#” mean higher and lower numbers are better,
respectively. We use boldface and underlining to denote the best and the second-best performance,
respectively. We use “-” to denote “not appliable” and “?” to denote out-of-memory (OOM) error
when running the experiments.

Method Buffer D1:3 D4:6 D7:9 D10:11 Overall
Avg. Acc (") Avg. Acc (") Forgetting (#)

Fine-tune - 73.707±13.144 34.551±1.254 29.406±2.579 28.689±3.144 31.832±1.034 73.296±1.399

oEWC [51] - 74.567±13.360 35.915±0.260 30.174±3.195 28.291±2.522 30.813±1.154 74.563±0.937
SI [66] - 74.661±14.162 34.345±1.001 30.127±2.971 28.839±3.631 32.469±1.315 73.144±1.588
LwF [29] - 80.383±10.190 28.357±1.143 31.386±0.787 28.711±2.981 31.692±0.768 72.990±1.350

GEM [34]

500

79.852±6.864 38.961±1.718 39.258±2.614 36.859±0.842 37.701±0.273 22.724±1.554
A-GEM [8] 80.348±9.394 41.472±3.394 43.213±1.542 39.181±3.999 43.181±2.025 33.775±3.003
ER [46] 90.838±2.177 79.343±2.699 68.151±0.226 65.034±1.571 66.605±0.214 32.750±0.455
DER++ [6] 92.444±1.764 88.652±1.854 80.391±0.107 78.038±0.591 78.629±0.753 21.910±1.094
CLS-ER [3] 89.834±1.323 78.909±1.724 70.591±0.322 ? ? ?

ESM-ER [50] 84.905±6.471 51.905±3.257 53.815±1.770 50.178±2.574 52.751±1.296 25.444±0.580
UDIL (Ours) 98.152±1.665 89.814±2.302 83.052±0.151 81.547±0.269 82.103±0.279 19.589±0.303

GEM [34]

1000

78.717±4.831 43.269±3.419 40.908±2.200 40.408±1.168 41.576±1.599 18.537±1.237
A-GEM [8] 78.917±8.984 41.172±4.293 44.576±1.701 38.960±3.867 42.827±1.659 33.800±1.847
ER [46] 90.048±2.699 84.668±1.988 77.561±1.281 72.268±0.720 72.988±0.566 25.997±0.694
DER++ [6] 89.510±5.726 92.492±0.902 88.883±0.794 86.108±0.284 86.392±0.714 13.128±0.474
CLS-ER [3] 92.004±0.894 85.044±1.276 ? ? ? ?

ESM-ER [50] 85.120±4.339 54.852±5.511 61.714±1.840 55.098±3.834 58.932±0.959 20.134±0.643
UDIL (Ours) 98.648±1.174 93.447±1.111 90.545±0.705 87.923±0.232 88.155±0.445 12.882±0.460

Joint (Oracle) 1 - - - - 99.137±0.049 -
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