
A Supplementary material

A.1 Theoretical proof

This section presents all the missing theoretical analyses appeared in the manuscript orderly.
Proposition 1. For any given input x and shared model W, the distance between the recovered data
x′ and the real data x is bounded by:

||x− x′||2 ≥ ||∇W − g||2
||∂φ(x,W)/∂x||2

,

Proof. By definition, we know
∇W − g = φ(x,W)− φ(x′,W). (1)

Apply the first-order Taylor expansion to Eq. (1), it is easy to find
||∇W − g||2 = ||φ(x,W)− φ(x′,W)||2

≈ ||(∂φ(x,W)/∂x)(x − x′)||2
≤ ||(∂φ(x,W)/∂x)||2||(x − x′)||2.

Hence, we have

||x− x′||2 ≥ ||∇W − g||2
||∂φ(x,W)/∂x||2

.

Theorem 1. For any (ε, δ) optimization attack, under the presence of DGP, it will be degenerated to
(ε+

√
γ2||∇W||2, δ)-attack if D is measured by Euclidean distance, and degenerated to (1− (1−√

γ2)(1− ε), δ)-attack if D is measured by cosine distance.

Proof. If D is measured by Euclidean distance, by the definition of (ε, δ)-attack, the attacker can
achieve the following estimation

E||∇W∗ −∇W||2 ≤ ε,

where ∇W∗ is the attacker’s optimized gradients of the ground-truth gradients W. When DGP or
ADGP is used, from the bi-Lipschitz assumption (i.e., Assumption 1), we know

√
γ1||∇W||2 ≤ ||DGP(∇W)−∇W||2 ≤ ||ADGP(∇W)−∇W||2≤

√
γ2||∇W||2. (2)

Then, when FL aggregation is protected by DGP, the attacker’s optimized gradients is based on the
observation of DGP(∇W) and this modified observation will degrade the attacker’s capability in
optimizing ∇W because

E||∇W∗ −∇W||2 = E||∇W∗ − DGP(∇W) + DGP(∇W)−∇W||2
≤ ε+ ||DGP(∇W)−∇W||2
≤ ε+

√
γ2||∇W||2.

Hence, the first part of this theorem is true.

Similarly, when D is measured by cosine distance, the definition of (ε, δ)-attack reveals

E
[
1− < ∇W∗,∇W >

||∇W∗||2||,∇W||2

]
≤ ε.

Then, we can obtain

E
[
< ∇W∗,∇W >

||∇W∗||2||∇W||2

]
= E

[
< ∇W∗,∇W − DGP(∇W) + DGP(∇W) >

||∇W∗||2||∇W||2

]
(a)
= E

[
< ∇W∗,DGP(∇W) >

||∇W∗||2||∇W||2

]
= E

[
< ∇W∗,DGP(∇W) >

||∇W∗||2||DGP(∇W)||2
||DGP(∇W)||2

||∇W||2

]
(b)

≥ (1−√
γ2)E

[
< ∇W∗,DGP(∇W) >

||∇W∗||2||DGP(∇W)||2

]
≥ (1−√

γ2)(1− ε), (3)
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where (a) is based on the fact that the all non-zero elements of (∇W − DGP(∇W)) are pruned in
DGP so E(∇W∗, (∇W − DGP(∇W))) = 0, and (b) is the direct application of Eq. (2). Based on
Eq. (3), it is easy to conclude

E
[
1− < ∇W∗,∇W >

||∇W∗||2||∇W||2

]
≤ 1− (1−√

γ2)(1− ε), (4)

which completes the proof.

Lemma 1. Let et =
∑N

i=1 e
t
i/N be the averaged accumulated error among all users at iteration t,

the expectation of the norm of et is bounded, i.e.,

E||et||22 ≤ γ2
2
(
2 + γ2
1− γ2

)2(G2 + σ2).

Proof. To use the theoretical tools of SGD, we set up the following dummy matrix V:

Vt+1 = Vt − η∇Wt.

Since W0 = V0, e0 = 0, it is easy to find

Vt − Wt = ηet. (5)

Under Assumption 1, we have

||X − ADGP(X)||22 ≤ γ2||X||22, (6)

||X − DGP(X)||22 ≥ γ1||X||22.
Under Assumption 3, we have

E||∇Wt
i||22 ≤ G2 + σ2, (7)

E||∇Wt||22 ≤ G2 +
σ2

N
. (8)

By definition of et, we know

||et||22 ≤
∑N

i=1 ||eti||22
N

,

and the ||eti||22 is also bounded because

||eti||22 = ||∇Wt−1
i + et−1

i − ADGP(∇Wt−1
i + et−1

i )||22
(6)

≤ γ2||∇Wt−1
i + et−1

i ||22
(c)

≤ γ2

(
(1 +

1

a
)||∇Wt−1

i ||22 + (1 + a)||et−1
i ||22

)
.

where (c) is based on the variant of Young’s inequality ||x + y||22 ≤ (1 + a)||x||22 + (1 + 1
a )||y||

2
2.

Set 1 + a = 2+γ2

3γ2
, it is concluded that

E||eti||22
(8)

≤ γ2
2
(
2 + γ2
1− γ2

)2(G2 + σ2), (9)

E||et||22 ≤ γ2
2
(
2 + γ2
1− γ2

)2(G2 + σ2). (10)

Theorem 2. The averaged norm of the full gradient ∇l(Wt) derived from centralized training is
correlated with the our algorithm as follows:∑T−1

t=0 E||∇l(Wt)||22
T

≤ 4
K0 − l∗

ηT
+ 4η2K2 γ2

2
(
2 + γ2
1− γ2

)2(G2 + σ2) + 2Kη(G2 +
σ2

N
),

where l0 is the initialization of the objective l, and η is the learning rate.
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Proof. Under Assumption 3, we have

||∇l(Vt)−∇l(Wt)|| ≤ K||Vt − Wt||, (11)

and

l(Vt+1) ≤ l(Vt)+ < ∇l(Vt),Vt+1 − Vt > +
K

2
||Vt+1 − Vt||22

= l(Vt)− η < ∇l(Vt),∇Wt > +
Kη2

2
||∇Wt||22. (12)

Taking expectation on both sides of Eq. (12), we can get

E(l(Vt+1)) ≤ E(l(Vt))− ηE(< ∇l(Vt),∇l(Wt) >) +
Kη2

2
E||∇Wt||22

(d)
= E(l(Vt))− η

2

[
E(||∇l(Vt)||22 + ||∇l(Wt)||22)− E||∇l(Vt)−∇l(Wt)||22

]
+

Kη2

2
E||∇Wt||22

≤ E(l(Vt))− η

2
E(||∇l(Vt)||22) +

η

2
E||∇l(Vt)−∇l(Wt)||22 +

Kη2

2
E||∇Wt||22

(11)

≤ E(l(Vt))− η

2
(E||∇l(Vt)||22) +

ηK2

2
E||Vt − Wt||22 +

Kη2

2
E||∇Wt||22

(5)

≤ E(l(Vt))− η

2
(E||∇l(Vt)||22) +

η3K2

2
E||et||22 +

Kη2

2
E||∇Wt||22

(8)

≤ E(l(Vt))− η

2
(E||∇l(Vt)||22) +

η3K2

2
E||et||22 +

Kη2

2
(G2 +

σ2

N
),

where (d) is based on the fact < x, y >= 1
2 (||x||

2+ ||y||2−||x− y||2). Base on the deduction above,
we can further calculate

η

2
(E||∇l(Vt)||22) ≤ E(l(Vt))− E(l(Vt+1)) +

η3K2

2
E||et||22 +

Kη2

2
(G2 +

σ2

N
),

(

∑T−1
0 E||∇l(Vt)||22

T
) ≤ 2(l0 − l∗)

ηT
+ η2K2E||et||22 +Kη(G2 +

σ2

N
). (13)

According to Eq. (11), it can be found that

||∇l(Wt)|| ≤ K||Vt − Wt||+ ||∇l(Vt)||,
||∇l(Wt)||22 ≤ 2K2||Vt − Wt||22 + 2||∇l(Vt)||22. (14)

Combining Eq. (10), Eq. (13) and Eq. (14), it is concluded

E||∇l(Wt)||22 ≤ 4(l0 − l∗)

ηT
+ 4η2K2E||et||22 + 2Kη(G2 + 2

σ2

N
)

≤ 4(l0 − l∗)

ηT
+ 4η2K2 γ2

2
(
2 + γ2
1− γ2

)2(G2 + σ2) + 2Kη(G2 + 2
σ2

N
).

Set η =
√

l0−l∗

KT (σ2

N +G2)
, we have∑T−1

0 E||∇l(Wt)||22
T

≤ 6

√
l0 − l∗

KT (σ
2

N +G2)
+O(

1

T
).

Hence, the theorem is true.

A.2 More experimental results

We run our experiments on balanced datasets, and train models with batchsize=32. We use SGD
optimizer with momentum of 0.9, and train LeNet (Zhu) on CIFAR10 and CIFAR100 with decay
5e-4, train VGG13_bn and ResNet18 on CIFAR10 and CIFAR100 with decay 1e-4. In this section,
we present more experimental results, such as the computational cost. To make privacy evaluation
more comprehensive, we implement gradient inversion attacks with different batches on different
datasets. We also set different send rates k and hyperparameters p to observe their effect on privacy
protection and accuracy.
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A.2.1 Computation cost

Table 1 shows the computation cost comparison of gradient parameter searching for one iteration.
Although the average computation cost of our method is slightly higher than Top-k because we need
to search for both large and small parameters, this computation cost is trivial considering the reduced
communication cost. And our method is obviously better than Soteria, because Soteria requires a lot
of computation on gradients, which leads to expensive computation cost.

Table 1: Comp. cost of gradient perturbation (ms)

Method Top-k Soteria Ours

ResNet18 10.6843 5051.2300 14.7884

VGG13 7.6973 2493.5627 9.7330

LeNet (Zhu) 2.3255 388.1032 3.8247

A.2.2 Effect of relative gradient distance on recovery quality

We give a specific example about Proposition 1. In particular, we plot the recovery results of IVG
attack (in terms of LPIPS, PSNR, SSIM metrics) under various relative gradient distance ||∇W−g||2

||∇W||2
(measured in ratio). As shown in Fig. 1, it is clear experimental results aligns with the analytic results
of Proposition 1.
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Figure 1: Relationship between relative gradient distance ||∇W−g||2
||∇W||2 and reconstructed data quality

under IVG attack, CIFAR10 with LeNet (Zhu).

A.2.3 Defense under attacks with different batch size

In this section, to better evaluate privacy protection, we implement IVG attack and Rob attack with
different batches on different datasets. Figs. 2-10 and Table 2 show that our method protect the
data privacy against IVG and Rob attacks better than recent works. In particular, our method can
comprehensively defend against gradient inversion attacks, while Top-k cannot defend against IVG
attack, and Soteria, ATS, Precode cannot defend against Rob attack.
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Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 2: Visualization of the reconstructed data under IVG attack with batchsize=4, CIFAR100 with
ResNet18.

Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 3: Visualization of the reconstructed data under IVG attack with batchsize=8, CIFAR100 with
ResNet18.

Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 4: Visualization of the reconstructed data under IVG attack with batchsize=16, CIFAR100
with ResNet18.
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Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 5: Visualization of the reconstructed data under IVG attack with batchsize=4, CIFAR10 with
ResNet18.

Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 6: Visualization of the reconstructed data under IVG attack with batchsize=8, CIFAR10 with
ResNet18.

Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 7: Visualization of the reconstructed data under Rob attack with batchsize=4, CIFAR100 with
LeNet (Zhu).
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Original Baseline Soteria Precode
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Figure 8: Visualization of the reconstructed data under Rob attack with batchsize=8, CIFAR100 with
LeNet (Zhu).

Original Baseline Soteria Precode
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Figure 9: Visualization of the reconstructed data under Rob attack with batchsize=8, ImageNet with
ResNet18.

Original Baseline Soteria Precode

ATS Top‐k Ours DP

Figure 10: Visualization of the reconstructed data under Rob attack with batchsize=16, ImageNet
with ResNet18.
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Table 2: Evaluation of defense performance under the Rob attack with varying batchsize and datasets.

Dataset Method Baseline Top-k DP Soteria ATS-I ATS-II Precode Ours

ImageNet

ResNet18, Batchsize= 8

PSNR (↓) 136.5906 12.7156 9.4024 134.6119 9.5952 112.8973 135.3928 12.7786
LPIPS (↑) 5.74E-8 0.8469 1.2870 4.47E-8 0.6859 0.1099 5.30E-8 0.8970
SSIM (↓) 1.0000 0.1062 0.2055 1.0000 0.2229 0.8709 1.0000 0.0527

Best SSIM (↓) 1.0000 0.3266 0.2485 1.0000 0.2791 1.0000 1.0000 0.2499
ResNet18, Batchsize= 16

PSNR (↓) 102.8838 13.0685 8.7491 101.7651 9.6166 115.9886 109.6553 13.0804
LPIPS (↑) 0.0960 0.8920 1.3434 0.0960 0.6410 0.0486 0.1488 0.9184
SSIM (↓) 0.8969 0.0428 0.2064 0.8969 0.2545 0.9490 0.8440 0.0229

Best SSIM (↓) 1.0000 0.2665 0.2602 1.0000 0.3590 1.0000 1.0000 0.2478

CIFAR100

LeNet (Zhu), Batchsize= 8

PSNR (↓) 148.6047 12.0199 8.9393 146.8654 9.5952 128.5156 115.3705 11.7075
LPIPS (↑) 1.73E-13 0.4469 0.4605 3.24E-12 0.6859 0.0178 0.0312 0.4645
SSIM (↓) 1.0000 0.1366 0.2280 1.0000 0.2229 0.9303 0.9168 0.1246

Best SSIM (↓) 1.0000 0.4138 0.2494 1.0000 0.2791 1.0000 1.0000 0.3921
LeNet (Zhu), Batchsize= 16

PSNR (↓) 136.2503 12.1314 8.2597 136.9068 9.6166 115.9886 118.5187 12.1234
LPIPS (↑) 0.0105 0.4390 0.4249 0.0161 0.6410 0.0486 0.0479 0.4821
SSIM (↓) 0.9644 0.1240 0.2436 0.9587 0.2545 0.9490 0.8732 0.0782

Best SSIM (↓) 1.0000 0.4878 0.2942 1.0000 0.3590 1.0000 1.0000 0.3056

A.2.4 More experiments under different pruning rates

Top‐K [54%]

Ours [54%]

Top‐K [64%]

Ours [64%]

Top‐K [70%]

Ours [70%]

Original

Figure 11: Visualization of the reconstructed data under IVG attack with different pruning rates,
CIFAR10 with ResNet18.
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Ours [54%] Ours [70%]Ours [64%]

Top-k [54%] Top-k [70%]Top-k [64%]

Figure 12: Visualization of the reconstructed data under Rob attack with different pruning rates,
CIFAR100 with LeNet (Zhu).
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Figure 13: The effect of different pruning rates on accuracy with LeNet (Zhu) on CIFAR10.

We select different sending rates k=46%, 36%,30%, i.e., the pruning rates (100%-k)=54%, 64%,
70%, and evaluate the privacy protection and model performance of different pruning rates under
IVG attack and Rob attack. Figs. 11-12 show that a high pruning rate is more privacy-preserving.
According to Fig. 13, it can be found that the effect of high pruning rates on accuracy is not obvious
under the correction of the error feedback mechanism.

A.2.5 More experiments under different p

Original p=4 p=9 p=19

Figure 14: Visualization of the reconstructed data under Rob attack with different hyperparameter p,
batchsize=16, CIFAR100 with LeNet (Zhu).
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Figure 15: Visualization of the reconstructed data under IVG attack with different hyperparameter p,
batchsize=1, CIFAR10 with ResNet18.
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Figure 16: The effect of different p on accuracy with LeNet (Zhu) on CIFAR10.

As show in Figs. 15-16, we set the hyperparameter p as 4, 9, 19 and evaluate privacy protection and
accuracy under this settings. It is easy to find that p is a trade-off between privacy and accuracy,
which will reduce the model accuracy when enhancing privacy.

A.3 System model

As shown in Fig. 17, ADGP is achieved by randomly selecting a user, who broadcasts binary matrix
I to all other users. Each user then only transmits gradient parameters whose locations belong to I.
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Figure 17: The t-th iteration model update process, where g∗ represents the gradient parameters
whose position belong to I.
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