
A Simplicial Complexes, Cycles, Barcodes

A.1 Background

The simplicial complex is a combinatorial data that can be thought of as a higher-dimensional
generalization of a graph. Simplicial complex S is a collection of k−simplices, which are finite
(k + 1)−elements subsets in a given set V , for k ≥ 0. The collection of simplices S must satisfy the
condition that for each σ ∈ S, σ′ ⊂ σ implies σ′ ∈ S. A simplicial complex consisting only of 0−
and 1−simplices is a graph.

Let Ck(S) denotes the vector space over a field F whose basis elements are k−simplices from S with
a choice of ordering of vertices up to an even permutation. In calculations it is most convenient to put
F = Z2. The boundary linear operator ∂k : Ck(S)→ Ck−1(S) is defined on σ = {x0, . . . , xk} as

∂kσ =

k∑
j=0

(−1)j{x0, . . . , xj−1, xj+1, . . . , xk}.

The k−th homology group Hk(S) is defined as the vector space ker ∂k/ im ∂k+1. The elements
c ∈ ker ∂k are called cycles. The elements c̃ ∈ im ∂k+1 are called boundaries. The general elements
c′ ∈ Ck(S) are called chains. The elements of Hk(S) represent various k−dimensional topological
features in S. A basis in Hk(S) corresponds to a set of basic topological features.

Filtration on simplicial complex is defined as a family of simplicial complexes Sα with nested
collections of simplices: for α1 < α2 all simplices of Sα1

are also in Sα2
. In practical examples the

indexes α run through a discrete set α1 < . . . < αmax.

The inclusions Sα ⊆ Sβ induce naturally the maps on the homology groups Hk(Sα) → Hk(Sβ).
The evolution of the cycles through the nested family of simplicial complexes Sα is described by
the barcodes. The persistent homology principal theorem [2, 36, 37] states that for each dimension
there exists a choice of a set of basic topological features across all Sα so that each feature appears
in Hk(Sα) at specific time α = bj and disappears at specific time α = dj . The Hi barcode of the
filtered simplicial complex is the record of these times represented as the collection of segments
[bj , dj ]. The barcodes are defined and calculated through bringing the set of matrices of the boundary
operators ∂k to the ”Canonical Form” by a change of the basis in Ck preserving the nested family Sα
[2, 3].

Let (Γ,m) be a weighted graph with distance-like weights, where m is the symmetric matrix of the
weights attached to the edges of the graph Γ. The Vietoris-Rips filtered simplicial complex of the
weighted graph Rα(Γ,m), is defined as the nested collection of simplices:

Rα(Γ,m) = {{x0, . . . , xk}, xi ∈ Vert(Γ)‖m(xj , xl) ≤ α}

where Vert(Γ) is the set of vertices of the graph Γ. Even though such weighted graphs do not always
come from a set of points in metric space, barcodes of weighted graphs have been successfully
applied in many situations (networks, fmri, medical data, graph’s classification etc).

A.2 Simplices, describing discrepancies between the two manifolds

Here we gather more details on the construction of sets of simplicies that describe discrepancies
between two point clouds P andQ sampled from the two distributions P ,Q. As we have described in
section 2, our basic methodology is to add consecutively the edges between P−points and Q−points
and between pairs of P−points. All edges between Q−points are added simultaneously at the
beginning at the threshold α = 0 . The PP and PQ edges are sorted by their length, and are added
at the threshold α ≥ 0 corresponding to the length of the edge. This process is visualized in more
details on Figures 10 and 11. The triangles are added at the threshold at which the last of its three
edges are added. The 3− and higher k−simplices are added similarly at the threshold corresponding
to the adding of the last of their edges. The added triangles and higher dimensional simplices are
not shown explicitely on Figure 1 for ease of perception, as they can be restored from their edges.
As all simplices within the Q−cloud are added at the very beginning at α = 0, the corresponding
cycles formed by the Q−cloud simplices are immediately killed at α = 0 and do not contribute to
the Cross-Barcode.
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Figure 10: We are adding edges between P−points(orange) and Q−points(blue) and between pairs
of P−points consecutively. The edges are sorted by their length, and are added at the threshold
α ≥ 0 corresponding to the length of the edge. Here at the thresholds α = 0.2, 0.4, 0.6, 0.8 edges
with length less than α were added. For ease of perception the simultaneously added triangles and
higher simplices, as well as the added at α = 0 all simplices between Q−points, are not shown
explicitly here. Notice how the 1−cycle, shown with green, with endpoints in Q−cloud is born at
α = 0.4. It survives at α = 0.6 and it is killed at α = 0.8.

The constructed set of simplices is naturally a simplicial complex, since for any added k−simplex, we
have added also all its (k− 1)−faces obtained by deletion of one of vertices. The threshold α defines
the filtration on the obtained simplicial complex, since the simplices added at smaller threshold α1

are contained in the set of simplices added at any bigger threshold α2 > α1.

With adding more edges, the cycles start to appear. In our case, a cycle is essentially a collection
of simplices whose boundary is allowed to be nonzero if the boundary consists of simplices with
vertices from Q. For example, a 1− cycle in our case is a path consisting of added edges, that can
start and end in Q−cloud and that passes through P−points. This is because any such collection can
be completed to a collection with zero boundary since any cycle from Q−cloud is a boundary of a
sum of added at α = 0 simplices from Q.

A 1−cycle disappears at the threshold when a set of triangles is added whose boundary coincides
with the 1−cycle plus perhaps some edges between Q−points.

Notice how the 1−cycle with endpoints in Q−cloud is born at α = 0.4 on Figure 10, shown with
green. It survives at α = 0.6 and it is killed at α = 0.8. The process of adding longer edges can
be visually assimilated to the building of a "spider’s web" that tries to bring the cloud of red points
closer to the cloud of blue points. The obstructions to this are quantified by "lifespans" of cycles,
they correspond to the lengths of segments in the barcode. See e.g., Figure 11 where a 1−cycle is
born between α = 0.5 and 0.9, it then corresponds to the green segment in the Cross-Barcode.

Figure 11: The process of adding the simplices between the P−cloud(red) and Q−cloud(blue) and
within the P−cloud. Here we show the consecutive adding of edges together with simultaneous
adding of triangles. All the edges and simplices within Q−cloud are assumed added at α = 0 and
are not shown here for perception’s ease. Notice the 1−cycle born between α = 0.5 and 0.9, it
corresponds to the green segment in the shown Cross-Barcode

Remark A.1. To characterise the situation of two data point clouds one of which is a subcloud of the
other S ⊂ C, it can be tempting to start seeking a "relative homology" analog of the standard (single)
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point cloud persistent homology. The reader should be warned that the common in the literature
"relative persistent homology" concept and its variants, i.e. the persistent homology of the decreasing
sequence of factor-complexes of a fixed complex: K → . . .K/Ki → K/Ki+1 → . . .K/K, is
irrelevant in the present context. In contrast, our methodology, in particular, does not involve factor-
complexes construction, which is generally computationally prohibitive. The point is that the basic
concept of filtered complex contains naturally its own relative analogue via the appropriate use of
various filtrations.

A.3 Sub-manifolds and bars in Cross-Barcode∗(P,Q)

It is natural to start analyzing the closeness of the data point cloud P to the data point cloud Q
by looking at the matrix of the PQ pairwise distances. If there are many points from P such that
their distance to their closest point from Q is relatively big then the clouds P and Q are not close.
However, in applications, it is important to distinguish the different situations here. The first case
is when all these remote from Q points are close to each other. Then this remote from Q cluster
of P points represents a single topological feature distinguishing cloud P from Q. Another case
is when the remote from Q points form several clusters so that each such remote from Q cluster
represents a separate topological feature. The long bars in the zero-dimensional Cross-Barcode record
the lifespans on the distances’ scale of these remote from Q clusters of P−points.

In practice it also happens more often that it is not possible to distinguish a separate cluster of P
points which are all remote from Q. Rather, there are some P−points inside the same P−cluster
that are close to Q and other P−points from the same P−cluster which are further away from Q, as
on Fig.1. This situation is captured and quantified by the higher dimensional topological features
distinguishing cloud P from Q. Intuitively such an i−dimensional topological feature represents an
i−dimensional P−cloud’s sub-manifold whose boundary is close to the Q−cloud, but whose interior
P−points are remote from the Q−cloud, like the green polygonal chain on Fig.10 at α = 0.4. Such
features are constructed in the algorithm using the distance matrix combinatorics from (i+ 1)−tuples
of P−points or P & Q− points. The distances within each of these tuples are less or equal to the
feature’s appearance, or birth, threshold. The disappearance, or death, of such a feature calculated by
the algorithm corresponds approximately to the scale at which the feature becomes indistinguishable
from the Q−cloud. The i−dimensional Cross-Barcodei(P,Q), i ≥ 1, is the set of segments (bars)
recording the birth and the death thresholds of such topological features.

A.4 Cross-Barcode∗(P,Q) as obstructions to assigning P points to distribution Q

Geometrically, the lowest dimensional Cross-Barcode0(P,Q) is the record of relative hierarchical
clustering of the following form. For a given threshold r, let us consider all points of the point cloud
Q plus the points of the cloud P lying at a distance less than r from a point of Q as belonging to the
single Q−cluster. It is natural to form simultaneously other clusters based on the threshold r, with the
rule that if the distance between two points of P is less than threshold r then they belong to the same
cluster. When the threshold r is increased, two or more clusters can collide. And the threshold, at
which this happens, corresponds precisely to the “death” time of one or more of the colliding clusters.
At the end, for very large r only the unique Q−cluster survives. Then Cross-Barcode0(P,Q) records
the survival times for this relative clustering.

Figure 12: Paths/membranes (red) in the void that are formed by small intersecting disks around
P points (orange), and are ending on Q (blue), are obstacles for identification of the distribution P
with Q. These obstacles are quantified by Cross-Barcode1(P,Q). Separate clusters are the obstacles
quantified by Cross-Barcode0(P,Q).

Notice that in situations, like, for example, in Figure 12, it is difficult to attribute confidently certain
points of P to the same distribution as the point cloudQ even when they belong to the “big”Q−cluster
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at a small threshold r, because of the nontrivial topology. Such “membranes” of P−points in void
space, are obstacles for assigning points from P to distribution Q. These obstacles are quantified
by the segments from the higher barcodes Cross-Barcode≥1(P,Q). The bigger the length of the
associated segment in the barcode, the further the membrane passes away from Q.

A.5 More simple synthetic datasets in 2D

Figure 13: The first picture shows two clouds of 1000 points sampled from the uniform distributions
on two different disks of radius 1 with a distance between the centers of the disks of 0.5. The
second and third pictures show the dependence of the GScore metric (the GScore is equal to zero
independently of the distance between the disks), maximum of segments in H0 and the sum of
lengths of segments H1 as a function of the distance between the centers of the disks averaged over
10 runs. The length of the maximum segment barcode in H0 grows linearly and equals to the distance
between the pair of closest points in the two distributions.

As illustrated on Figures 2,13 the GScore is unresponsive to changes of the distributions’ positions.

A.6 Cross-Barcode and precision-recall

Figure 14: Mode-dropping, bad recall & good precision, illustrated with clouds Pdata (red) and Qmodel
(blue). The Cross-Barcode0(Pdata, Qmodel) contains long intervals, one for each dropped mode, which
measure the distance from the data’s dropped mode to the closest generated mode.

The Cross-Barcode captures well the precision vs. recall aspects of the point cloud’s approximations,
contrary to FID, which is known to mix the two aspects. For example, in the case of mode-dropping,
bad recall but good precision, the Cross-Barcode0(Pdata, Qmodel) contains the long intervals, one
for each dropped mode, which measure the distance from the data’s dropped mode to the closest
generated mode. The mode-dropping case (bad recall, good precision) is illustrated on Figure 14.

Analogously, in the case of mode-invention, with good recall but bad precision, the Cross-
Barcode0(Qmodel, Pdata) contains long intervals, one for each invented mode, which measure the
distance from the model’s invented mode to the closest data’s mode.

The mode-invention (good recall, bad precision) case is illustrated on Figure 15.
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Figure 15: Mode-invention, good recall & bad precision, illustrated with clouds Pdata (red) and Qmodel
(blue). The Cross-Barcode0(Qmodel, Pdata) contains long intervals, one for each invented mode, which
measure the distance from the model’s invented mode to the closest data’s mode.

B Cross-Barcode Properties.

B.1 The Cross-Barcode’s norm and the Hausdorf distance.

The Bottleneck distance [11], also known as Wasserstein−∞ distance W∞, defines the natural norm
on the Cross-Barcodes:

‖Cross-Barcodei (P,Q)‖B = max
[bj ,dj ]∈Cross-Barcodei

(dj − bj).

The Hausdorf distance measures how far are two subsets P,Q of a metric space from each other. The
Hausdorf distance is the greatest of all the distances from a point in one set to the closest point in the
other set:

dH(P,Q) = max

{
sup
x∈P

d(x,Q), sup
y∈Q

d(y, P )

}
. (4)

Proposition 1. The norm of Cross-Barcodei(P,Q), i ≥ 0, is bounded from above by the Hausdorff
distance

‖Cross-Barcodei (P,Q)‖B ≤ dH(P,Q). (5)

Proof. Let c ∈ Rα0
(ΓP∪Q,m(P∪Q)/Q) be an i−dimensional cycle appearing in the filtered complex

at α = α0. Let us construct a simplicial chain that kills c. Let σ = {x1, . . . , xi+1} be one of the sim-
plices from c. Let qj denote the closest point inQ to the vertex xj . The prism {x1, q1, . . . , xi+1, qi+1}
can be decomposed into (i+ 1) simplices pk(σ) = {x1, x2, . . . , xk−1, qk, . . . , qi+1}, 1 ≤ k ≤ i+ 1.
The boundary of the prism consists of the two simplices σ, q(σ) = {q1, . . . , qi+1}, and of the (i+ 1)
similar prisms corresponding to the the boundary simplices of σ. If c =

∑
n anσ

n then

c = ∂(
∑
n

an
∑
k

pk(σn)) +
∑
n

anq(σn)

For any k, j, d(xj , xk) ≤ α0 since c is born at α0. Therefore

d(xj , qk) ≤ d(xj , xk) + d(xk, qk) ≤ α0 + sup
x∈P

d(x,Q).

Therefore all simplices pk(σn)) appear no later than at (α0+supx∈P d(x,Q)) in the filtered complex.
All vertices of the simplices q(σn) are from Q. It follows that the lifespan of the cycle c is no bigger
than supx∈P d(x,Q))

To illustrate the proposition 1 we have verified empirically the diminishing of
Cross-Barcode∗(Q1, Q2) when number of points in Q1, Q2 goes to +∞ and Q1, Q2 are
sampled from the same uniform distribution on the 2D disk of radius 1. The maximal length of
segments in H1 as function of number of points in the clouds of the same size is shown in Figure 16.
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Figure 16: Diminishing of the length of maximal seg-
ment in H1 with increase of the number of sampled
points for point clouds of the equal size n sampled from
the same uniform distribution on the 2D disk of radius 1.

B.2 MTop-Div
and the Cross-Barcode’s
Relative Living Times (RLT)

The Cross-Barcode for a given homology
Hi is a list of birth-death pairs (segments)

Cross-Barcodei(P,Q) = {[bj , dj ]}nj=1

Relative Living Times is a discrete dis-
tribution RLT (k) over non-negative inte-
gers k ∈ {0, 1, . . . ,+∞}. For a given
αmax > 0, RLT (k) is a fraction of
“time”, that is, parts of horizontal axis
τ ∈ [0, αmax], such that exactly k seg-
ments [bi, di] include τ .

For equal point clouds, Cross-
Barcodei(P, P ) = ∅ and the corre-
sponding RLT is the discrete distribution concentrated at zero. Let us denote by O0 such discrete
distribution corresponding to the empty set. A natural measure of closeness of the distribution RLT
to the distribution O0 is the earth-mover’s distance (EMD), also called Wasserstein-1 distance.

Proposition. Let for all di ≤ αmax, then

MTop-Div(P,Q) = αmaxEMD(RLT (k), O0).

Proof. By the definition of EMD

EMD(RLT,O0) =

+∞∑
k=1

k ×RLT (k).

Let’s use all the distinct bi, di to split [0, αmax] to disjoint segments sj :

[0, αmax] =
⊔
j

sj .

Each sj is included in K(j) segments [bi, di] from the Cross-Barcodei(P,Q). Thus,

RLT (k) =
1

αmax

∑
j:K(j)=k

|sj |.

At the same time:

MTop-Div(P,Q) =
∑
i

(di − bi) =
∑
j

K(j)|sj | =
+∞∑
k=1

∑
j:K(j)=k

K(j)|sj |

=

+∞∑
k=1

αmax × k ×RLT (k) = αmaxEMD(RLT (k), O0).

C Hyperparameters, Software used, and Experiments’ Details

We have made experiments in various settings and on the following datasets:

• on a set of gaussians in 2D in comparison with distributions generated by GAN and WGAN.
• MNIST We have observed that GScore is not sensitive to the flip of the cloud of “fives",

while our score MTop-Divergence is sensitive to such flip since it depends on the positions
of clouds with respect to each other
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• CIFAR10 We have evaluated our MTop-Div(D,M) using a benchmark with the controllable
disturbance level. We have observed that Geometry Score is monotone only for ‘mode
invention’ and ‘intra-mode collapse’ while MTop-Div(D,M) is almost monotone for all the
cases.

• FFHQ We have evaluated the quality of distributions generated by StyleGAN and StyleGAN-
2, without truncation and with ψ = 0.7 truncation. We observed that the ranking via
MTop-Div is consistent with FID

• ShapeNet6 We have studied the training dynamics of the GAN trained on 3D shapes. We
observed that MTop-Div is consistent with domain specific measures (JSD, MMD, Coverage)
and that MTop-Div better describes the evolution of the point cloud of generated objects
during epochs;

• Stock data We have studied the training dynamics of TimeGAN 7 applied to market stock
data. We observed that MTop-Div is consistent with the discriminative score but better
captures the evolution of point cloud of generated objects during epochs;

• Chest X-ray images We have studied the training dynamics of ACGAN applied to chest
X-ray images. We observed that MTop-Div is more consistent with the discriminative score
than FID;

For computation of FID we used Pytorch-FID8. For computation of Geometry Score we used the
original code9 patched to supported multi-threading, otherwise it was extremely slow. The RLTs
computation was averaged over 2500 trials. We calculated persistent homology via ripser++10.

We used the following hyperparameters to compute MTop-Div:

• MNIST: bP = 102, bQ = 103;

• Gaussians: bP = 102, bQ = 103;

• CIFAR10: bP = 103, bQ = 104;

• FFHQ: bP = 103, bQ = 104.

• ShapeNet: bP = 102, bQ = 103;

• Market stock data: bP = 102, bQ = 103;

• Chest X-ray data: bP = 102, bQ = 103.

MTop-Div scores were were averaged over 20 runs.

We compared Geometry Score and MTop-Div in the experiment with mixtures of Gaussians. Table 4
shows the results. We conclude that the MTop-Div is consistent with the visual quality of GAN’s
output while Geometry Score fails.

Figure 17 shows Cross-Barcodes for the experiment with StyleGAN’s trained on FFHQ. Figure 19
shows one of Cross-Barcodes in H0 from the experiment with CIFAR10 dataset to illustrate that the
0−dimensional Cross-Barcode can also be applied. Figure 18 shows the Cross-Barcodes in H1 from
the experiments with GAN11 and WGAN-GP 12 trained on mixture of Gaussians.

Table 3 shows extended experimental results on GAN model selection including standard error of
sample means of MTop-Div.

Figure 20 presents real and generated chest X-ray images. The generated images are of high visual
quality and resembles real images.

Figure 21 shows real and generated 3D shapes. Generated 3D shapes (bottom row) are relatively
blurry.

6The dataset is free for non-commercial purposes.
7https://github.com/jsyoon0823/TimeGAN
8https://github.com/mseitzer/pytorch-fid, (Apache Licence 2.0)
9https://github.com/KhrulkovV/geometry-score

10https://github.com/simonzhang00/ripser-plusplus, (MIT License)
11https://arxiv.org/abs/1406.2661
12https://arxiv.org/abs/1704.00028
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Figure 17: Cross-Barcodes for GAN’s trained on FFHQ. Cross-Barcodes are shown by decrease of
generator performance. For clarity, only H1 barcodes are shown. The number and the total length of
segments give the same ranking as the FID score

Figure 18: Cross-Barcodes for GAN’s trained of mixtures of Gaussians. Cross-Barcodes are shown
by decrease of generator performance. For clarity, only H1 barcodes are shown.

D MTop-Div for Cross-Barcodes of higher order

We calculated MTop-Divk(D,M) based on higher order Cross-Barcodes, that is, sums of segments’
lengths of Cross-Barcodek, k > 1 were taken in Algorithm 2. Then, we measured average Kendall-tau
rank correlation between MTop-Divk(D,M) and the disturbance level for the series of synthetic modifi-
cations of CIFAR10. For MTop-Div2(D,M) the rank correlation was 0.59, for MTop-Div3(D,M): 0.45.
To make faster calculations small batches were selected, MTop-Div2(D,M): bP = 100, bQ = 300,
MTop-Div3(D,M): bP = 100, bQ = 100. An optimization that we describe in a future publication
pre-computes the unnecessary simplices and permits faster higher degree MTop-Div computations.

Table 2: Performance measures of StyleGANs trained on FFHQ.

GAN ψ FID MTOP-DIV(M,D)

STYLEGAN2 1.0 4.75 162.08
STYLEGAN 1.0 8.25 234.33
STYLEGAN 0.7 15.86 712.57
STYLEGAN2 0.7 19.75 1011.53
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Figure 19: Cross-Barcodes for CIFAR10 vs. disturbed CIFAR10. Gaussian noise with 2 levels of
variance was applied. For clarity, only H0 barcodes are shown. For ease of perception of differences
in Cross-Barcodes0 they are shown on the same plot. The dataset with higher level of noise is
distinguished here by the longer segments in the Cross-Barcode0

Table 3: MTop-Div is consistent with FID for model selection of GAN’s trained on various datasets.
Dataset FID MTop-Div(M,D)

WGAN WGAN-GP WGAN WGAN-GP

CIFAR10 154.6 399.2 370.5±17.3 2408.5±27.0
SVHN 101.6 154.7 332.0±12.4 963.2±22.62
MNIST 31.8 22.0 2365.6±40.1 1474.2±29.7

FashionMNIST 52.9 35.1 1052.6±24.8 872.9±21.8

E Comparison with the “Intrinsic Multi-scale Distance(IMD)”

As proposed by a reviewer, we did additional experiments with IMD [31] applied to point clouds
from our experiments. IMD is not sensitive to the rings shift (Section 3.1) and the digits flipping
on MNIST (Section 3.3). For the experiment “Mode dropping on Gaussians” (Section 3.2), IMD
incorrectly ranks poorly performing WGAN-GP (see Fig.3) higher than the original GAN (Table 4).
For the experiments “GAN model selection” (Section 3.5), IMD ranks a better performing model
lower in one case, while the ranking via MTop-Div is consistent with true GAN performance. For
the “Synthetic variations of CIFAR10” experiment (Section 3.4), the average Kendall-tau correlation
between IMD score and the disturbance level is 0.55, which is lower than the same measure of
MTop-Div (0.89).

Table 4: MTop-Div and G. Score for GAN’s trained of mixtures of Gaussians.

GAN G. SCORE MTOP-DIV(M,D) MTOP-DIV(D,M) IMD

WGAN-GP 1.083 0.562 0.206 2.65
ORIG. GAN 1.087 0.081 0.149 13.87
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Figure 20: Top: real chest X-ray images. Bottom: generated chest X-ray images.

Figure 21: Top: real 3D shapes. Bottom: generated 3D shapes. Generated 3D shapes are relatively
blurry.
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