
A Resource Availability and Licensing

All datasets are available for download from https://www.atom3d.ai. The corresponding code for
dataset processing and model training is maintained at https://github.com/drorlab/atom3d,
along with instructions for installing our Python package. Further details can be found in the
documentation at atom3d.readthedocs.io/en/latest. All datasets are hosted on Zenodo under
individual DOIs, and are licensed under Creative Commons (CC) licenses. Full licenses, DOIs, and
other details can be found on our website and Github. The authors bear all responsibility in case of
violation of rights, and confirm the CC licenses for the included datasets.

B Broader Impact

The methods and datasets presented here are intended to promote machine learning research that uses
molecular structure. We expect that such research can be used in the development of new medicines
and materials, as well as lead to a better understanding of human health. At the same time, the
systems we propose are inherently complex, and thus can result in a greater degree of difficulty
in interpreting their results, as well as preventing and assessing errors. These errors in turn can
have severe consequences in both the development of new medicines, as well as in the treatment
of patients using advances derived from this work. Careful evaluation of such systems results, as
well as further research in increasing our ability to interpret their outputs, can help mitigate these
concerns. Additionally, the benchmarks we use focus on molecules that have known structures. This
is a biased set of all molecules, specifically in that they are molecules other researchers have chosen
to focus on. Thus, we might expect trained methods to reflect these biases, and therefore have better
performance in cases that are already being studied by the broader research community. This could
lead to neglecting systems that are not as prioritized.

C Working with 3D Molecular Data Using ATOM3D

In order to facilitate the entry of new practitioners to the field of 3D molecular learning, we provide
some high-level guidelines for working with the datasets we provide and for curating new ones. We
provide computational tools required for these tasks in the atom3d package, and will be continuing
to develop and support its functionality moving forward.

C.1 Assembling New Datasets

Data sources and repositories. The success of deep learning methods strongly depends on the
availability of sufficient training data. Unless they have the capabilities to produce the necessary
data, most scientists will rely on use public databases. The go-to repository for protein structures
is the Protein Data Bank (PDB).3 RNA structures can be found at the RNA 3D hub of Bowling
Green State University.4 An exhaustive repository for small molecules is ChEMBL,5 though the 3D
structures of small molecules are mostly not directly deposited. They can be generated by expensive
quantum-chemical methods or in good approximation by cheminformatics tools such as RDKit.
Many more specific databases are out there and worth being explored. atom3d provides methods
to mine and convert data from many common formats in the field (e.g. PDB, SDF, XYZ) into our
standardized dataset format.

Scope and limitations of the data. Even the most extensive databases cannot capture the large
diversity of biological macromolecules or the space of potential drug molecules. It is therefore
necessary to think about the scientific problem at hand and whether the available data adequately
represents the range of structures that are responsible for the studied effects. An important general
limitation of structural data is that molecules change conformation fluidly in real life due to thermal
fluctuations and other effects. Additionally, interactions with other molecules, disordered regions,
or environmental factors like pH can result in significant differences from their experimentally
determined forms.

3https://www.rcsb.org/
4http://rna.bgsu.edu/rna3dhub/nrlist/
5https://www.ebi.ac.uk/chembl/

16

https://www.atom3d.ai
https://github.com/drorlab/atom3d
atom3d.readthedocs.io/en/latest
https://www.rcsb.org/
http://rna.bgsu.edu/rna3dhub/nrlist/
https://www.ebi.ac.uk/chembl/


Incomplete or corrupted data. Structural data is rarely perfect. Experimental uncertainties are
mostly caused by limited resolution of the involved techniques such as X-ray crystallography or
electron cryo-microscopy. Computationally generated structures are also prone to flaws in the
underlying modeling programs (e.g., molecular force fields).

These limitations can lead to problems such as unrealistic conformations, missing or duplicate atoms,
non-resolved amino acid side chains, and more. One has to decide whether to keep those structures
or to sanitize them using computational tools. Additionally, hydrogen atoms are often not included
in the data and, if needed for the task, have to be added when assembling the dataset. The most
important guideline here is to be consistent and clear in the way these issues are treated. Sometimes
it can be necessary to assemble two different datasets with different treatments of missing data. By
providing a standardized format and functions for processing and filtering datasets through atom3d,
we hope to simplify this process.

C.2 Developing and Benchmarking New Algorithms

Reading and preprocessing. Algorithms represent data in various ways and a given dataset is not
always compatible with the representation needed for the algorithm. For example, certain structures,
residues, or atoms may need to be filtered out. Ideally, these steps are considered as dataset preparation
and are separated from the algorithm itself, i.e. not hard-coded into the dataloader. This has two
main advantages: (1) it saves time upon multiple reruns of the algorithm as structural data can be
large and expensive to process, and (2) saving the preprocessed input dataset separately increases
reproducibility, because small differences in preprocessing are often not recorded. We provide our
benchmarking datasets in a format that is easy to read for most Python-based algorithms, and a simple
interface for applying arbitrary transforms to convert between data formats (e.g. graph representations
or voxelized grids).

Comparing algorithms. Predictions can be tested with various metrics. Depending on the pre-
diction problem, some of the metrics grasp the scientific aims of the training better than others. It
is usually recommended to stick to the metrics that are common in the field and are given in the
benchmarks. As science develops, new metrics for a specific problem might come up. These should
be well justified and the old metrics should still be reported alongside them to allow for a comparison.
Ideally, the new metrics are calculated for older models, too. To facilitate this in advance, when
benchmarking an algorithm, specific predictions should be stored and not only metrics. In atom3d,
we provide standardized evaluation classes to calculate the appropriate metrics from the outputs of a
given algorithm.

Interpretation of results. When judging the performance of an algorithm, one should take into
account the experimental uncertainties both in the structures but also in the label data. While small
molecules can be investigated in much detail, it will rarely be possible to get near perfect performance
for tasks involving complex biological macromolecules. Over time, even held-out test sets become
part of the selection process for new methods as only those methods that perform better on the test
set will prevail. A measured improvement can thus be caused by minor specifics of the test set. As
the field matures and performance becomes saturated, the benchmark sets will still be valid as sanity
checks for new methods, but harder tasks will be the ones driving new development. We anticipate
that new tasks and datasets will be added to ATOM3D as the field evolves.

D Dataset Preparation

We present a set of methods to mine task-specific atomic datasets from several large databases (e.g.
PDB) as well as to filter them, split them, and convert them to a format suitable for standard machine
learning libraries (esp. PyTorch and TensorFlow). We store these datasets in LMDB format, where
each atom is stored as a row in a standardized data frame. This data format accurately captures the
natural hierarchy of atom subgroups in biomolecules, especially proteins, and enables data loading
and processing to be consistent across datasets, tasks, and computational environments. The LMDB
format also allows for labels and additional metadata is stored along with the atoms dataframe for
each datapoint.

17



To capture hierarchical information in a way that is task-specific but standardized, we define an
“ensemble” to be the highest-level of structure for each example, e.g. the PDB entry for the protein.
Within each ensemble, we define “subunits”, which represent the specific units of structure used for
that task. For example, for the paired tasks (PIP, LEP, MSP), there is one subunit corresponding to
each structure in the pair; for RES, there is one subunit for each residue microenvironment, and for
structure ranking (PSR, RSR), there is one subunit for each candidate 3D structure. In this way, it is
simple to iterate over each dataset and extract each atomistic structure, which can then be augmented
and processed into any desired format (e.g. voxelized for the 3DCNN, converted to graphs for the
GNN).

In the following sections, we describe the specific steps used to mine and process each dataset.

D.1 Small Molecule Properties (SMP)

The QM9 dataset is processed from the files provided on Figshare [Ramakrishnan et al., 2014a]. The
properties included in QM9 are the following:

• µ - Dipole moment (unit: D)

• α - Isotropic polarizability (unit: bohr3)

• εHOMO - Highest occupied molecular orbital energy (unit: Ha, reported in eV)

• εLUMO - Lowest unoccupied molecular orbital energy (unit: Ha, reported in eV)

• εgap - Gap between HOMO and LUMO (unit: Ha, reported in eV)

• R2 - Electronic spatial extent (unit: bohr2)

• ZPVE - Zero point vibrational energy (unit: Ha, reported in meV)

• U0 - Internal energy at 0 K (unit: Ha)

• U298 - Internal energy at 298.15 K (unit: Ha)

• H298 - Enthalpy at 298.15 K (unit: Ha)

• G298 - Free energy at 298.15 K (unit: Ha)

• Cv - Heat capacity at 298.15 K (unit: cal
molK )

It is common to subtract the reference thermochemical energy from U0, U298, H298, G298 to obtain:

• Uat
0 - Atomization energy at 0K (unit: Ha, reported in eV)

• Uat
298 - Atomization energy at 298.15K (unit: Ha, reported in eV)

• Hat
298 - Atomization enthalpy at 298.15K (unit: Ha, reported in eV)

• Gat
298 - Atomization free energy at 298.15K (unit: Ha, reported in eV)

We report metrics for these quantities in the benchmark.

As recommended by the authors of the original dataset, we exclude 3,054 molecules that do not pass
a geometrical consistency test [Ramakrishnan et al., 2014b]. Additionally, we excluded all 1,398
molecules that RDKit is unable to process - as in former GNN work [Fey and Lenssen, 2019]. In
this way, we ensure that all models in this work can be trained on the same data. Following previous
work [Wu et al., 2018, Gilmer et al., 2017, Schütt et al., 2017, Anderson et al., 2019], we split the
remaining dataset randomly in training, validation, and test set - containing 103547, 12943, and
12943 molecules, respectively.

D.2 Protein Interface Prediction (PIP)

For our test set, we download the cleaned PDB files from the DB5 dataset as provided in [Townshend
et al., 2019], and convert to our standardized format. Each complex is an ensemble, with the
bound/unbound ligand/receptor structures forming 4 distinct subunits of said ensemble. We use the
bound forms of each complex to define neighboring amino acids (those with any heavy atoms within
6 Å of one another), and then map those onto the corresponding amino acids in the unbound forms of
the complex (removing those that do not map). These neighbors are then included as the positive

18



examples, with all other pairs being defined as negatives. At prediction time, we attempt to re-predict
which possible pairings are positive or negative, downsampling negatives to achieve a 1:1 positive
to negative split. We use the unbound subunits as our pair of input structures for testing. We use
AUROC of these predictions as our metric to evaluate performance.

For our training set, we reproduce the Database of Interacting Protein Structures (DIPS) [Townshend
et al., 2019]. Specifically, we take the snapshot of all structures in the PDB from November 20, 2015.
We apply a number of filtering operations, removing structures with no protein present, structures
with less than 50 amino acids, structures with worse than 3.5 Å resolution, and structures not solved
by X-ray crystallography or Cryo-EM. We then split the dataset into all pairs of interacting chains.
These pairs form our ensembles, with each of the two chains being one subunit. We then remove pairs
with less than 500 Å2 buried surface area as measured by the FreeSASA Python library [Mitternacht,
2016] (using total area computed the naccess classifier, including hydrogens and skipping unknown
residues). Furthermore, to ensure there is no train/test contamination, we prune this set against the
DB5 set defined above, removing any pairs that have a chain with more than 30% sequence identity,
using the software BLASTP [Altschul et al., 1990]). We also prune the set based on structural
similarity, removing any pairs in DIPS that map to corresponding SCOP [Andreeva et al., 2014] pairs
of superfamilies that are also present across a pair in DB5 (i.e., we remove a DIPS pair if the first
subunit in that pair has a chain with a SCOP superfamily that is present in an unbound subunit of
a DB5 pair, and the second subunit in that DIPS pair also has a SCOP superfamily that is present
in the other unbound subunit of that same DB5 pair). Once this pruning is done, we split the DIPS
set into a training, validation, and (internal) testing set based on PDB sequence clustering at a 30%
identity level, to ensure little contamination between them. We perform a 80%, 10%, 10% split for
training, validation, and testing, respectively. Note this internal testing set is not used for performance
reporting.

D.3 Residue Identity (RES)

Environments are extracted from a non-redundant subset of high-resolution structures from the PDB.
Specifically, we use only X-ray structures with resolution <3.0 Å, and enforce a 60% sequence
identity threshold. We then split the dataset by structure based on domain-level CATH 4.2 topology
classes [Dawson et al., 2017], as described in [Anand et al., 2020]. This resulted in a total of
21147, 964, and 3319 PDB structures for the train, validation, and test sets, respectively. Rather
than train on every residue for each of these structures, we balance the classes in the train set by
downsampling to the frequency of the least-common amino acid (cysteine). The original class balance
is preserved in the test set. In total, the train, validation, and test sets comprised 3733710, 188530,
and 1261342 environments, respectively. We ignore all non-standard residues. We represent the
physico-chemical environment around each residue using all C, O, N, S, and P atoms in the protein
and any co-crystallized ligands or ions. All non-backbone atoms of the target residue are removed,
and each environment is centered around a “virtual” Cβ position of the target residue defined using
the average Cβ position over the training set.

D.4 Mutation Stability Prediction (MSP)

Mutation data are extracted from the SKEMPI 2.0 database [Jankauskaitė et al., 2019]. Non-point
mutations or mutants that cause non-binding of the complex are screened out. Additionally, mutations
involving a disulfide bond and mutants from the PDBs 1KBH or 1JCK are ignored due to processing
difficulties. A label of 1 is assigned to a mutant if the Kd of the mutant protein is less than that of the
wild-type protein, indicating better binding, and 0 otherwise. Atoms from the twenty canonical amino
acids were extracted from the PDBs provided in SKEMPI using PyMOL [Schrödinger, LLC, 2015],
and in silico mutagenesis is accomplished using PyRosetta [Chaudhury et al., 2010], where dihedrals
within 10 Å of the mutated residue are repacked. This protocol produces 893 positive examples
and 3255 negative examples. For ENN training, we use structures that are reduced to a size that is
tractable for the implementation we used. To this end, we only selected the regions within a radius of
6 Å around the Cα-atom of the mutated residue. For 3DCNNs, we analogously used a radius of 25 Å.
GNNs are trained on complete structures. This dataset is split by sequence identity at 30%.

19



D.5 Ligand Binding Affinity (LBA)

PDBBind contains X-ray structures of proteins bound to small molecule and peptide ligands. We use
the “refined set” (v.2019) consisting of 4,852 complexes filtered for various quality metrics, including
resolution ≤ 2.5 Å, R-factor ≤ 0.25, lack of steric clashes or covalent bonding, and more [Li et al.,
2014]. We further exclude complexes with invalid ligand bonding information. The binding affinity
provided in PDBBind is experimentally determined and expressed in terms of inhibition constant (Ki)
or dissociation constant (Kd), both in Molar units. As in previous works [Ballester and Mitchell, 2010,
Zilian and Sotriffer, 2013, Ragoza et al., 2017, Jiménez et al., 2018], we do not make the distinction
between Ki and Kd, and instead predict the negative log-transformed binding affinity, or pK. The
majority of prior scoring functions have used the “core set” provided by the Critical Assessment
of Scoring Functions (CASF) [Su et al., 2019] as a test set for evaluating prediction performance.
However, by construction every protein in this test set is at least 90% identical to several proteins in
the training set. Thus, performance on this test set does not accurately represent the generalizability
of a scoring function, and has been shown to overestimate the performance of machine learning
models in particular [Kramer and Gedeck, 2010, Gabel et al., 2014, Li and Yang, 2017]. Therefore,
to prevent overfitting to specific protein families, we create a new train/validation/test split based on a
30% sequence identity threshold to limit homologous proteins appearing in both train and test sets.
Specifically, we use a cluster-based approach to ensure that no protein in the training set has > 30%
sequence identity to any protein in the validation or test sets, as calculated by BLASTP. To prevent
overrepresentation of any single protein family (i.e. sequence identity cluster), we additionally
enforce that no single cluster represents more than 20% of the overall split. Splitting using this
procedure resulted in training, validation, and test sets of size 3507, 466, and 490, respectively.

For comparison, we provide an additional, less restrictive, split based on a 60% sequence identity
threshold (results in Table 8). This leads to training, validation, and test sets of size 3678, 460, and
460, respectively.

For the ENN, we use a reduced dataset without hydrogens and only the most abundant heavy elements
in the full dataset (C, N, O, S, Zn, Cl, F, P, Mg). From the binding pocket, we only use atoms within
a distance of 6 Å from the ligand and only so many atoms as to not have more than 600 atoms in
total (ligand + protein). This limitation of atom numbers is purely technical. The Kronecker products
involved in the covariant neurons are memory intensive in the Cormorant implementation we used,
and training on larger structures was limited by the memory of the GPUs available to us.

D.6 Ligand Efficacy Prediction (LEP)

Each input consists of a ligand bound to both the active and inactive conformation of a specific
protein. The goal is to predict the label for this drug/ligand, either an “activator” or “inactivator” of
the protein function. Why include these protein conformations in the input? From a biochemical
perspective, if the drug binds much more favorably to the active protein conformation, it will act as
an activator of the protein function. The model may then learn this differential binding strength to
improve predictions of ligand function.

Pairs of structures for 27 proteins are obtained through manual curation of the Protein Data Bank
structures where “active” and “inactive” conformational states are both available. For example, for
ion channels, this means a channel in an open vs. closed state. 527 ligands with known protein
binding and labeled function are selected from the IUPHAR database. We label ligands as activators
if they are listed as “agonists” or “activators” and label ligands as inactivators if they are listed as
“inhibitors” or “antagonists”. We select up to 15 of both activating and inactivating ligands for each
protein.

We model the drugs bound to the relevant protein. To prepare protein structures for use in docking,
we first prepare structures using the Schrödinger suite. All waters are removed, the tautomeric state
of the ligand present in the experimentally determined structure is assigned using Epik at pH 7.0
+/–2.0, hydrogen bonds are optimized, and energy minimization is performed with non-hydrogen
atoms constrained to an RMSD of less than 0.3 Å from the initial structure. For ligands to be docked,
the tautomeric state is assigned using Epik tool at target pH 7.0. Ligands are docked using default
Glide SP. This results in 527 pairs of complexes. These are split into training, validation, and tests
sets by protein target to ensure generalizability across proteins.

20



For ENN training, we reduce the structures to a size that is tractable for the Cormorant implementation
we used. To this end, we only use the regions within a radius of 5.5 Å around the ligand. For 3D-CNNs,
we use a radius of 25 Å. GNNs were trained on complete structures.

We require that efficacy predictions for a given ligand at a given protein not use information about
efficacy of other ligands at that protein, to model a case when no such information is available. When
efficacy measurements are available for other ligands at the same protein—as is the case for many
well-studied drug targets—methods that take advantage of these (e.g., quantitative structure-activity
relationship methods) may produce more accurate efficacy predictions.

D.7 Protein Structure Ranking (PSR)

The Critical Assessment of Structure Prediction (CASP) [Kryshtafovych et al., 2019] is a long-
running international competition held biennially, of which CASP13 is the most recent, that addresses
the protein structure prediction problem by withholding newly solved experimental structures (called
targets) and allowing computational groups to make predictions (called decoys), which are then
evaluated for their closeness to their targets after submission. Those submissions are then carefully
curated and released as decoy sets in two stages (20 decoys per target for Stage 1, 150 decoys per
target for Stage 2) for the Model Quality Assessment (MQA), one of the categories in CASP which
aims to score a set of decoys of a target based on how closely they are to the target. For the PSR
dataset, we compiled those decoys sets released in CASP5-13, then relaxed those structures with the
SCWRL4 software [Krivov et al., 2009] to improve side-chain conformations. For all decoys in the
dataset, we computed the RMSD, TM-score, GDT_TS, and GDT_HA scores using the TM-score
software [Zhang and Skolnick, 2007].

Mirroring the setup of the competition, we split the decoy sets based on target and released year. More
specifically, we randomly split the targets in CASP5-10 and randomly sample 50 decoys for each
target to generate the training and validation sets (508 targets for training, 56 targets for validation),
and use the whole CASP11 Stage 2 as test set (85 targets total, with 150 decoys for each target). We
chose CASP11 as test set, as the targets in CASP12-13 are not fully released yet.

D.8 RNA Structure Ranking (RSR)

The RNA Puzzles competition [Cruz et al., 2012] is a rolling international competition dealing with
the RNA structure prediction problem. Similarly to CASP, newly solved experimental structures,
referred to as natives, are withheld until computational groups make prediction, referred to as
candidates. These candidates are then evaluated by their RMSD from the native. For this task, we use
candidate structures created by the state-of-the-art structure generation method, FARFAR2 [Watkins
et al., 2020], for each of the 21 first RNA Puzzles. These are made available as part of the FARFAR2
publication. There are an average of 21303 (standard deviation of 13973) candidates generated per
puzzles, with a large range of RMSDs. For the RSR dataset we randomly sample 1000 candidates per
puzzle. We split temporally, by puzzle, using RNA Puzzles 1-13 for training, 14-17 (excluding 16)
for validation, and 18-21 for testing.

E Task-Specific Experimental Details

Below we describe the architectures and hyperparameters used for benchmarking. In general, these
are intended to be robust but simple benchmarks for each task, so we did not undertake full tuning of
every hyperparameter for every task, which would be very expensive. However, we did tune specific
crucial hyperparameters such as learning rate, number of epochs, and 3DCNN grid size/resolution
using a grid search methodology. Final models and hyperparameter settings were selected using
performance on the validation set, with the held-out test sets only used to report final performance.

E.1 3DCNNs

Our base 3DCNN architecture consists of four 3D-convolutional layers with increasing filter size (32,
64, 128, and 256) — each followed by ReLU activation, max-pooling (for every other convolution
layer), and dropout — and one fully-connected layer of size 512, followed by ReLU activation and
dropout. For single model task (PSR, RSR, LBA, SMP), we add an additional fully-connected layer

21



to transform to the required output dimension size. For paired tasks (PIP, LEP, MSP), we adapt this
base architecture into a twin network, add an additional fully-connected layer followed by ReLU
activation and dropout to combine the output of each member of the pair, and finally add a final
fully-connected layer to transform to the required output dimension size, as in [Townshend et al.,
2019].

For input to the 3DCNNs, we represent our data as cube in 3D space of certain radius (40 Å for
PSR, RSR; 17 Å for PIP; 20 Å for LBA; 7.5 Å for SMP; 25 Å for LEP, MSP; 10 Å for RES) that are
discretized into voxels with resolution of 1 Å to form a grid (for PSR and RSR, we need to decrease
the resolution to 1.3 Å in order to fit them in the GPU memory). For paired tasks (PSR, RSR, and
PIP), we form a separate voxel grid for each member of the pair. For most tasks, we use the centroid
of each input structure as center of the grid, excluding LBA where we use the centroid of the ligand
as center and MSP where we use the mutation point as center. Each grid voxel is associated with
a binary feature vector which encodes the presence or absence of each specified atom type in that
voxel. For PSR, RSR, PIP, and RES, we encode the presence of heavy atoms C, O, N, and S (P for
RSR since S does not exist in RNA structures). For other tasks where hydrogen bonds might play an
important role, we encode the hydrogen atom (H) in addition to C, O, N, and few other abundant
atoms (F for LBA and SMP; S, Cl, F for LEP; S for MSP). To encode rotational symmetries, we
apply a data augmentation strategy in which we apply 20 random rotations to the input grid, as in
[Townshend et al., 2019], except for RES, where we instead apply the canonicalization procedure
described in [Anand et al., 2020].

For binary classification tasks, we use binary cross-entropy weighted by the class distribution (i.e.
rarer class is weighted more heavily on mistakes). To address issues with imbalanced datasets, we
randomly oversample/undersample the less/more frequent class respectively during training. For
regression tasks, we use mean-squared error loss for training. All models were trained with Adam
optimizer with default beta parameters and learning rate 0.0005 for SMP; 0.0001 for PSR, RSR, PIP,
RES; 0.001 for LBA; and 0.00001 for LEP, MSP. We monitor the loss on the validation set at every
epoch. The weights of the best-performing are then used to evaluate on the held-out test set. The
models were all trained on 1 Titan X(p) GPU for 4–24 hours depending on the task.

E.2 GNNs

Our base GNN architecture consists of five layers of graph convolutions as defined by Kipf and
Welling [Kipf and Welling, 2016], with increasing hidden dimension (64, 128, 128, 256, 256) each
followed by batch normalization and ReLU activation. For tasks with paired input structures (PIP,
LEP, MSP), we apply this convolutional architecture to each input structure separately in a twin
network architecture with tied weights, and then concatenate the outputs before passing through
two fully-connected layers of size 256 to transform to an output dimension of one neuron for binary
classification. We regularize using dropout with a probability of 0.25 after the first fully-connected
layer. Some tasks require classification of an entire structure, and thus are well-suited to graph-level
outputs (PSR, RSR, LBA). Here, we apply global mean or addition pooling across all nodes before
applying the final two layers. For PIP, RES, and MSP, instead of pooling we instead extract the
embedding of the node corresponding to the Cα atom of the residue in question (interacting residue,
deleted residue, and mutated residue, respectively) after the final convolutional layer. For SMP,
we use the previously-developed architecture presented in [Gilmer et al., 2017], which is publicly
available.

We use a very simple featurization scheme for atomic systems. We define edges between all atoms
separated by less than 4.5 Å. Edges are weighted by the distance between the atoms, and nodes are
featurized by one-hot-encoding all heavy (non-hydrogen) atoms. The only exception is SMP, where
we adopt the established featurization scheme used in MoleculeNet [Wu et al., 2018]. For tasks
involving protein-ligand binding (LBA and LEP), we distinguish the protein and the ligand by using
separate channels in the node features for each. All GNNs were implemented in PyTorch Geometric
[Fey and Lenssen, 2019].

For binary tasks, we use a binary cross-entropy loss criterion weighted by the class distribution (e.g.
a 1:4 positive:negative ratio would result in positive examples being up-weighted four-fold). For
regression tasks, we use a mean-squared error criterion. For all models, we train with the Adam
optimizer with learning rate 0.0001 (except for PIP, which uses a learning rate of 0.001) and monitor
the relevant metrics (see Table 8) on the validation set after every epoch. The weights of the best-

22



performing are then used to evaluate on the held-out test set. Models were all trained using 1 Tesla
V100 GPU for 4–48 hours depending on the task.

Certain tasks involve making a prediction on a specific amino acid (PIP, RES, and MSP; see Table 2),
yet GNNs typically rely on summing over all node embeddings to compute a final graph embedding,
making it difficult to isolate this amino acid. To remedy this, after our convolutional layers we extract
the embedding of only the Cα atom of the amino acid in question, thereby allowing our GNNs to
isolate it.

E.3 ENNs

For the core of all Cormorant architectures in this work, we use a network of four layers of covariant
neurons that use the Clebsch–Gordan transform as nonlinearity, with L = 3 as the largest index in
the SO(3) representation and 16 channels, followed by a single SO(3)-vector layer with L = 0.
An input featurization network encodes the atom types as one-hot vectors. For SMP, input and
output are passed through multi-layer perceptrons (MLP) as in [Anderson et al., 2019]. For the input,
a weighted adjacency matrix with a learnable cut-off radius is constructed. This mask is passed
alongside the input vector through a MLP with a single hidden layer with 256 neurons and ReLU
activation. The output network is constructed from a set of scalar invariants that are passed through a
network of two MLPs. Each of these MLPs has a single hidden layer of size 256, and the intermediate
representation has 96 neurons. For LBA and LEP, input and output layers are a single learnable
mixing matrix, as used in the original Cormorant implementation for MD-17[Anderson et al., 2019].
The twin networks required for LEP and MSP was constructed by training two ENNs that are then
connected by concatenating the single-network outputs which are then passed to a MLP analogous to
the one described above for SMP. For MSP, the two structures corresponded to the wild-type structure
and the mutated one; for LEP to the active and inactive one. We extend the original Cormorant
implementation to handle classification problems (binary and multi-class) and the twin network
architecture. Our implementation6 also allows to set a boundary on the Clebsch-Gordan product to
eliminate training instabilities from a divergent loss that would otherwise arise occasionally for some
of the tasks.

We use MSE loss for regression tasks and cross-entropy loss for classification tasks. For all tasks, we
used the AMSgrad optimizer with an initial learning rate of 0.001 and a final learning rate of 0.00001,
decaying in a cosine function over the training process. We trained SMP and LBA for 150 epochs,
LEP and MSP for 50 epochs, and RES for 30 epochs. We monitor the loss for the validation set after
every epoch. The weights of the best-performing are then used to evaluate on the held-out test set.
The models were all trained on 1 Titan X(p) GPU for 1–5 days depending on the task.

F 1D and 2D Baselines

For each task, we select a baseline that fulfills the following criteria: (1) represents the current
state-of-the-art (SOTA) for that task—or as close as possible—using only 1D (sequence only) or 2D
(sequence and/or bond connectivity) molecular representations, and (2) either has a publicly available
implementation or has reported results for the same task and splitting criteria. For PSR and RSR,
which are inherently 3D tasks and have no appropriate 1D or 2D representation, we compare to the
state-of-the-art 3D methods instead. Below we describe the choice and implementation of baseline
models for each task.

F.1 SMP

As a 2D method for predicting molecular properties, we choose molecular GNNs [Tsubaki et al., 2019]
which are based on learning representations of subgraphs in molecules. We use an implementation
that only uses the SMILES representation of the molecular graph.7 As an additional 2D baseline,
we compare to N-Gram Graph XGB [Liu et al., 2019]. This method is based on an unsupervised
representation called N-gram graph which first embeds the vertices in the molecule graph and then

6https://github.com/drorlab/cormorant
7https://github.com/masashitsubaki/molecularGNN_smiles

23

https://github.com/drorlab/cormorant
https://github.com/masashitsubaki/molecularGNN_smiles


assembles the vertex embeddings in short walks in the graph. This representation is combined with
the XGBoost learning method [Chen and Guestrin, 2016].8

F.2 PIP

For the PIP task, our non-3D method is the BIPSPI [Sanchez-Garcia et al., 2018] model, a gradient-
boosted decision tree. We compare to their model that uses only sequence and sequence conservation
features and is evaluated on DB5.

F.3 RES

As a 1D sequence-based model for predicting residue identity, we choose the transformer architecture
TAPE, introduced by [Rao et al., 2019]. We use their reported accuracy on heldout families for
language modeling, as that corresponds to a sequence-only version of our RES tasks, with similar
stringency in terms of splitting criteria.

F.4 MSP

We use the publicly provided implementation of TAPE [Rao et al., 2019]9. We modify their sequence-
to-sequence head to predict the effect of mutations at specific positions, using the original unmutated
protein as the input sequence and writing the output sequence as a one-hot-encoded 20-dimensional
vector, indicating if a given mutation would be beneficial or detrimental. Note that the vast majority
of positions would be unlabeled and therefore not included in the learning task.

F.5 LBA

As a 1D method for predicting ligand binding affinity, we choose DeepDTA [Öztürk et al., 2018]10, a
1DCNN based model that takes in pairs of ligand SMILES string and protein sequence as input. We
use the same hyperparameters as in the original paper for the baseline.

We also compare our results against DeepAffinity [Karimi et al., 2019]11. We compare to their unified
RNN/RNN-CNN model that takes in pairs of ligand SMILES string and their novel representations of
structurally-annotated protein sequences (SPS/Structure Property-annotated Sequence) as input. Per
the authors’ recommendation, we use the DSSP software [Joosten et al., 2010, Kabsch and Sander,
1983] to generate the protein secondary structure and the protein relative solvent accessibility used in
the SPS representation directly from the protein 3D structure, rather than the predicted ones by the
SSpro/ACCpro software [Magnan and Baldi, 2014, Cheng et al., 2005] as done in the DeepAffinity
paper. We use the same hyperparameters as in the original paper for the baseline, except for the
maximum SMILES string and SPS lengths which we increase from 100 and 152 in the paper to 160
and 168, respectively, to accommodate for larger ligands/proteins in the PDBBind dataset. We used
the pre-trained seq2seq encoders for proteins and ligands to initialize the joint supervised training
of the encoders and CNN, and trained the DeepAffinity models for 1000 epochs. The pre-trained
DeepAffinity seq2seq encoders were trained with maximum SMILES string and SPS lengths of 100
and 152, however, there are only 4% of the ligands in the PDBBind dataset with SMILES string
length larger than 100, and even much smaller percentage of the proteins (around 0.2%) with SPS
length larger than 152, so the input data distribution for PDBBind should still be in the range of that
of DeepAffinity.

F.6 LEP

We train DeepDTA [Öztürk et al., 2018]10 (with the same hyperparameters as in the original paper)
on the LEP dataset as baseline. As the inherent protein sequences and ligand SMILES strings are the
same for both the inactive and active structures, the problem is reduced to binary classification task
given a pair of protein sequence and the ligand SMILES string, and does not require modifying the
DeepDTA architecture to make the twin network as in the GNN, ENN, or 3DCNN case.

8https://github.com/chao1224/n_gram_graph
9https://github.com/songlab-cal/tape

10https://github.com/hkmztrk/DeepDTA
11https://github.com/Shen-Lab/DeepAffinity

24

https://github.com/chao1224/n_gram_graph
https://github.com/songlab-cal/tape
https://github.com/hkmztrk/DeepDTA
https://github.com/Shen-Lab/DeepAffinity


F.7 PSR

We compare our results against the state-of-the-art single-model methods as reported in [Pagès et al.,
2019]. These include 3DCNN [Hou et al., 2019] and Ornate [Pagès et al., 2019], 3DCNN voxel-based
methods trained on structural information, and Proq3D [Uziela et al., 2017], a deep-learning based
method which employs structural information, Rosetta energy terms [Leaver-Fay et al., 2011], and
evolutionary information derived from the amino acid sequence. We exclude ProteinGCN [Sanyal
et al., 2020], a recent GNN-based method, from comparison as they do not provide results on CASP11
dataset.

F.8 RSR

For RNA structure ranking, we compare our results against the Rosetta scoring function [Alford
et al., 2017]. In past RNA Puzzles competitions, methods using the Rosetta scoring function have
been found to most consistently produce the lowest RMSD candidates. This is a physical- and
knowledge-based potential specifically tuned for biomolecular structure.

G State-Of-The-Art Methods

When possible, for tasks in Table 7, we choose 3D methods that fulfill the following criteria: (1) they
represent the current state-of-the-art for that task, or as close as possible, and (2) they either have
a publicly available implementation or have reported results for the same task and splitting criteria.
Here our choice of methods is described in more detail if not already discussed in the section above.

G.1 SMP

We compare to the state of the art, i.e., the best achieved prediction on each task, as reported
in Anderson et al. [2019]. Many methods have been tested on QM9 and have reached excellent
performance which makes them comparably hard to beat for new methods. In general, the best
methods for QM9 so far are message passing neural networks Gilmer et al. [2017], continuous-filter
convolutional neural networks Schütt et al. [2017], and Cormorant Anderson et al. [2019]. Differences
in performance between earlier Cormorant studies and this work can be attributed to the different
(random) split.

G.2 PIP

We compare our results against the BIPSPI Sanchez-Garcia et al. [2018] model, a gradient-boosted
decision tree. In contrast to the 1D/2D baseline comparison to BIPSPI, in this case we compare
against their model that employs both structural- and sequence-based amino acid features.

G.3 RES

Since there have been no standardized datasets for this task to date, it is difficult to perform a direct
comparison of methods. The closest comparison for a CNN trained on a balanced dataset of residue
environments is 0.425, as reported in Torng and Altman [2017]. While higher performance was
reported by Anand et al. [2020] (accuracy 0.572), this model was trained on an unbalanced dataset
comprising every standard residue environment in all training set PDBs. Similar performance has
also been reported with other deep learning architectures Weiler et al. [2018], Boomsma and Frellsen
[2017], but these do not describe their training/evaluation data or splitting criteria. In contrast, we
restrict our training and evaluation to a balanced subset, downsampled to the frequency of the rarest
class, which limits performance slightly. Additionally, to enable fair comparison over three replicates
between 3DCNN and GNN, we then trained on only half of these down-sampled environments. The
discrepancy in performance we observe on this subset is indicative of the fact that the differences in
residue environment are subtle and complex, so simply increasing training data can result in higher
performance. This is especially true for common classes such as leucine and glycine, which are over
five times as frequent than the least common class, cysteine. Within these common classes, accuracy
exceeds 80%, which increases the average accuracy when classes are imbalanced.

25



G.4 LEP

Because this was a novel dataset, we computed initial results a non-deep learning method,
Schrödinger’s Glide, to score each protein-ligand complex. Glide is state-of-the-art for scoring
protein-ligand complexes and determining how "good" a pose is. This resulted in 2 scores per ligand;
the score to the inactive protein structure and the score to the active protein structure. We then
performed a binary classification by training an SVM on these two features to predict the ligand
activity class. This approach is reasonable from a physical basis: if the ligand binds much better
to the active protein structure than the inactive protein structure, then it will be an activator of the
protein’s function.

G.5 LBA

Many methods have been developed for the prediction of ligand binding affinity using the PDBBind
dataset. However, the standard has been to evaluate performance on the so-called “core set”, as
described in Section 3, after training and validating on the remainder of the refined set. The state-of-
the-art reported on this core set has been achieved by the 3DCNN-based KDEEP Jiménez et al. [2018],
followed closely by the popular random forest–based method RF-score Ballester and Mitchell [2010].
However, because the core set contains only proteins that are also present in the training set, this only
measures in-distribution performance, not generalizable scoring ability. Thus, the most comparable
baseline for our dataset, which was split at 30% sequence identity, is the performance of the empirical
linear regression–based scoring function X-score fitted to complexes with less than 30% identity to
the core set, as reported in Li and Yang [2017]. We note that this is not a perfect comparison, since
the procedure used in Li and Yang [2017] reduces the size of the training set significantly; however,
as an empirical scoring function the performance of X-score is not very sensitive to training set size,
compared to RF-score, which was significantly affected.

26



H Supplementary Tables

Table 7: Comparison of performance against state-of-the-art methods, where
available. The 3DCNN, GNN, and ENN networks achieve state-of-the-art in
several tasks; for those where they do not (SMP, PIP, LBA), we note that the
competing methods also use the 3D geometry of molecules. Asterisks (∗) indicate
that the exact training data differed (though splitting criteria were the same).

Task Metric 3D SOTA

3DCNN GNN ENN

SMP µ [D] 0.754 0.501 0.052 ∗0.030 [Gilmer et al., 2017]
εgap [eV] 0.580 0.137 0.095 ∗0.061 [Anderson et al., 2019]
Uat

0 [eV] 3.862 1.424 0.025 ∗0.014 [Schütt et al., 2017]

PIP AUROC 0.844 ∗0.669 — 0.919 [Sanchez-Garcia et al., 2018]

RES accuracy 0.451 0.082 ∗0.072 ∗0.425 [Torng and Altman, 2017]

MSP AUROC 0.574 0.609 0.574 —

LBA RMSE 1.416 1.601 1.568 ∗1.838 [Li and Yang, 2017]
glob. RP 0.550 0.545 0.389 ∗0.645 [Li and Yang, 2017]
glob. RS 0.553 0.533 0.408 ∗0.697 [Li and Yang, 2017]

LEP AUROC 0.589 0.681 0.663 0.770 [Friesner et al., 2004]

PSR mean RS 0.431 0.411 — 0.432 [Pagès et al., 2019]
glob. RS 0.789 0.750 — 0.796 [Pagès et al., 2019]

RSR mean RS 0.264 0.234 — 0.173 [Alford et al., 2017]
glob. RS 0.372 0.512 — 0.304 [Alford et al., 2017]

27



Table 8: Complete benchmarking results from Tables 3–6, with additional metrics and standard
deviations reported over three replicates. RK is Kendall correlation and AUPRC is area under the
precision-recall curve. SMP metrics are all mean absolute error (MAE). Asterisks (∗) indicate that
the exact training data differed (though splitting criteria were the same).

Task Metric 3DCNN GNN ENN SOTA Baseline
[Pagès et al., 2019]

PSR mean RP 0.557 ± 0.011 0.500 ± 0.012 — 0.444
mean RK 0.308 ± 0.010 0.289 ± 0.005 — 0.304
mean RS 0.431 ± 0.013 0.411 ± 0.006 — 0.432
global RP 0.780 ± 0.016 0.747 ± 0.018 — 0.772
global RK 0.592 ± 0.016 0.547 ± 0.016 — 0.594
global RS 0.789 ± 0.017 0.750 ± 0.018 — 0.796

SOTA Baseline
[Alford et al., 2017]

RSR mean RP 0.286 ± 0.038 0.275 ± 0.007 — 0.129
mean RK 0.181 ± 0.032 0.157 ± 0.004 — 0.119
mean RS 0.264 ± 0.046 0.234 ± 0.006 — 0.173
global RP 0.360 ± 0.030 0.519 ± 0.051 — 0.161
global RK 0.247 ± 0.017 0.348 ± 0.038 — 0.206
global RS 0.372 ± 0.027 0.512 ± 0.049 — 0.304

Non-3D Baseline
[Sanchez-Garcia et al., 2018]

PIP AUROC 0.844 ± 0.002 ∗0.669 ± 0.001 — 0.841

Non-3D Baseline
[Rao et al., 2019]

RES accuracy 0.451 ± 0.002 0.082 ± 0.002 ∗0.072 ± 0.005 *0.30
MSP AUROC 0.574 ± 0.005 0.609 ± 0.011 0.574 ± 0.040 0.554

AUPRC 0.187 ± 0.007 0.176 ± 0.003 0.196 ± 0.010 —

Non-3D Baseline
[Tsubaki et al., 2019]

SMP µ [D] 0.754 ± 0.009 0.501 ± 0.002 0.052 ± 0.007 0.496 ± 0.002
α [bohr3] 3.045 ± 1.128 1.562 ± 0.038 0.127 ± 0.026 0.392 ± 0.004
εHOMO [eV] 0.303 ± 0.000 0.092 ± 0.002 0.044 ± 0.010 0.107 ± 0.001
εLUMO [eV] 0.517 ± 0.011 0.096 ± 0.001 0.035 ± 0.003 0.115 ± 0.001
εgap [eV] 0.580 ± 0.004 0.137 ± 0.002 0.095 ± 0.021 0.154 ± 0.001
R2 [bohr2] 64.514 ± 1.524 89.912 ± 32.591 1.045 ± 0.065 27.976 ± 0.212
ZPVE [meV] 88.219 ± 16.287 33.504 ± 5.548 1.705 ± 0.044 10.614 ± 0.270
Uat

0 [eV] 3.862 ± 0.594 1.424 ± 0.211 0.025 ± 0.001 0.182 ± 0.004
Uat

298 [eV] 4.356 ± 0.498 1.227 ± 0.610 0.025 ± 0.001 0.181 ± 0.001
Hat

298 [eV] 4.088 ± 0.229 0.927 ± 0.177 0.024 ± 0.001 0.180 ± 0.004
Gat

298 [eV] 4.369 ± 0.805 1.171 ± 0.497 0.024 ± 0.001 0.173 ± 0.000
Cv [ cal

molK
] 1.418 ± 0.200 0.350 ± 0.078 0.034 ± 0.001 0.187 ± 0.004

Non-3D Baseline
[Öztürk et al., 2018]

LBA RMSE 1.416 ± 0.021 1.601 ± 0.048 1.568 ± 0.012 1.565 ± 0.018
(30%) global RP 0.550 ± 0.021 0.545 ± 0.027 0.389 ± 0.024 0.573 ± 0.022

global RS 0.553 ± 0.009 0.533 ± 0.033 0.408 ± 0.021 0.574 ± 0.010
LBA RMSE 1.621 ± 0.025 1.408 ± 0.069 1.620 ± 0.049 1.760 ± 0.415
(60%) global RP 0.608 ± 0.020 0.743 ± 0.022 0.623 ± 0.015 0.713 ± 0.013

global RS 0.615 ± 0.028 0.743 ± 0.027 0.633 ± 0.021 0.702 ± 0.013
LEP AUROC 0.589 ± 0.020 0.681 ± 0.062 0.663 ± 0.100 0.696 ± 0.021

AUPRC 0.483 ± 0.037 0.598 ± 0.135 0.551 ± 0.121 0.550 ± 0.024

28



Table 9: Number of samples for each dataset presented in the benchmark.

Task Number of Samples

Train Val Test

SMP 103547 12943 12943

PIP 87303 31050 15268

RES 3820837 192371 648372

MSP 2864 937 347

LBA 3563 448 452

LEP 304 110 104

PSR 25400 2800 16099

RSR 12479 4000 4000

29


	Introduction
	Related Work
	Datasets for 3D Molecular Learning
	Small Molecule Properties (SMP)
	Protein Interface Prediction (PIP)
	Residue Identity (RES)
	Mutation Stability Prediction (MSP)
	Ligand Binding Affinity (LBA)
	Ligand Efficacy Prediction (LEP)
	Protein Structure Ranking (PSR)
	RNA Structure Ranking (RSR)

	Benchmarking Setup
	Benchmarking Results
	3D representations consistently improve performance
	Different tasks benefit from different architectures

	Conclusion
	Acknowledgments
	Resource Availability and Licensing
	Broader Impact
	Working with 3D Molecular Data Using ATOM3D
	Assembling New Datasets
	Developing and Benchmarking New Algorithms

	Dataset Preparation
	Small Molecule Properties (SMP)
	Protein Interface Prediction (PIP)
	Residue Identity (RES)
	Mutation Stability Prediction (MSP)
	Ligand Binding Affinity (LBA)
	Ligand Efficacy Prediction (LEP)
	Protein Structure Ranking (PSR)
	RNA Structure Ranking (RSR)

	Task-Specific Experimental Details
	3DCNNs
	GNNs
	ENNs

	1D and 2D Baselines
	SMP
	PIP
	RES
	MSP
	LBA
	LEP
	PSR
	RSR

	State-Of-The-Art Methods
	SMP
	PIP
	RES
	LEP
	LBA

	Supplementary Tables



