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Abstract

The McKean-Vlasov equation (MVE) describes the collective behavior of parti-
cles subject to drift, diffusion, and mean-field interaction. In physical systems, the
interaction term can be singular, i.e. it diverges when two particles collide. No-
table examples of such interactions include the Coulomb interaction, fundamental
in plasma physics, and the Biot-Savart interaction, present in the vorticity formu-
lation of the 2D Navier-Stokes equation (NSE) in fluid dynamics. Solving MVEs
that involve singular interaction kernels presents a significant challenge, especially
when aiming to provide rigorous theoretical guarantees. In this work, we propose
a novel approach based on the concept of entropy dissipation in the underlying
system. We derive a potential function that effectively controls the KL divergence
between a hypothesis solution and the ground truth. Building upon this theoret-
ical foundation, we introduce the Entropy-dissipation Informed Neural Network
(EINN) framework for solving MVEs. In EINN, we utilize neural networks (NN)
to approximate the underlying velocity field and minimize the proposed poten-
tial function. By leveraging the expressive power of NNs, our approach offers a
promising avenue for tackling the complexities associated with singular interac-
tions. To assess the empirical performance of our method, we compare EINNwith
SOTA NN-based MVE solvers. The results demonstrate the effectiveness of our
approach in solving MVEs across various example problems.

1 Introduction
Scientists use Partial Differential Equations (PDEs) to describe natural laws and predict the dynam-
ics of real-world systems. As PDEs are of fundamental importance, a growing area in machine
learning is the use of neural networks (NN) to solve these equations [Han et al., 2018, Zhang et al.,
2018, Raissi et al., 2020, Cai et al., 2021, Karniadakis et al., 2021, Cuomo et al., 2022]. An im-
portant category of PDEs is the McKean-Vlasov equation (MVE), which models the dynamics of a
stochastic particle system with mean-field interactions

dXt = −∇V (Xt)dt +K ∗ ρ̄t(Xt)dt +
√
2νdBt, ρ̄t = Law(Xt). (1)

Here Xt ∈ X denotes a random particle’ position, X is either Rd or the torus Πd (a cube [−L,L]d
with periodic boundary condition), V ∶ Rd → R denotes a known potential, K ∶ Rd → Rd denotes
some interaction kernel and the convolution operation is defined as h ∗ ϕ = ∫X h(x − y)ϕ(y)dy,
{Bt}t≥0 is the standard d-dimensional Wiener process with ν ≥ 0 being the diffusion coefficient,
and ρ̄t ∶ X → R is the law or the probability density function of the random variable Xt and the
initial data ρ̄0 is given. Under mild regularity conditions, the density function ρ̄t satisfies the MVE

(MVE) ∂tρ̄t(x) + div (ρ̄t(−∇V (x) +K ∗ ρ̄t(x))) = ν∆ρ̄t(x), (2)

∗Authors are listed in alphabetic order.
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where div denotes the divergence operator, div h(x) = ∑di=1 ∂hi/∂xi for a velocity field h ∶ Rd →
Rd, ∆ denotes the Laplacian operator defined as ∆ϕ = div(∇ϕ), where ∇ϕ denotes the gradient of
a scalar function ϕ ∶ Rd → R. Note that all these operators are applied only on the spatial variable x.

In order to describe dynamics in real-world phenomena such as electromagnetism [Golse, 2016] and
fluid mechanics [Majda et al., 2002], the interaction kernels K in the MVE can be highly singular,
i.e. ∥K(x)∥→∞ when ∥x∥→ 0. Two of the most notable examples are the Coulomb interactions

(Coulomb Kernel) K(x) = −∇g(x), with g(x) = {((d − 2)Sd−1(1))
−1 ∥x∥−(d−2), d ≥ 3,

−(2π)−1 log ∥x∥, d = 2, (3)

with Sd−1(1) denoting the surface area of the unit sphere in Rd, and the vorticity formulation of the
2D Navier-Stokes equation (NSE) where the interaction kernel K is given by the Biot-Savart law

(Biot-Savart Kernel) K(x) = 1

2π

x⊥

∥x∥2 =
1

2π
(− x2
∥x∥2 ,

x1
∥x∥2 ) , (4)

where x = (x1, x2) and ∥x∥ denotes the Euclidean norm of a vector.
Classical methods for solving MVEs, including finite difference, finite volume, finite element, spec-
tral methods, and particle methods, have been developed over time. A common drawback of these
methods lies in the constraints of their solution representation: Sparse representations, such as less
granular grids, cells, meshes, fewer basis functions, or particles, may lead to an inferior solution
accuracy; On the other hand, dense representations incur higher computational and memory costs.
As a potent tool for function approximation, NNs are anticipated to overcome these hurdles and
handle higher-dimensional, less regular, and more complex systems efficiently [Weinan et al., 2021].
The most renowned NN-based algorithm is the Physics Informed Neural Network (PINN) [Raissi
et al., 2019]. The philosophy behind the PINN method is that solving a PDE system is equivalent
to finding the root of the corresponding differential operators. PINN tackles the latter problem by
directly parameterizing the hypothesis solution with an NN and training it to minimize the L2 func-
tional residual of the operators. As a versatile PDE solver, PINN may fail to exploit the underlying
dynamics of the PDE, which possibly leads to inferior performance on task-specific solvers. For
example, on the 2D NSE problem, a recent NN-based development Zhang et al. [2022] surpasses
PINN and sets a new SOTA empirical performance, which however lacks rigorous theoretical sub-
stantiation. Despite the widespread applications of PINN, rigorous error estimation guarantees are
scarce in the literature. While we could not find results on the MVE with the Coulomb interaction,
only in a very recent paper [De Ryck et al., 2023], the authors establish for NSE that the PINN loss
controls the discrepancy between a candidate solution and the ground truth. We highlight that their
result holds average-in-time, meaning that at a particular timestamp t ∈ [0, T ], a candidate solution
with small PINN loss may still significantly differ from the true solution. In contrast, all guarantees
in this paper are uniform-in-time. Moreover, there is a factor in the aforementioned guarantee that
exponentially depends on the total evolving time T , while the factor in our guarantee for the NSE
is independent of T . We highlight that these novel improvements are achieved for the proposed
EINN framework since we take a completely different route from PINN: Our approach is explicitly
designed to exploit the underlying dynamics of the system, as elaborated below.
Our approach Define the operator

A[ρ] def= −∇V +K ∗ ρ − ν∇ log ρ. (5)
By noting ∆ρ̄t = div(ρ̄t∇ log ρ̄t), we can rewrite the MVE in the form of a continuity equation

∂tρ̄t(x) + div(ρ̄t(x)A[ρ̄t](x)) = 0. (6)

For simplicity, we will refer to A[ρ̄t] as the underlying velocity. Consider another time-varying
hypothesis velocity field f ∶ R ×Rd → R and let ρft be the solution to the continuity equation

(hypothesis solution) ∂tρ
f
t (x) + div(ρft (x)f(t,x)) = 0, ρ

f
0 = ρ̄0 (7)

for t ∈ [0, T ], where we recall that the initial law ρ̄0 is known. We will refer to ρft as the hypothesis
solution and use the superscript to emphasize its dependence on the hypothesis velocity field f . We
propose an Entropy-dissipation Informed Neural Network framework (EINN), which trains an NN
parameterized hypothesis velocity field fθ by minimizing the following EINN loss

(EINN loss) R(fθ) def= ∫
T

0
∫
X
∥fθ(t,x) −A[ρfθt ](x)∥2ρ

fθ
t (x)dxdt. (8)
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The objective (8) is obtained by studying the stability of carefully constructed Lyapunov functions.
These Lyapunov functions draw inspiration from the concept of entropy dissipation in the system,
leading to the name of our framework. We highlight that we provide a rigorous error estimation
guarantee for our framework for MVEs with singular kernels (3) and (4), showing that when R(fθ)
is sufficiently small, ρfθt recovers the ground truth ρ̄t in the KL sense, uniform in time.
Theorem 1 (Informal). Suppose that the initial density function ρ̄0 is sufficiently regular and the
hypothesis velocity field ft(⋅) = f(t, ⋅) is at least three times continuously differentiable both in t
and x. We have for the MVE with a bounded interaction kernel K or with the singular Coulomb (3)
or Biot-Savart (4) interaction, the KL divergence between the hypothesis solution ρft and the ground
truth ρ̄t is controlled by the EINN loss for any t ∈ [0, T ], i.e. there exists some constant C > 0,

sup
t∈[0,T ]

KL(ρft , ρ̄t) ≤ CR(f). (9)

Having stated our main result, we elaborate on the difference between EINN and PINN in terms
of information flow over time, which explains why EINN achieves better theoretical guarantees:
In PINN, the residuals at different time stamps are independent of each other and hence there is no
information flow from the residual at time t1 to the one at time t2(> t1). In contrast, in the EINN loss
(8), incorrect estimation made in t1 will also affect the error at t2 through the hypothesis solution ρft .
Such an information flow gives a stronger gradient signal when we are trying to minimize the EINN
loss, compared to the PINN loss. It partially explains why we can obtain the novel uniform-in-time
estimation as opposed to the average-in-time estimation for PINN and why the constant C in the
NSE case is independent of T for EINN (Theorem 2), but exponential in T for PINN.
Contributions. In summary, we present a novel NN-based framework for solving the MVEs. Our
method capitalizes on the entropy dissipation property of the underlying system, ensuring robust
theoretical guarantees even when dealing with singular interaction kernels. We elaborate on the
contributions of our work from theory, algorithm, and empirical perspectives as follows.
1. (Theory-wise) By studying the stability of the MVEs with bounded interaction kernels or with
singular interaction kernels in the Coulomb (3) and the Biot-Savart case (4) (the 2D NSE) via en-
tropy dissipation, we establish the error estimation guarantee for the EINN loss on these equations.
Specifically, we design a potential functionR(f) of a hypothesis velocity f such thatR(f) controls
the KL divergence between the hypothesis solution ρft (defined in equation (7)) and the ground truth
solution ρ̄t for any time stamp within a given time interval [0, T ]. A direct consequence of this
result is that R(f) can be used to assess the quality of a generic hypothesis solution to the above
MVEs and ρft exactly recovers ρ̄t in the KL sense given that R(f) = 0.
2. (Algorithm-wise) When the hypothesis velocity field is parameterized by an NN, i.e. f = fθ with
θ being some finite-dimensional parameters, the EINN loss R(fθ) can be used as the loss function
of the NN parameters θ. We discuss in detail how an estimator of the gradient ∇θR(fθ) can be
computed so that stochastic gradient-based optimizers can be utilized to train the NN. In particular,
for the 2D NSE (the Biot-Savart case (4)), we show that the singularity in the gradient computation
can be removed by exploiting the anti-derivative of the Biot-Savart kernel.
3. (Empirical-wise) We compare the proposed approach, derived from our novel theoretical guar-
antees, with SOTA NN-based algorithms for solving the MVE with the Coulomb interaction and
the 2D NSE (the Biot-Savart interaction). We pick specific instances of the initial density ρ̄0, under
which explicit solutions are known and can be used as the ground truth to test the quality of the
hypothesis ones. Using NNs with the same complexity (depth, width, and structure), we observe
that the proposed method significantly outperforms the included baselines.

2 Entropy-dissipation Informed Neural Network
In this section, we present the proposed EINN framework for the MVE. To understand the intuition
behind our design, we first write the continuity equation (7) in a similar form as the MVE (6):

∂tρ
f
t (x) + div(ρft (x)(A[ρ

f
t ](x) + δt(x))) = 0, (10)

where f is the hypothesis velocity (recall that ft(⋅) = f(t, ⋅)) and

(Perturbation) δt(x) def= ft(x) −A[ρft ](x) (11)

can be regarded as a perturbation to the original MVE system. Consequently, it is natural to study
the deviation of the hypothesis solution ρft from the true solution ρ̄t using an appropriate Lyapunov
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function L(ρft , ρ̄t). The functional relation between this deviation and the perturbation is termed
as the stability of the underlying dynamical system, which allows us to derive the EINN loss (8).
Following this idea, the design of the EINN loss can be determined by the choice of the Lyapunov
function L used in the stability analysis. In the following, we describe the Lyapunov function used
for the MVE with the Coulomb interaction and the 2D NSE (MVE with Biot-Savart interaction).
The proof of the following results are the major theoretical contributions of this paper and will be
elaborated in the analysis section 3.

• For the MVE with the Coulomb interaction, we choose L to be the modulated free energy E
(defined in equation (23)) which is originally proposed in [Bresch et al., 2019a] to establish the
mean-field limit of a corresponding interacting particle system. We have (setting L = E)

d

dt
E(ρft , ρ̄t) ≤

1

2
∫
X
ρft (x)∥δt(x)∥2dx +C E(ρ

f
t , ρ̄t), (12)

where C is a universal constant depending on ν and (ρ̄t)t∈[0,T ].
• For the 2D NSE (MVE with the Biot-Savart interaction), we choose L as the KL divergence. Our

analysis is inspired by [Jabin and Wang, 2018] which for the first time establishes the quantitative
mean-field limit of the stochastic interacting particle systems where the interaction kernel can be
in some negative Sobolev space. We have

d

dt
KL(ρft , ρ̄t) ≤ −

ν

2
∫
X
ρft (x)∥∇ log

ρft
ρ̄t
(x)∥2+CKL(ρft , ρ̄t)+

1

ν
∫
X
ρft (x)∥δt(x)∥2dx, (13)

where again C is a universal constant depending on ν and (ρ̄t)t∈[0,T ].

After applying Grönwall’s inequality on the above results, we can see that the EINN loss (8) is
precisely the term derived by stability analysis of the MVE system with an appropriate Lyapunov
function. In the next section, we elaborate on how a stochastic approximation of ∇θR(fθ) can be
efficiently computed for a parameterized hypothesis velocity field f = fθ so that stochastic opti-
mization methods can be utilized to minimize R(fθ).

2.1 Stochastic Gradient Computation with Neural Network Parameterization

While the choice of the EINN loss (8) is theoretically justified through the above stability study, in
this section, we show that it admits an estimator which can be efficiently computed. Define the flow
map Xt via the ODE dx(t) = ft(x(t); θ)dt with x(0) = x0 such that x(t) = Xt(x0). From the
definition of the push-forward measure, one has ρft =Xt ♯ ρ̄0. Recall the definitions of the EINN loss
R(f) in equation (8) and the perturbation δt in equation (11). Use the change of variable formula
of the push-forward measure in (a) and Fubini’s theorem in (b). We have

R(f) = ∫
T

0
∥δt∥2ρft dt

(a)= ∫
T

0
∥δt ○Xt∥2ρ0dt

(b)= ∫ ∫
T

0
∥δt ○Xt(x0)∥2dtdρ̄0(x0). (14)

Consequently, by defining the trajectory-wise loss (recall x(t) =Xt(x0))

R(f ;x0) = ∫
T

0
∥δt ○Xt(x0)∥2dt = ∫

T

0
∥δt(x(t))∥2dt, (15)

we can write the potential function (8) as an expectationR(f) = Ex0∼ρ̄0[R(f ;x0)]. Similarly, when
f is parameterized as f = fθ, we obtain the expectation form ∇θR(fθ) = Ex0∼ρ̄0[∇θR(fθ;x0)].
We show ∇θR(fθ;x0) can be computed accurately, via the adjoint method (for completeness see
the derivation of the adjoint method in appendix D). As a recap, suppose that we can writeR(fθ;x0)
in a standard ODE-constrained form R(fθ;x0) = ℓ(θ) = ∫

T
0 g(t,s(t), θ)dt, where {s(t)}t∈[0,T ] is

the solution to the ODE d
dt
s(t) = ψ(t,s(t); θ) with s(0) = s0, and ψ is a known transition function.

The adjoint method states that the gradient d
dθ
ℓ(θ) can be computed as

(Adjoint Method)
dℓ

dθ
= ∫

T

0
a(t)⊺ ∂ψ

∂θ
(t,s(t); θ) + ∂g

∂θ
(t,s(t); θ)dt. (16)

where a(t) solves the final value problems d
dt
a(t)⊺+a(t)⊺ ∂ψ

∂s
(t,s(t); θ)+ ∂g

∂s
(t,s(t); θ) = 0, a(T ) =

0. In the following, we focus on how R(fθ;x0) can be written in the above ODE-constrained form.
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Write R(fθ;x0) in ODE-constrained form Expanding the definition of δt in equation (11) gives

δt(x(t)) = ft(x(t)) − (−∇V (x(t)) +K ∗ ρft (x(t)) − ν∇ log ρft (x(t))) . (17)

Note that in the above quantity, f and V are known functions. Moreover, it is known that
∇ log ρft (x(t)) admits a closed form dynamics (e.g. see Proposition 2 in [Shen et al., 2022])

d

dt
∇ log ρft (x(t)) = −∇ (divft(x(t); θ)) − (Jft(x(t); θ))

⊺∇ log ρft (x(t)), (18)

which allows it to be explicitly computed by starting from ∇ log ρ̄0(x0) and integrating over time
(recall that ρ̄0 is known). Here Jft denotes the Jacobian matrix of ft. Consequently, all we need to
handle is the convolution term K ∗ ρft (x(t)).
A common choice to approximate the convolution operation is via Monte-Carlo integration: Let

yi(t) iid∼ ρft for i = 1, . . . ,N and denote an empirical approximation of ρft by µρ
f
t

N = 1
N ∑

N
i=1 δyi(t),

where δyi(t) denotes the Dirac measure at yi(t). We approximate the convolution term in equation
(17) in different ways for the Coulomb and the Biot-Savart interactions:
1. For the Coulomb type kernel (3), we first approximate K ∗ ρft with Kc ∗ ρft , where

Kc(x) def= {K(x) if ∥x∥ > c,
0 if ∥x∥ ≤ c. (19)

If ρft is bounded in X , we have

sup
x∈X
∥(K −Kc) ∗ ρft (x)∥ = sup

x∈X
∥∫
∥x−y∥≤c

x − y
∥x − y∥d ρ

f
t (y)dy∥ ≤ ∥ρ

f
t ∥L∞(X) ∫

∥y∥≤c

1

∥y∥d−1 dy.

To compute the integral on the right-hand side, we will switch to polar coordinates (r,ψ):

∫
∣y∣≤c

1

∣y∣d−1 dy = ∫
c

0
dr

1

rd−1
∫
Ψ
dψ J(r,ψ) ≤ ∫

c

0
dr = c. (20)

Here, J(r,ψ) denotes the determinant of the Jacobian matrix resulting from the transformation from
the Cartesian system to the polar coordinate system. In inequality (20), we utilize the fact that
J(r,ψ) ≤ rd−1, which allows us to cancel out the factor 1/rd−1. Now thatKc is bounded by c−d+1, we

can further approximate Kc ∗ρft using Kc ∗µρ
f
t

N with error of the order O(c−d+1/
√
N). Altogether,

we have supx∈X ∥K ∗ ρft (x) −Kc ∗ µρ
f
t

N (x)∥ = O(c + c−d+1/
√
N) which can be made arbitrarily

small for a sufficiently small c and a sufficiently large N .
2. For Biot-Savart interaction (2D Navier-Stokes equation), there are more structures to exploit and
we can completely avoid the singularity: As noted by Jabin and Wang [2018], the convolution kernel
K can be written in a divergence form:

K = ∇ ⋅U, with U(x) = 1

2π
[−arctan(

x1

x2
), 0

0, arctan(x2

x1
)] , (21)

where the divergence of a matrix function is applied row-wise, i.e. [K(x)]i = div Ui(x). Using
integration by parts and noticing that the boundary integration vanishes on the torus, one has

K ∗ ρft (x) = ∫ K(y)ρft (x − y)dy = ∫ ∇ ⋅U(y)ρ
f
t (x − y)dy = ∫ U(y)∇ρft (x − y)dy

= ∫ U(x − y)ρft (y)∇ log ρft (y)dy = Ey∼ρft (y)
[U(x − y)∇ log ρft (y)].

If the score function ∇ log ρft is bounded, then the integrand in the expectation is also bounded.
Therefore, we can avoid integrating singular functions and the Monte Carlo-type estimation
1
N ∑

N
i=1U(x − yi(t))∇ log ρft (yi(t)) is accurate for a sufficiently large value of N.

With the above discussion, we can write R(fθ;x0) in an ODE-constrained form in a standard way,
which due to space limitation is deferred to Appendix D.1.
Remark 1. Let ℓN(θ) be the function we obtained using the above approximation of the convolution,
where N is the number of Monte-Carlo samples. The above discussion shows that ℓN(θ) and
R(fθ;x0) are close in the L∞ sense, which is hence sufficient when the EINN loss is used as error
quantification since only function value matters. When both ℓN(θ) and R(fθ;x0) are in C2, one
can translate the closeness in function value to the closeness of their gradients. In our experiments,
using∇ℓN(θ) as an approximation of∇θR(fθ;x0) gives very good empirical performance already.

5



3 Analysis

In this section, we focus on the torus case, i.e. X = Πd is a box with the periodic boundary condition.
This is a typical setting considered in the literature as the universal function approximation of NNs
only holds over a compact set. Moreover, the boundary integral resulting from integration by parts
vanishes in this setting, making it amenable for analysis purposes. For completeness, we provide
a discussion on the unbounded case, i.e. X = Rd in the Appendix G, which requires additional
regularity assumptions. Given the MVE (2), if K is bounded, it is sufficient to choose the Lyapunov
functional L(ρft , ρ̄t) as the KL divergence (please see Theorem 6 in the appendix). But for the
singular Coulomb kernel, we need also to consider the modulated energy as in [Serfaty, 2020]

(Modulated Energy) F (ρ, ρ̄) def= 1

2
∫
X 2
g(x − y)d(ρ − ρ̄)(x)d(ρ − ρ̄)(y), (22)

where g is the fundamental solution to the Laplacian equation in Rd, i.e. −∆g = δ0, and the Coulomb
interaction reads K = −∇g (see its closed form expression in equation (3)). If we are only interested
in the deterministic dynamics with Coulomb interactions, i.e. ν = 0 in equation (2), it suffices to
choose L(ρft , ρ̄) as F (ρft , ρ̄t) (please see Theorem 3). But if we consider the system with Coulomb
interactions and diffusions, i.e. ν > 0, we shall combine the KL divergence and the modulated
energy to form the modulated free energy as in Bresch et al. [2019b], which reads

(Modulated Free Energy) E(ρ, ρ̄) def= νKL(ρ, ρ̄) + F (ρ, ρ̄). (23)
This definition agrees with the physical meaning that “Free Energy = Temperature × Entropy +
Energy”, and we note that the temperature is proportional to the diffusion coefficient ν. We remark
also for two probability densities ρ and ρ̄, F (ρ, ρ̄) ≥ 0 since by looking in the Fourier domain
F (ρ, ρ̄) = ∫ ĝ(ξ)∣ρ̂ − ρ̄(ξ)∣2dξ ≥ 0 as ĝ(ξ) ≥ 0. Moreover, F (ρ, ρ̄) can be regarded as a negative
Sobolev norm for ρ − ρ̄, which metricizes weak convergence.
To obtain our main stability estimate, we first obtain the time evolution of the KL divergence.
Lemma 1 (Time Evolution of the KL divergence). Given the hypothesis velocity field f = f(t, x) ∈
C1
t,x. Assume that (ρft )t∈[0,T ] and (ρ̄t)t∈[0,T ] are classical solutions to equation (7) and equation

(6) respectively. It holds that (recall the definition of δt in equation (11))

d

dt
∫
X
ρft log

ρft
ρ̄t
= −ν ∫

X
ρft ∣∇ log

ρft
ρ̄t
∣2 + ∫

X
ρftK ∗ (ρ

f
t − ρ̄t) ⋅ ∇ log

ρft
ρ̄t
+ ∫

X
ρft δt ⋅ ∇ log

ρft
ρ̄t
,

where X is the tours Πd. All the integrands are evaluated at x.

We refer the proof of this lemma and all other lemmas and theorems in this section to the appendix
E. We remark that to have the existence of classical solution (ρ̄t)t∈[0,T ], we definitely need the
regularity assumptions on −∇V and on K. But the linear term −∇V will not contribute to the
evolution of the relative entropy. See [Jabin and Wang, 2018] for detailed discussions.
Similarly, we have the time evolution of the modulated energy as follows.
Lemma 2 (Time evolution of the modulated energy). Under the same assumptions as in Lemma 1,
given the diffusion coefficient ν ≥ 0, it holds that (recall the definition of δt in equation (11))

d

dt
F (ρft , ρ̄t) = −∫

X
ρft ∥K ∗ (ρ

f
t − ρ̄t)∥2 − ∫

X
ρft δt ⋅K ∗ (ρ

f
t − ρ̄t) + ν ∫

X
ρft K ∗ (ρ

f
t − ρ̄t) ⋅ ∇ log

ρft
ρ̄t

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y)

where we recall that the operator A is defined in equation (5).

By Lemma 1 and careful analysis, in particular by rewriting the Biot-Savart law in the divergence of
a bounded matrix-valued function (21), we obtain the following estimate for the 2D NSE.
Theorem 2 (Stability estimate of the 2D NSE). Notice that when K is the Biot-Savart kernel,
divK = 0. Assume that the initial data ρ̄0 ∈ C3(Πd) and there exists c > 1 such that 1

c
≤ ρ̄0 ≤ c.

Assume further the hypothesis velocity field f(t, x) ∈ C1
t,x. Then it holds that

sup
t∈[0,T ]

∫
Πd
ρft log

ρft
ρ̄t

dx ≤ e
C

ν
R(f),

where C = ∫
∞

0 M(t)dt <∞ with M(t) def= ∥∇ log ρ̄t∥2L∞/2ν + 2∥∇2ρ̄t/ρ̄t∥
L∞

.
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We remark that given ρ̄0 is smooth enough and fully supported on X , one can propagate the regu-
larity to finally show the finiteness of C. See detailed computations as in Guillin et al. [2021]. We
give the complete proof in the appendix E. This theorem tells us that as long as R(f) is small, the
KL divergence between ρft and ρ̄t is small and the control is uniform in time t ∈ [0, T ] for any T .
Moreover, we highlight that C is independent of T , and our result on the NSE is significantly better
than the average-in-time and exponential-in-T results from [De Ryck et al., 2023].
To treat the MVE (2) with Coulomb interactions, we exploit the time evolution of the modulated free
energy E(ρft , ρ̄t). Indeed, combining Lemma 1 and Lemma 2, we arrive at the following identity.
Lemma 3 (Time evolution of the modulated free energy). Under the same assumptions as in Lemma
1, one has (recall the definitions of δt and A in (11) and (5) respectively)

d

dt
E(ρft , ρ̄t) = −∫

X
ρft ∣K ∗ (ρ

f
t − ρ̄t) − ν∇ log

ρft
ρ̄t
∣
2

− ∫
X
ρft δt ⋅ (K ∗ (ρ

f
t − ρ̄t) − ν∇ log

ρft
ρ̄t
)

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y).

Inspired by the mean-field convergence results as in Serfaty [2020] and Bresch et al. [2019b], we
finally can control the growth of E(ρft , ρ̄t) in the case when ν > 0, and F (ρft , ρ̄t) in the case when
ν = 0. Note also that E(ρft , ρ̄t) can also control the KL divergence when ν > 0.
Theorem 3 (Stability estimate of MVE with Coulomb interactions). Assume that for t ∈ [0, T ], the
underlying velocity field A[ρ̄t](x) is Lipschitz in x and supt∈[0,T ] ∥∇A[ρ̄t](⋅)∥L∞ = C1 <∞. Then
there exists C > 0 such that

sup
t∈[0,T ]

νKL(ρft , ρ̄t) ≤ sup
t∈[0,T ]

E(ρft , ρ̄t) ≤ exp(CC1T )R(f).

In the deterministic case when ν = 0, under the same assumptions, it holds that

sup
t∈[0,T ]

F (ρft , ρ̄t) ≤ exp(CC1T )R(f).

Recall the definition of the operator A in equation 5. Given that X = Πd, and ρ̄0 is smooth enough
and bounded from below, one can propagate regularity to obtain the Lipschitz condition for A[ρ̄t].
See the proof and the discussion on the Lipschitz assumptions on A[ρ̄t](⋅) in the appendix E.

Approximation Error of Neural Network Theorems 2 and 3 provide the error estimation guar-
antee for the proposed EINN loss (8). Suppose that we parameterize the velocity field f = fθ with
an NN parameterized by θ, as we did in Section 2.1 and let f̃ be the output of an optimization pro-
cedure when R(fθ) is used as objective. In order the explicitly quantify the mismatch between ρf̃t
and ρ̄t, we need to quantify two errors: (i) Approximation error, reflecting how well the ground truth
solution can be approximated among the NN function class of choice; (ii) Optimization error, in-
volving minimization of a highly nonlinear non-convex objective. In the following, we show that for
a function classF with sufficient capacity, there exists at least one element f̂ ∈ F that can reduce the
loss function R(f̂) as much as desired. We will not discuss how to identify such an element in the
function class F as it is independent of our research and remains possibly the largest open problem
in modern AI research. To establish our result, we make the following assumptions.
Assumption 1. ρ0 is sufficiently regular, such that ∇ log ρ0 ∈ L∞(X ) and f̄t = A[ρ̄t] ∈W 2,∞(X ).
∇V is Lipschitz continuous. Here W 2,∞(X ) stands for the Sobolev norm of order (2,∞) over X .

We here again need to propagate the regularity for ft at least for a time interval [0, T ]. It is easy
to do so for the torus case, but for the unbounded domain, there are some technical issues to be
overcome. Similar assumptions are also needed in some mathematical works for instance in Jabin
and Wang [2018]. We also make the following assumption on the capacity of the function class F ,
which is satisfied for example by NNs with tanh activation function [De Ryck et al., 2021].

Assumption 2. The function class is sufficiently large, such that there exists f̂ ∈ F satisfying f̂t ∈
C3(X ) and ∥f̂t − f̄t∥W 2,∞(X) ≤ ϵ for all t ∈ [0, T ].
Theorem 4. Consider the case where the domain is the torus. Suppose that Assumptions 1 and
2 hold. For both the Coulomb and the Biot-Savart cases, there exists f̂ ∈ F such that R(f̂) ≤
C(T ) ⋅ (ϵ ⋅ ln 1/ϵ)2, where C(T ) is some constant independent of ϵ. Here R is the EINN loss (8).
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The major difficulty to overcome is the lack of Lipschitz continuity due to the singular interaction.
We successfully address this challenge by establishing that the contribution of the singular region
(∥x∥ ≤ ϵ) to R(f̂) can be bounded by O((ϵ log 1

ϵ
)2). Please see the detailed proof in Appendix F.

4 Related Works on NN-based PDE solvers

Solving PDEs is a key aspect of scientific research, with a wealth of literature [Evans, 2022]. Due
to space limitations, a detailed discussion about the classical PDE solvers is deferred to Appendix
A. In this section, we focus on the NN-based approaches as they are more related to our research.

As previously mentioned, PINN is possibly the most well-known method of this type. PINN regards
the solution to a PDE system as the root of the corresponding operators {Di(g)}ni=1, and expresses
the time and space boundary conditions as B(g) = 0, where g is a candidate solution and Di and B
are operators acting on g. Parameterizing g = gθ using an NN, PINN optimizes its parameters θ by
minimizing the residual L(θ) def= ∑ni=1 λi∥Di(gθ)∥2L2(X)

+ λ0∥B(gθ)∥2L2(X)
. The hyperparameters

λi balance the validity of PDEs and boundary conditions under consideration and must be adjusted
for optimal performance. In contrast, EINN requires no hyperparameter tuning. PINN is versatile
and can be applied to a wide range of PDEs, but its performance may not be as good as other NN-
based solvers tailored for a particular class of PDEs, as it does not take into account other in-depth
properties of the system, a phenomenon observed in the literature [Krishnapriyan et al., 2021, Wang
et al., 2022]. [Shin and Em Karniadakis, 2020] initiates the work of theoretically establishing the
consistency of PINN by considering the linear elliptic and parabolic PDEs, for which they prove that
a vanishing PINN loss L(θ) asymptotically implies gθ recovers the true solution. A similar result
is extended to the linear advection equations in [Shin et al., 2020]. Leveraging the stability of the
operators Di (corresponding to PDEs of interest), non-asymptotic error estimations are established
for linear Kolmogorov equations in [De Ryck and Mishra, 2022], for semi-linear and quasi-linear
parabolic equations and the incompressible Euler in [Mishra and Molinaro, 2022], and for the NSE
in [De Ryck et al., 2023]. We highlight these non-asymptotic results are all average-in-time, meaning
that even when the PINN loss is small the deviation of the candidate solution to the true solution
may be significant at a particular timestamp t ∈ [0, T ]. In comparison, our results are uniform-
in-time, i.e. the supremum of the deviation is strictly bounded by the EINN loss. Moreover, we
show in Theorem 2, for the NSE our error estimation holds for any T uniformly, while the results in
[De Ryck et al., 2023] have an exponential dependence on T .

Recent work from Zhang et al. [2022] proposes the Random Deep Vortex Network (RDVN) method
for solving the 2D NSE and achieves SOTA performance for this task. Let uθt be an estimation of
the interaction term K ∗ ρt in the SDE (1) and use ρθt to denote the law of the particle driven by the
SDE dXt = uθt (Xt)dt+

√
2νdBt. To train uθt , RDVN minimizes the loss L(θ) = ∫

T
0 ∫X ∥uθt (x)−

K∗ρθt (x)∥2L2dxdt. Note that in order to simulate the SDE, one needs to discretize the time variable
in loss function L. After training θ, RDVN outputs ρθt as a solution. However, no error estimation
guarantee is provided that controls the discrepancy between ρθt and ρt using L(θ).
Shen et al. [2022] propose the concept of self-consistency for the FPE. However, unlike our work
where the EINN loss is derived via the stability analysis, they construct the potential R(f) for
the hypothesis velocity field f by observing that the underlying velocity field f∗ is the fixed point
of some velocity-consistent transformation A and they construct R(f) to be a more complicated
Sobolev norm of the residual f −A(f). In their result, they bound the Wasserstein distance between
ρf and ρ by R(f), which is weaker than our KL type control. The improved KL type control for the
Fokker-Planck equation has also been discussed in [Boffi and Vanden-Eijnden, 2023]. A very recent
work [Li et al., 2023] extends the self-consistency approach to compute the general Wasserstein
gradient flow numerically, without providing further theoretical justification.

5 Experiments

To show the efficacy and efficiency of the proposed approach, we conduct numerical studies on
example problems that admit explicit solutions and compare the results with SOTA NN-based PDE
solvers. The included baselines are PINN [Raissi et al., 2019] and DRVN [Zhang et al., 2022].
Note that these baselines only considered the 2D NSE. We extend them to solve the MVE with the
Coulomb interaction for comparison, and the details are discussed in Appendix C.1.
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Figure 1: The first row contains results for the 2D NSE and the second row contains the results
for the 3D MVE with Coulomb interaction. The first column reports the objective losses, while the
second and third columns report the average and last-time-stamp relative ℓ2 error.

Equations with an explicit solution We consider the following two instances that admit explicit
solutions. We verify these solutions in Appendix C.2.
Lamb-Oseen Vortex (2D NSE) [Oseen, 1912]: Consider the whole domain case where X = R2 and
the Biot-Savart kernel (4). Let N (µ,Σ) be the Gaussian distribution with mean µ and covariance
Σ. If ρ0 = N (0,

√
2νt0I2) for some t0 ≥ 0, then we have ρt(x) = N (0,

√
2ν(t + t0)I2).

Barenblatt solutions (MVE) [Serfaty and Vázquez, 2014]: Consider the 3D MVE with the Coulomb
interaction kernel (3) with the diffusion coefficient set to zero, i.e. d = 3 and ν = 0. Let Uniform[A]
be the uniform distribution over a set A. Consider the whole domain case where X = R3. If ρ0 =
Uniform[∥x∥ ≤ ( 3

4π
t0)1/3] for some t0 ≥ 0, then we have ρt = Uniform[∥x∥ ≤ ( 3

4π
(t + t0))1/3].

Numerical results We present the results of our experiments in Figure 1, where the first row
contains the result for the Lamb-Oseen vortex (2D NSE) and the second row contains the result
for the Barenblatt model (3D MVE). The explicit solutions of these models allow us to assess the
quality of the outputs of the included methods. Specifically, given a hypothesis solution ρft , the

ground truth ρ̄t and the interaction kernel K, define the relative ℓ2 error at timestamp t as Q(t) def=
∫Ω ∥K ∗ (ρ

f
t − ρ̄t)(x)∥/∥K ∗ ρ̄t(x)∥dx, where Ω is some domain where ρt has non-zero density.

We are particularly interested in the quality of the convolution term K ∗ ρft since it has physical
meanings. In the Biot-Savart kernel case, it is the velocity of the fluid, while in the Coulomb case, it
is the Coulomb field. We set Ω to be [−2,2]2 for the Lamb-Oseen vortex and to [−0.1,0.1]3 for the
Barenblatt model. For both models, we take ν = 0.1, t0 = 0.1, and T = 1. The neural network that
we use is an MLP with 7 hidden layers, each of which has 20 neurons.
From the first column of Figure 1, we see that the objective loss of all methods has substantially
reduced over a training period of 10000 iterations. This excludes the possibility that a baseline has
worse performance because the NN is not well-trained, and hence the quality of the solution now
solely depends on the efficacy of the method. From the second and third columns, we see that
the proposed EINN method significantly outperforms the other two methods in terms of the time-
average relative ℓ2 error, i.e. 1

T ∫
T
0 Q(t)dt and the relative ℓ2 error at the last time stamp Q(T ).

This shows the advantage of our method.

Conclusion By employing entropy dissipation of the MVE, we design a potential function for a
hypothesis velocity field such that it controls the KL divergence between the corresponding hypoth-
esis solution and the ground truth, for any time stamp within the period of interest. Built on this
potential, we proposed the EINN method for MVEs with NN and derived the detailed computa-
tion method of the stochastic gradient, using the classic adjoint method. Through empirical studies
on examples of the 2D NSE and the 3D MVE with Coulomb interactions, we show the significant
advantage of the proposed method, when compared with two SOTA NN based MVE solvers.
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A Classical Methods for Solving MVEs

Solving partial differential equations (PDEs) is a key aspect of scientific research, with a wealth of
literature in the field [Evans, 2022]. For the interest of this paper, we will only consider the methods
that can be used to solve the MVE under consideration.

Categorize PDE solvers via solution representation. To better understand the benefits of neural
network (NN) based PDE solvers and to compare our approach with others, we categorize the liter-
ature based on the representation of the solution to the PDE. These representations can be roughly
grouped into four categories:

• 1. Discretization-based representation: The solution to the PDE is represented as discrete func-
tion values at grid points, finite-size cells, or finite-element meshes.

• 2. Representation as a combination of basis functions: The solution to the PDE is approximated
as a sum of basis functions, e.g. Fourier series, Legendre polynomials, or Chebyshev polynomials.

• 3. Representation using a collection of particles: The solution to the PDE is represented as a
collection of particles, each described by its weight, position, and other relevant information.

• 4. NN-based representation: NNs offer many strategies for representing the solution to the PDE,
such as using the NN directly to represent the solution, using normalizing flow or GAN-based
parameterization to ensure the non-negativity and conservation of mass of the solution or using
the NN to parameterize the underlying dynamics of the PDE, such as the time-varying velocity
field that drives the evolution of the system.

The drawback of the first three strategies is that a sparse representation2 leads to reduced solution
accuracy, while a dense representation results in increased computational and memory cost. NNs,
as powerful function approximation tools, are expected to surpass these strategies by being able to
handle higher-dimensional, less regular, and more complicated systems [Weinan et al., 2021].

Given a representation strategy of the solution, an effective solver must exploit the underlying prop-
erties of the system to find the best candidate solution. Three-= notable properties that are utilized
to design solvers are

(A) the PDE definition or weak formulation of the system,

(B) the SDE interpretation of the system,

(C) the variational interpretation, particularly the Wasserstein gradient flow interpretation.

These properties are combined with the solution representations mentioned earlier to form different
methods. For example, the Finite Difference method [Smith et al., 1985], Finite Volume method
[Moukalled et al., 2016], and Finite Element method [Johnson, 2012] represent the solution of par-
tial differential equations (PDEs) by discretizing the solution and utilize the property (A), at least
in their original form. On the other hand, recent work by Carrillo et al. [2022] solves PDEs admit-
ting a Wasserstein gradient flow structure using the classic JKO scheme [Jordan et al., 1998], which
is based on the property (C), and the solution is also represented via discretization. The Spectral
method [Shen et al., 2011] is a class of methods that exploits property (A) by representing the so-
lution as a combination of basis functions. The Random Vortex Method [Long, 1988] is a highly
successful method for solving the vorticity formulation of the 2D Navier-Stokes equation by exploit-
ing property (C) and representing the solution with particles. The Blob method from Carrillo et al.
[2019] is another particle-based method for solving PDEs that describe diffusion processes, which
also exploits property (C).

B Comparison with Neural Operator

We thank the anonymous reviewers for pointing out the interesting research direction of neural op-
erators [Xiao et al., 2023, Gupta et al., 2021, Li et al., 2020b, Kovachki et al., 2021, Li et al., 2020a].
However, to highlight the major difference between EINN and the approach of the Neural Operator,

2For example, sparser grid, cell or mesh with less granularity, fewer basis functions, fewer particles.
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it’s worth noting that they consider completely different problem settings: EINN requires no pre-
existing data and the goal is to obtain the solution to a PDE by solely exploiting the structure of the
equation itself. In contrast, the neural operator approach is data-driven, i.e. it relies on the existence
of configuration-solution pairs. Here, by configuration-solution pairs, we mean the correspondence
between some configurations that determine the PDE, e.g. the initial condition or the viscosity
parameter in the fluid dynamics problems, and the pre-existing solution to the PDE given the afore-
mentioned configurations. Consequently, the neural operator approach is more like a regression
problem where a neural network is trained to learn the abstract map between the configuration and
the solution. In contrast, EINN is more like a numerical PDE solver.

Consequently, EINN and the approach of neural operator are two related but quite distinct research
directions. They are related in the sense that EINN can provide the data (configuration-solution
pairs) required by the neural operator approach. They are distinct since EINN requires no data a
priori, while the neural operator approach is built on the supervised learning paradigm.

C More Details on the Experiments

C.1 Implementations of Baselines

Objectives of PINN

• For the vorticity equation of the 2D Navier-Stokes equation, let u ∶ [0, T ] × R2 → R2 be the
velocity field (this should not be confused with the velocity field of the continuity equation) such
that ∇ ⋅u = 0, i.e. u is divergence-free, and let ω = ∇×u ∈ R be the vorticity. We have

∂ω

∂t
+∇ ⋅ (ωu) = ν∆ω, (24)

ω = ∇×u. (25)

We use this form to construct the objective for the PINN method

∫
T

0
∥∂ω
∂t
+∇ ⋅ (ωu) − ν∆ω∥2L(Ω)2 + ∥ω −∇ ×u∥L(Ω)2dt, (26)

where L2(Ω) denotes the functional L2 norm on the domain Ω = [−2,2]2.
• For the MVE with Coulomb interaction, let g be the Coulomb potential defined in equation 3. We

have that ψ = g ∗ ρ is the solution to the Poisson equation ∆ψ = −ρ and K ∗ ρ = −∇ψ. We have

∂ρ

∂t
+∇ ⋅ (ρ ⋅ (−∇ψ)) = ν∆ρ (27)

∆ψ = − ρ. (28)

Expand the the divergence to obtain

∂ρ

∂t
+∇ρ ⋅ (−∇ψ) + ρ ⋅ (−∆ψ) = ν∆ρ (29)

∆ψ = − ρ. (30)

Now plug in the ∆ψ = −ρ to arrive at the following equivalent form

∂ρ

∂t
+∇ρ ⋅ −∇ψ + ρ2 = ν∆ρ (31)

∆ψ = − ρ. (32)

We use this form to construct the objective for the PINN method.

∫
T

0
∥∂ρ
∂t
+∇ρ ⋅ −∇ψ + ρ2 − ν∆ρ∥2L2(Ω) + ∥∆ψ + ρ∥2L2 , (33)

where L2(Ω) denotes the functional L2 norm on the domain Ω = [−1,1]2.

DRVN In the original paper [Zhang et al., 2022], only the Biot-Savart kernel is concerned. We
extend the DRVN method to the Coulomb case by setting K to be the kernel defined in equation 3.
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C.2 Examples with an Explicit Solution

In this section, we verify the explicit solutions discussed in the experiment section.

Lamb-Oseen Vortex on the whole domain R2. Recall that we consider the 2D Navier-Stokes
equation (the MVE with the Biot-Savart interaction kernel (4)). The Lamb-Oseen Vortex model
states that, if ρ0 = N (0,

√
2νt0I2) for some t0 ≥ 0, then we have ρt(x) = N (0,

√
2ν(t + t0)I2).

To verify this, define ut(x) = 1
√
ν(t+t0)

v( x
√
ν(t+t0)

), where

v(x) = 1

2π

x⊥

∥x∥2 (1 − exp(−
1

4
∥x∥2)) . (34)

One can easily check that ∇ ⋅ ut ≡ 0 and hence there exists a function ψt such that ∇⊥ψt = −ut,
where ∇⊥ denotes the perpendicular gradient, defined as ∇⊥ = (−∂x2 , ∂x2), and ψt is called the
stream function in the literature of fluid dynamics. Moreover, one can verify that ∇×ut = ρt where
∇× denotes the curl of a 2D velocity field, defined as ∇ × u(x) = ∂u2/∂x1 − ∂u1/∂x2. Together
we have

∆ψt = −ρt, (35)
i.e., the stream function ψt is the solution to the 2D Poisson equation with a source term ρt.

Under the boundary condition that ψt(x)→ 0 for ∥x∥→∞, we can express ψt via the unique Green
function G(x) = 1

2π
ln ∥x∥ as

ψt(x) = G ∗ ρt =
1

2π
∫ ln ∥x − y∥ρt(y)dy. (36)

Consequently, by taking the perpendicular gradient, we obtain

ut = ∇⊥ψt =
1

2π
∫
(x − y)⊥
∥x − y∥2 ρt(y)dy =K ∗ ρt. (37)

Finally, by plugging the expressions of ρt and ut = K ∗ ρt in the MVE (2), we verified the Lamb-
Oseen vortex.

Barenblatt solutions for the MVE with Coulomb Interaction. Recall that we consider the MVE
with the Coulomb interaction kernel (3) for d = 3 and set the diffusion coefficient ν = 0, i.e.

∂ρt
∂t
+∇ ⋅ (ρt ⋅ −∇ψt) = 0 (38)

where ψt is the solution to the Poisson equation ∆ψt = −ρt. The Barenblatt solution of the above
MVE is stated as follows: If ρ0 = Uniform[∥x∥ ≤ ( 3

4π
t0)1/3] for some t0 ≥ 0, then we have

ρt = Uniform[∥x∥ ≤ (
3

4π
(t + t0))1/3] (39)

We now verify this solution.

Recall that the volume of a three dimensional Euclidean ball with radius R is 4π
3
R3. Hence we can

write the density function as ρt(x) = 1
t+t0

χ∥x∥≤( 3
4π (t+t0))

1/3 , where χX is a function that takes value
1 for x ∈ X and takes value 0 for x ∉ X. Take

ψt(x) =
⎧⎪⎪⎨⎪⎪⎩

2( 3
4π (t+t0))

2/3
−∥x∥2

6(t+t0)
, ∥x∥ ≤ ( 3

4π
(t + t0))1/3,

1
8π∥x∥

, ∥x∥ > ( 3
4π
(t + t0))1/3.

(40)

It can be verified that the Poisson equation ∆ψt = −ρt holds (note that ∆∥x∥−1 = 0, i.e. ∥x∥−1 is a
harmonic function for d = 3). Consequently, for a fixed time stamp t and any ∥x∥ ≤ ( 3

4π
(t + t0))1/3

we have
∂ρt
∂t
(x) +∇ ⋅ (ρt(x) ⋅ −∇ψt(x)) = −

1

(t + t0)2
+ 1

(t + t0)2
= 0, (41)

which verifies this solution.
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D Adjoint Method

Consider the ODE system

ṡ(t) = ψ(s(t), t, θ)
s(0) = s0,

and the objective loss

ℓ(θ) = ∫
T

0
g(s(t), t, θ)dt. (42)

The following proposition computes the gradient of ℓ w.r.t. θ. We omit the parameters of the
functions for succinctness. We note that all the functions in the integrands should be evaluated at
the corresponding time stamp t, e.g. b⊺ ∂h

∂θ
dt abbreviates for b(t)⊺ ∂

∂θ
h(ξ(t), x(t), t, θ)dt.

Proposition 1.
dℓ

dθ
= ∫

T

0
a⊺
∂ψ

∂θ
+ ∂g
∂θ

dt. (43)

where a(t) is solution to the following final value problems

ȧ⊺ + a⊺ ∂ψ
∂s
+ ∂g
∂s
= 0, a(T ) = 0, (44)

Proof. Let us define the Lagrange multiplier function (or the adjoint state) a(t) dual to s(t). More-
over, let L be an augmented loss function of the form

L = ℓ − ∫
T

0
a⊺(ṡ − ψ)dt. (45)

Since we have ṡ(t) = ψ(s(t), t, θ) by construction, the integral term in L is always null and a can
be freely assigned while maintaining dL/dθ = dℓ/dθ. Using integral by part, we have

∫
T

0
a⊺ṡ dt = a(t)⊺s(t)∣T0 − ∫

T

0
s⊺ȧ dt. (46)

We obtain

L = −a(t)⊺s(t)∣T0 + ∫
T

0
ȧ⊺s + a⊺ψ + g dt. (47)

Now we compute the gradient of L w.r.t. θ as

dℓ

dθ
= dL

dθ
= −a(T )⊺ dx(T )

dθ
+ ∫

T

0
ȧ⊺

ds

dθ
+ a⊺ (∂ψ

∂θ
+ ∂ψ
∂s

ds

dθ
)dt + ∫

T

0

∂g

∂s

ds

dθ
+ ∂g
∂θ

dt,

which by rearranging terms yields to

dℓ

dθ
= dL

dθ
= −a(T )⊺ dx(T )

dθ
+ ∫

T

0
a⊺
∂ψ

∂θ
+ ∂g
∂θ

dt + ∫
T

0
(ȧ⊺ + a⊺ ∂ψ

∂s
+ ∂g
∂s
) ds
dθ

dt.

Now by taking a satisfying the final value problems

ȧ⊺ + a⊺ ∂ψ
∂s
+ ∂g
∂s
= 0, a(T ) = 0, (48)

we derive the result
dℓ

dθ
= ∫

T

0
a⊺
∂ψ

∂θ
+ ∂g
∂θ

dt. (49)

D.1 Writing the Trajectory-wise Loss (15) in an ODE-constrained form

We are now ready to write R(fθ;x0) in an ODE-constrained form. Define the state s(t), the initial
condition s0 and the transition function ψ as follows: Let

s(t) = [x(t), ξ(t),{yi(t)}Ni=1,{ζi(t)}Ni=1] , (50)
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with ξ(t) = ∇ log ρft (x(t)) and ζi(t) = ∇ log ρft (yi(t)). Take the initial condition

s0 = [x0, ξ0,{yi(0)}Ni=1,{ζi(0)}Ni=1] (51)

with ξ0 = ∇ log ρ̄0(x0), ζi(0) = ∇ log ρ̄0(yi(0)), and yi(0) iid∼ ρ̄0; and define the function

ψ(t, s(t); θ) = [ft(x(t); θ), ht(x(t), ξ(t); θ), {ft(yi(t); θ)}Ni=1, {ht(yi(t), ζi(t); θ)}Ni=1], (52)

where h(a,b; θ) = −∇ (divft(a; θ)) −J ⊺ft(a; θ)b (derived from equation 18). Finally, define

g(t,s(t); θ) = ∥f(t,x(t); θ) − (−∇V (x(t)) +E(t,s(t)) − νξ(t)) ∥2, (53)

where the estimator E(t,s) of the convolution term is defined as

E(t,s(t)) = {
1
N ∑

N
i=1Kc(x(t) − yi(t)) the Coulomb case,

1
N ∑

N
i=1U(x − yi(t))ζi(t) the Biot-Savart case.

(54)

We recall the definition of U in equation 21 and the definition of Kc in equation 19.
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E Detailed Proofs

Proof of Lemma 1. Recall the McKean-Vlasov equation 6 and the continuity equation 10. We sim-
ply write that ρt = ρft and omit the integration domain X . Then

d

dt
∫ ρt log

ρt
ρ̄t
= ∫ ∂tρt log

ρt
ρ̄t
+ ∫ ρt∂t log ρt − ∫ ρt∂t log ρ̄t

= −∫ div(ρt([ −∇V (x) +K ∗ ρt − ν∇ log ρt] + δt)) log
ρt
ρ̄t

+ ∫
ρt
ρ̄t

div(ρ̄t( −∇V (x) +K ∗ ρ̄t − ν∇ log ρ̄t)),

where we note that ∫ ρt∂t log ρt = ∫ ∂tρt = 0 since the total mass is preserved over time. By
integration by parts, one has

d

dt
∫ ρt log

ρt
ρ̄t
= I1 + I2 + I3 + ∫ ρtδt ⋅ ∇ log

ρt
ρ̄t
,

where I1, I2, I3 denote the linear, nonlinear interaction, and diffusion parts separately. More pre-
cisely, by integration by parts,

I1 = ∫ div(ρt∇V (x)) log
ρt
ρ̄t
− ∫

ρt
ρ̄t

div(ρ̄t∇V (x))

= −∫ ρt∇V (x) ⋅ ∇ log
ρt
ρ̄t
+ ∫ ρ̄t∇

ρt
ρ̄t
⋅ ∇V (x) = 0.

And

I2 = −∫ div(ρtK ∗ ρt) log
ρt
ρ̄t
+ ∫

ρt
ρ̄t

div(ρ̄tK ∗ ρ̄t)

= ∫ ρtK ∗ ρt∇ log
ρt
ρ̄t
− ∫ ρ̄tK ∗ ρ̄t ⋅ ∇

ρt
ρ̄t

= ∫ ρt∇ log
ρt
ρ̄t
⋅K ∗ (ρt − ρ̄t).

Given that the kernel K is divergence free, that is divK = 0, one further has

I2 = −∫ ρt∇ log ρ̄t ⋅K ∗ (ρt − ρ̄t) + ∫ ∇ρt ⋅K ∗ (ρt − ρ̄t)

= −∫ ρt∇ log ρ̄t ⋅K ∗ (ρt − ρ̄t).
(55)

Note that this modification will be used in the proof in the 2D Navier-Stokes case. Finally, all
diffusion terms sum up to I3 which can be further simplified as

I3 = ν ∫ div(ρt∇ log ρt) log
ρt
ρ̄t
− ν ∫

ρt
ρ̄t

div(ρ̄t∇ log ρ̄t)

= −ν ∫ ρt∇ log ρt ⋅ ∇ log
ρt
ρ̄t
+ ν ∫ ρ̄t∇ log ρ̄t ⋅ ∇

ρt
ρ̄t

= −ν ∫ ρt∣∇ log
ρt
ρ̄t
∣2.

We thus complete the proof of Lemma 1.

Proof of Lemma 2. Recall that K = −∇g. For simplicity, we write that ρt = ρft . Then
d

dt
F (ρt, ρ̄t) =

d

dt

1

2
∫
X 2
g(x − y)d(ρt − ρ̄t)⊗2(x, y)

= ∫
X
g ∗ (ρt − ρ̄t)(x)(∂tρt(x) − ∂tρ̄t(x))dx

= ∫ g ∗ (ρt − ρ̄t)(x)div{ρt([∇V (x) −K ∗ ρt + ν∇ log ρt] − δt)

− ρ̄t(∇V (x) −K ∗ ρ̄t + ν log ρ̄t)}
= J1 + J2 + J3 + J4,
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where J1, J2, J3, J4 denote the perturbation term, the linear difference term, the nonlinear difference
term, and the diffusion term respectively. The perturbation term J1 reads

J1 = −∫
X
g ∗ (ρt − ρ̄t)div(ρtδt) = −∫

X
ρtK ∗ (ρt − ρ̄t) ⋅ δt.

By integration by parts, the linear difference term can be written as

J2 = ∫
X
g ∗ (ρt − ρ̄t)div((ρt − ρ̄t)∇V ) = ∫

X
K ∗ (ρt − ρ̄t)(ρt − ρ̄t)∇V

= 1

2
∫
X 2
K(x − y)(∇V (x) −∇V (y))d(ρt − ρ̄t)⊗2(x, y),

where the last equality is true sinceK = −∇g is an odd function and we do the symmetrization trick,
i.e. exchanging the role of x and y to another term and then taking the average.

The nonlinear difference term reads

J3 = −∫
X
g ∗ (ρt − ρ̄t)div(ρtK ∗ ρt − ρ̄tK ∗ ρ̄t)

= −∫
X
K ∗ (ρt − ρ̄t)(ρtK ∗ (ρt − ρ̄t) − ∫

X
K ∗ (ρt − ρ̄t)(ρt − ρ̄t)K ∗ ρ̄t

= −∫
X
ρt∣K ∗ (ρt − ρ̄t)∣2 −

1

2
∫ K(x − y)(K ∗ ρ̄t(x) −K ∗ ρ̄t(y))d(ρt − ρ̄t)⊗2(x, y),

where again in the last term we do the symmetrization.

The diffusion term reads

J4 = ν ∫ g ∗ (ρt − ρ̄t)div(ρt∇ log ρt − ρ̄t∇ log ρ̄t)

= ν ∫ K ∗ (ρt − ρ̄t)ρt∇ log
ρt
ρ̄t
+ ν ∫ K ∗ (ρt − ρ̄t)(ρt − ρ̄t)∇ log ρ̄t

= ν ∫
X
ρtK ∗ (ρt − ρ̄t) ⋅ ∇ log

ρt
ρ̄t

+ ν
2
∫
X 2
K(x − y)(∇ log ρ̄t(x) −∇ log ρ̄t(y))d(ρt − ρ̄t)⊗2.

To sum it up, we prove the thesis.

E.1 Proof of the 2D Navier-Stokes case

Now we proceed to control the growth of the KL divergence KL(ρft ∣ρ̄t) for the 2D Navier-Stokes
case. Since the Biot-Savart law is divergence free, by equation 55 in the proof of Lemma 1, one has

d

dt
∫
Πd
ρt log

ρt
ρ̄t
= −ν ∫

Πd
ρt∣∇ log

ρt
ρ̄t
∣2−∫

Πd
ρtK ∗(ρt− ρ̄t) ⋅∇ log ρ̄t+∫

Πd
ρtδt ⋅∇ log

ρt
ρ̄t
. (56)

Recall that we write the kernel K = (K1,⋯,Kd) and its component Ki = ∑dj=1 ∂xjUij(x), where
U = (Uij)1≤i,j≤d is a matrix-valued potential function for instance can be defined as in equation 21.
Consequently

−∫ ρtK ∗ (ρt − ρ̄t) ⋅ ∇ log ρ̄t = −
d

∑
i,j=1
∫ ρt∂xjUij ∗ (ρt − ρ̄t)∂xi log ρ̄t,

which equals to
d

∑
i,j=1
∫ Uij ∗ (ρt − ρ̄t)∂xj

(ρt
ρ̄t
∂xi ρ̄t) = A +B

by integration by parts, where further

A =
d

∑
i,j=1
∫ Vij ∗ (ρt − ρ̄t)∂xi ρ̄t ∂xj

ρt
ρ̄t
= ∫ U ∗ (ρt − ρ̄t) ∶ ∇ρ̄t ⊗∇

ρt
ρ̄t
,
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and

B =
d

∑
i,j=1
∫ ρtUij ∗ (ρt − ρ̄t)

∂2xixj
ρ̄t

ρ̄t
= ∫ ρtU ∗ (ρt − ρ̄t) ∶

∇2ρ̄t
ρ̄t

.

Noticing that ∇ρt
ρ̄t
= ρt
ρ̄t
∇ log ρt

ρ̄t
, one estimates A as follows

A = ∫ ρtU ∗ (ρt − ρ̄t) ∶ ∇ log ρ̄t ⊗∇ log
ρt
ρ̄t

≤ ν
4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 + 1

ν
∫ ρt∣(∇ log ρ̄t)⊺U ∗ (ρ − ρ̄)∣2

≤ ν
4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 + 1

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞∥ρt − ρ̄t∥2L1 ,

and again by Csiszár–Kullback–Pinsker inequality, one has that

A ≤ ν
4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 + 2

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞ ∫ ρt log

ρt
ρ̄t
.

Now it only remains to control B. Recall the following famous Gibbs inequality
Lemma 4 (Gibbs inequality). For any parameter η > 0, and probability measures ρ, ρ̄ ∈ P(X ) ∩
L1(X ), and ϕ a real-valued function defined on X , one has the following change of reference
measure inequality

∫
X
ρ(x)ϕ(x)dx ≤ 1

η
(∫
X
ρ(x) log ρ(x)

ρ̄(x)dx + log∫X ρ̄(x) exp(ηϕ(x))dx).

The proof of this inequality can be found in section 13.1 in [Erdős and Yau, 2017].

To control B, we write that ϕ = U ∗ (ρt − ρ̄t) ∶ ∇
2ρ̄t
ρ̄t

and thus B = ∫ ρtϕ. We choose a positive
parameter η > 0 such that

1

η
= 2∥U∥L∞∥

∇2ρ̄t
ρ̄t
∥
L∞
.

Now we apply Lemma 4 to obtain that

B = ∫ ρtϕ ≤
1

η
(∫ ρt log

ρt
ρ̄t
+ log∫ ρ̄t exp(ηϕ)) .

Note that η > 0 is chosen so small such that

η∥ϕ∥L∞ ≤
1

2∥U∥L∞∥∇
2ρ̄t
ρ̄t
∥
L∞

∥U∥L∞∥ρt − ρ̄t∥L1∥∇
2ρ̄t
ρ̄t
∥
L∞

≤ 1

2
∥ρt − ρ̄t∥L1 ≤ 1,

since for two probability densities it always holds ∥ρt − ρ̄t∥L1 ≤ 2. Consequently, applying the
inequality exp(x) ≤ 1 + x + e

2
x2 for ∣x∣ ≤ 1, we have

∫ ρ̄t exp(ηϕ) ≤ ∫ ρ̄t (1 + ηϕ +
e

2
η2ϕ2) ≤ 1 + 0 + e

2
(1
2
∥ρt − ρ̄t∥L1)

2

≤ 1 + e
4
KL(ρt∣ρ̄t),

where

∫ ρ̄tϕ = ∫ U ∗ (ρt − ρ̄t) ∶ ∇2ρ̄t = ∫
d

∑
i,j=1

∂xixjU ∗ (ρt − ρ̄t)ρ̄t = ∫ divK ∗ (ρt − ρ̄t)ρ̄t = 0,

since divK = 0.

To sum it up, in particular since log(1 + x) ≤ x for x > 0, one has

B ≤ 1

η
(1 + e

4
)KL(ρt∣ρ̄t) ≤ 4∥U∥L∞∥

∇2ρ̄t
ρ̄t
∥
L∞

KL(ρt∣ρ̄t).
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Combining equation 56, the estimates for A and B, one has

d

dt
∫ ρt log

ρt
ρ̄t
≤ −3ν

4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 +M(t)∫ ρt log

ρt
ρ̄t
+ ∫ ρtδt ⋅ ∇ log

ρt
ρ̄t

≤ −ν
2
∫ ρt∣∇ log

ρt
ρ̄t
∣2 +M(t)∫ ρt log

ρt
ρ̄t
+ 1

ν
∫ ρt∣δt∣2

(57)

where

M(t) = 2

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞ + 4∥U∥L∞∥

∇2ρ̄t
ρ̄t
∥
L∞
=M(t;ν,U, ρ̄t).

Since the matrix-valued potential function U is bounded (∥U(x)∥op ≤ 1/4 when U takse the form
(21)), and under suitable assumptions for the initial data ρ̄0 (for instance ρ̄0 ∈ C3 and there exists
c > 1 s.t. 1

c
≤ ρ̄ ≤ c), one can obtain supt∈[0,T ]M(t) ≤ M < ∞. We recall Theorem 2 in [Guillin

et al., 2021] as below for completeness.

Theorem 5. Given the initial data ρ̄0 ∈ C∞(Πd), such that there exists c > 1, 1
c
≤ ρ̄0 ≤ c. Then the

vorticity formulation of the 2D Navier-Stokes equation

∂tρ̄t + div(ρ̄tK ∗ ρ̄t) = ν∆ρ̄t, ρ̄(0, x) = ρ̄0(x),

has a unique bounded solution ρ̄(t, x) ∈ C∞([0,∞) × Πd), and for any t > 0, for any x ∈ Πd, it
holds that 1

c
≤ ρ̄(t, x) ≤ c.

Finally, we simplify equation 57 to obtain that

d

dt
∫ ρt log

ρt
ρ̄t
≤M ∫ ρt log

ρt
ρ̄t
+ 1

ν
∫ ρt∣δt∣2,

where M = supt∈[0,T ]M(t;ν,U, ρ̄t) <∞. By Gronwall inequality, one finally obtains that

sup
t∈[0,T ]

∫
Πd
ρt log

ρt
ρ̄t
dx ≤ 1

ν
exp(MT )R(θ).

As noted in [Guillin et al., 2021],in particular Corollary 2 there, one can improve the above time-
dependent estimate (exp(MT )) to uniform-in-time estimate by using Logarithmic Sobolev inequal-
ity. Indeed, given that 1

c
≤ ρ̄t ≤ c, one has that

∫
Πd
ρt log

ρt
ρ̄t
dx ≤ c2

8π2 ∫Πd
ρt∣∇x log

ρt
ρ̄t
∣2dx. (58)

Combining equation 58 and equation 57, one obtains that

d

dt
KL(ρt∣ρ̄t) ≤ (M(t) −

4π2ν

c2
)KL(ρt∣ρ̄t) +

1

ν
∫ ρt∣δt∣2.

Multiplying the factor exp( 4π2ν
c2

t−∫
t
0 M(s)ds) and noting in particular KL(ρ0∣ρ̄0) = 0, one obtains

that

KL(ρt∣ρ̄t) ≤ ∫
t

0
exp(4π

2ν

c2
(s − t) + ∫

t

s
M(u)du)f(s)ds.

Indeed, under the assumptions as in Theorem 2, one has that there exists a universal C > 0, such that

∫
∞

0
M(t)dt = C <∞.

We thus immediately obtain that

sup
t∈[0,T ]

KL(ρt∣ρ̄t) ≤
eC

ν
∫

T

0
∫
Πd
ρt∣δt∣2dxdt.

This completes the proof of Theorem 2.
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The McKean-Vlasov PDEs, i.e. equation 2, with bounded interactions K ∈ L∞ As mentioned
in the main body of this article, it is much easier to obtain the stability estimate for the McKean-
Vlasov PDE with bounded interactions.
Theorem 6 (Stability Estimate for McKean-Vlasov PDE with K ∈ L∞). Assume that K ∈ L∞. One
has the estimate that

sup
t∈[0,T ]

KL(ρft ∣ρ̄t) ≤
1

ν
exp (2∥K∥

2
L∞

ν
T)R(f),

where we recall the self-consitency potential/loss function R(θ) reads

R(f) = ∫
T

0
∫
X
∣f(t, x) +∇V (x) −K ∗ ρft + ν∇ log ρθt ∣2dρft (x)dt.

Proof. Here we give the control of the growth of the KL divergence for systems with bounded
kernels. Applying Cauchy-Schwarz inequality twice for the entropy dissipation terms in Lemma 1
to obtain

∫
Πd
ρtK ∗ (ρt − ρ̄t) ⋅ ∇ log

ρt
ρ̄t
≤ ν
4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 + 1

ν
∫ ρt∣K ∗ (ρt − ρ̄t)∣2,

and

∫
Πd
ρtδt ⋅ ∇ log

ρt
ρ̄t
≤ ν
4
∫ ρt∣∇ log

ρt
ρ̄t
∣2 + 1

ν
∫ ρt∣δt∣2.

Furthermore,

∫ ρt∣K ∗ (ρt − ρ̄t)∣2 ≤ ∥K∥2L∞∥ρt − ρ̄t∥2L1 ≤ 2∥K∥2L∞ ∫ ρt log
ρt
ρ̄t
,

where the last inequality is simply the Csiszár–Kullback–Pinsker inequality [Villani et al., 2009].
Combining the above estimates, we obtain that given that K ∈ L∞,

d

dt
∫
Πd
ρt log

ρt
ρ̄t
= −ν

2
∫
Πd
ρt∣∇ log

ρt
ρ̄t
∣2 + 2∥K∥2L∞

ν
∫ ρt log

ρt
ρ̄t
+ 1

ν
∫ ρt∣δt∣2.

Currently, we are not interested in the long time behavior, so we first ignore the negative term above
to obtain that

d

dt
∫
Πd
ρt log

ρt
ρ̄t
≤ 2∥K∥2L∞

ν
∫ ρt log

ρt
ρ̄t
+ 1

ν
∫ ρt∣δt∣2.

By Gronwall inequality, we obtain that

∫
Πd
ρt log

ρt
ρ̄t
≤ 1

ν
exp (2∥K∥

2
L∞

ν
t)∫

t

0
∫ ρs∣δs∣2dxds.

E.2 The McKean-Vlasov equation with Coulomb interactions

Proof of Theorem 3. We first prove the case when ν > 0. Applying Cauchy-Schwarz inequality to
the right-hand side of d

dt
E(ρft , ρ̄t) in Lemma 3, one has

d

dt
E(ρft , ρ̄t) ≤

1

2
∫
X
ρft ∣δt∣2dx

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y).

By Lemma 5.2 in Bresch et al. [2019b], as long as the ground truth “velocity field” A[ρ̄t] is Lips-
chitz, i.e. A[ρ̄] ∈ W 1,∞, or equivalently ∇2V ∈ W 1,∞,∇2 log ρ̄t ∈ L∞,K ∗ ρ̄t ∈ W 1,∞, using the
particular structure introduced by the Coulomb interactions (note that −∆g = δ0 and K = −∇g), we
have the estimate

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y)

≤ C∥∇A[ρ̄t]∥L∞F (ρ̄ft , ρ̄t).
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This estimate can be obtained either by Fourier method [Bresch et al., 2019b] or by the stress-energy
tensor approach as in [Serfaty, 2020]. We emphasize that those assumptions made on (ρ̄t)t∈[0,T ] can
be obtained by propagating similar conditions on the initial data ρ̄0. This estimate actually holds
for more general choices of g or K. See more examples including Riesz kernels in [Bresch et al.,
2019b]. Moreover, the Lipschitz regularity of A[ρ̄t] can also be relaxed a bit. See for instance in
[Rosenzweig, 2022].

Combining previous two estimates, one has

d

dt
E(ρft , ρ̄t) ≤

1

2
∫
X
ρft ∣δt∣2dx +CC1F (ρft , ρ̄t) ≤

1

2
∫
X
ρft ∣δt∣2dx +CC1E(ρft , ρ̄t).

Then applying Gronwall inequality concludes the proof of the case when ν > 0.

Now we prove the deterministic case when ν = 0. Now the relative entropy or KL divergence does
not play a role since there is no Laplacian term in equation 2. Lemma 2 now reads

d

dt
F (ρft , ρ̄t) = −∫

X
ρft ∣K ∗ (ρ

f
t − ρ̄)∣2 − ∫

X
ρft δt ⋅K ∗ (ρ

f
t − ρ̄t)

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y).

Applying Cauchy-Schwarz to the 2nd term in the right-hand side above, we obtain that

d

dt
F (ρft , ρ̄t) ≤

1

2
∫
X
ρft ∣δt∣2 −

1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y).

Again assuming that the “velocity field” A[ρ̄t](⋅) is Lipschitz will give us

d

dt
F (ρft , ρ̄t) ≤

1

2
∫
X
ρft ∣δt∣2 +CC1F (ρft , ρ̄t).

Applying Gronwall inequality again conclude all the proof.
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F Approximation Error of Neural Network

We show that in a function class F with sufficient capacity, there exists at least one element f̂ ∈ F
such that R(f̂) is small. In particular, we are interested in the function class of neural networks.

We will focus on the case where the domain is the torus X = Πd, i.e. a d dimensional box with size
L endowed with the periodic boundary condition. For the simplicity of notations, we denote the
underlying velocity by f̄t = A[ρ̄t], where the operator A is defined in equation 5.

In the following, we focus on the Coulomb case where K is defined in equation 3. The Biot-Savart
case (4) can be treated similarly.

Proof of Theorem 4. In equation 14, we showed that for any hypothesis velocity f , the EINN loss
R(f) admits the trajectory-wise reformulation:

R(f) = ∫
X
dx0ρ̄0(x)∫

T

0
dt∥δft ○X

f
t (x0)∥2, (59)

where we recall the definition of δft in equation 11. Note that, as a general principle, in this proof,
we will use the superscript to emphasize the dependence on a velocity f , e.g. the flow map Xf

t .

From Assumption 2 we know that there exists f̂ ∈ F such that ∥f̄ − f̂∥W 2,∞(X) ≤ ϵ. In the following,
we show that R(f̂) is small.

Define

Afx(t)
def= ∫

t

0
∥δfs ○Xf

s (x)∥2ds. (60)

We have
R(f) = ∫

X
Afx(T )dρ̄0(x). (61)

Recall that f̄ denotes the underlying velocity and hence δf̄t ≡ 0 and ρf̄t ≡ ρ̄t, where we recall that ρf̄t
is the solution to the continuity equation (7) with velocity field f̄ . We can bound

∂

∂t
Af̂x(t) = ∥δf̂t ○X

f̂
t (x)∥2 = ∥δ

f̂
t ○X

f̂
t (x) − δ

f̄
t ○X

f̄
t (x)∥2

≤ 4∥ (f̂t ○X f̂
t − f̄t ○X

f̄
t ) (x)∥2 + 4∥ (∇V ○X

f̂
t −∇V ○X

f̄
t ) (x)∥2

+ 4∥ ((K ∗ ρf̂t ) ○X
f̂
t − (K ∗ ρ̄t) ○X

f̄
t ) (x)∥2 + 4ν2∥ (∇ log ρf̂t ○X

f̂
t −∇ log ρ̄t ○X f̄

t ) (x)∥2

= 1⃝ + 2⃝ + 3⃝ + 4⃝. (62)

We will bound each term on the R.H.S. individually. The following lemmas will be useful:

Lemma 5. For two Lipschitz continuous velocity field f1, f2 ∈ C1(X ), we have for any t ∈ [0, T ]

∥Xf1
t (x) −X

f2
t (x)∥2 ≤ A1(T )∥f1 − f2∥2L∞(X).

Proof. Denote xi(t) =Xfi
t (x0) for i = 1,2.

d

dt
∥x1(t) −x2(t)∥2 ≤ ∥x1(t) −x2(t)∥2 + ∥f1(t,x1(t)) − f2(t,x2(t))∥2

≤ C∥x1(t) −x2(t)∥2 + ∥f1(t,x2(t)) − f2(t,x2(t))∥2

≤ C∥x1(t) −x2(t)∥2 + ∥f1 − f2∥2L∞(X).

Using the Grönwall’s inequality, we have the result.

Lemma 6. Suppose that f ∈ C1 is Lipschitz continuous. We have that Xf
t is an A2(T )-Lipschitz

continuous map. For f ∈ L∞(X ), we have ∥Xf
t (x)∥2 ≤ ∥x∥2 + t∥f∥2L∞ .
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Proof. Denote xi(t) =Xf
t (xi0) for i = 1,2.

d

dt
∥x1(t) −x2(t)∥2 ≤ ∥x1(t) −x2(t)∥2 + ∥f(t,x1(t)) − f(t,x2(t))∥2

≤ C∥x1(t) −x2(t)∥2.

Using the Grönwall’s inequality, we have that Xf
t is Lipschitz continuous.

Lemma 7. For f ∈ C2(X ), suppose that ∇(divf) ∈ L∞(X ) and Jf ∈ L∞(X ). Further suppose
that the initial distribution ρ̄0 satisfies ∇ log ρ̄0 ∈ L∞(X ). We have that ∇ log ρft ○X

f
t ∈ L∞(X ).

Proof. Denote x(t) =Xf
t (x0). From equation 18, we have

d

dt
∥∇ log ρft (x(t))∥2 ≤ C(1 + ∥∇ log ρft (x(t))∥2). (63)

Using the Grönwall’s inequality, we have ∥∇ log ρft (x(t))∥2 <∞ for x0 ∈ X .

Bounding 1⃝ in equation 62 We have

∥ (f̂t ○X f̂
t − f̄t ○X

f̄
t ) (x)∥

≤ ∥ (f̂t ○X f̂
t − f̄t ○X

f̂
t ) (x)∥ + ∥ (f̄t ○X

f̂
t − f̄t ○X

f̄
t ) (x)∥

≤ ϵ + ϵ ⋅ ∥X f̂
t (x) −X

f̄
t (x)∥ ≤ C1(T )ϵ.

Bounding 2⃝ in equation 62 We have from Assumption 2 and Lemma 5

∥ (∇V ○X f̂
t −∇V ○X

f̄
t ) (x)∥ ≤ C2(T )ϵ.

Bounding 3⃝ in equation 62 Bounding 3⃝ in equation 62 requires a more sophisticated analysis
which is the major technical challenge of this proof. For the simplicity of notations, for a fixed x
and y, denote x̂(t) =X f̂

t (x), x̄(t) =X
f̄
t (x), ŷ(t) =X

f̂
t (y), ȳ(t) =X

f̄
t (y). For any ϵ′ which is to

be determined later, we have

∥ ((K ∗ ρf̂t ) ○X
f̂
t − (K ∗ ρ̄t) ○X

f̄
t ) (x)∥2 = ∥∫

X
K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))dρ̄0(y)∥2

≤ 2∥∫
∥x̂(t)−ŷ(t)∥≤ϵ′

K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))dρ̄0(y)∥2 ( A⃝)

+ 2∥∫
A2(T )L≥∥x̂(t)−ŷ(t)∥≥ϵ′

K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))dρ̄0(y)∥2. ( B⃝)

Note that the upper bound on ∥x̂(t) − ŷ(t)∥ in B⃝ comes from Lemma 6 and the facts that X = Πd
is bounded with size L. To bound A⃝, we have

∥∫
∥x̂(t)−ŷ(t)∥≤ϵ′

K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))dρ̄0(y)∥

≤ ∫
∥x̂(t)−ŷ(t)∥≤ϵ′

∥K(x̂(t) − ŷ(t))∥ + ∥K(x̄(t) − ȳ(t))∥dρ̄0(y)

= ∫
∥x̂(t)−ŷ(t)∥≤ϵ′

1

∥x̂(t) − ŷ(t)∥d−1 +
1

∥x̄(t) − ȳ(t)∥d−1 dρ̄0(y) =
C⃝ + D⃝.

We can bound C⃝ by

∫
∥x̂(t)−ŷ(t)∥≤ϵ′

1

∥x̂(t) − ŷ(t)∥d−1 dρ̄0(y) = ∫∥x̂(t)−y∥≤ϵ′
1

∥x̂(t) − y∥d−1 dρ
f̂
t (y) ≤ ∥ρ

f̂
t ∥∞ ⋅ ϵ′, (64)

where in the above inequality we remove the singular term by using transforming to the polar coor-
dinate system. To bound D⃝, we pick ϵ′ = dA1(T )ϵ, so that Lemma 5 implies

{y ∈ X ∣∥x̂(t) − ŷ(t)∥ ≤ ϵ′} ⊆ {y ∈ X ∣∥x̄(t) − ȳ(t)∥ ≤ d + 2
d

ϵ′},
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and consequently

∫
∥x̂(t)−ŷ(t)∥≤ϵ′

1

∥x̄(t) − ȳ(t)∥d−1 dρ̄0(y) ≤ ∫∥x̄(t)−ȳ(t)∥≤2ϵ′
1

∥x̄(t) − ȳ(t)∥d−1 dρ̄0(y) ≤
d + 2
d
∥ρf̂t ∥∞⋅ϵ′.

(65)
To bound B⃝, note that

∇K(x) = 1

∥x∥d+2 (∥x∥
2I − d ⋅ x⊗ x)⇒ ∥∇K(x)∥ ≤ d

∥x∥d . (66)

Denote z(t) = min(∥x̂(t) − ŷ(t)∥, ∥x̄(t) − ȳ(t)∥). Recall the choice of ϵ′ = dA1(T )ϵ. Using
Lemma 5, we have that

∥z(t)∥ ≥ d − 2
d
∥x̂(t) − ŷ(t)∥.

Using the triangle inequality, we have

∥∫
A2(T )L≥∥x̂(t)−ŷ(t)∥≥ϵ′

K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))dρ̄0(y)∥

≤ ∫
A2(T )L≥∥x̂(t)−ŷ(t)∥≥ϵ′

∥K(x̂(t) − ŷ(t)) −K(x̄(t) − ȳ(t))∥dρ̄0(y)

≤ 2ϵ′d∫
A2(T )L≥∥x̂(t)−ŷ(t)∥≥ϵ′

1

∥z(t)∥d dρ̄0(y)

≤ 2ϵ′d∫
A2(T )L≥∥x̂(t)−ŷ(t)∥≥ϵ′

( d

d − 2)
d 1

∥x̂(t) − ŷ(t)∥d dρ̄0(y)

≤ 2eϵ′d∥ρf̂t ∥∞ ∫
A2(T )L≥∥x̂(t)−y∥≥.5ϵ′

1

∥y∥d dy

= 2eϵ′d∥ρf̂t ∥∞ ln(A2(T )L/ϵ′).

Combining the bounds of A⃝ and B⃝, we have that

3⃝ ≤ C3(T )(ϵ ln
1

ϵ
)2. (67)

Bounding 4⃝ in equation 62 Denote x̂(t) =X f̂
t (x) and x̄(t) =X f̄

t (x). Define

Bx(t) def= ∥ (∇ log ρf̂t ○X
f̂
t −∇ log ρ̄t ○X f̄

t ) (x)∥2 = ∥∇ log ρf̂t (x̂(t)) −∇ log ρ̄t(x̄(t))∥2. (68)

Computing its dynamics

d

dt
Bx(t) ≤ Bx(t) + ∥

d

dt
(∇ log ρf̂t (x̂(t)) −∇ log ρ̄t(x̄(t))) ∥2 (69)

Recall equation 18. We have that

d

dt
∇ log ρf̂t (x̂(t)) = −∇ (∇ ⋅ f̂t(x̂(t))) − (Jf̂t(x̂(t)))

⊺

∇ log ρf̂t (x̂(t)), (70)

d

dt
∇ log ρf̄t (x̄(t)) = −∇ (∇ ⋅ f̄t(x̄(t))) − (Jf̄t(x̄(t)))

⊺∇ log ρf̄t (x̄(t)), (71)

and hence

∥ d
dt
(∇ log ρf̂t (x̂(t)) −∇ log ρ̄t(x̂(t))) ∥2

≤ 2∥∇ (∇ ⋅ f̂t(x̂(t))) −∇ (∇ ⋅ f̄t(x̄(t))) ∥2 + 2∥ (Jf̂t(x̂(t)))
⊺

∇ log ρf̂t (x̂(t)) − (Jf̄t(x̄(t)))
⊺∇ log ρf̄t (x̄(t))∥2

= E⃝ + F⃝.

We now bound these two terms individually. To bound E⃝,

∥∇ (∇ ⋅ f̂t(x̂(t))) −∇ (∇ ⋅ f̄t(x̄(t))) ∥
≤ ∥∇ (∇ ⋅ f̂t(x̂(t))) −∇ (∇ ⋅ f̂t(x̄(t))) ∥ + ∥∇ (∇ ⋅ f̂t(x̄(t))) −∇ (∇ ⋅ f̄t(x̄(t))) ∥ ≤ ϵ +LA1(T )ϵ.
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To bound F⃝

∥ (Jf̂t(x̂(t)))
⊺

∇ log ρf̂t (x̂(t)) − (Jf̄t(x̄(t)))
⊺∇ log ρf̄t (x̄(t))∥2

≤ 2∥ ((Jf̂t(x̂(t)))
⊺

− (Jf̄t(x̄(t)))
⊺)∇ log ρf̂t (x̂(t))∥2 + 2∥ (Jf̄t(x̄(t)))

⊺ (∇ log ρf̂t (x̂(t)) −∇ log ρf̄t (x̄(t))) ∥2

≤ 2(1 +LA1(T ))2ϵ2 + 2L2Bx(t).
Consequently, using Grönwall’s inequality, we have that

4⃝ ≤ C4(T )ϵ2. (72)

Combining all the estimations for 1⃝ to 4⃝, we have that

R(f̂) ≤ C(T )ϵ2(ln 1

ϵ
)2, (73)

for some constant C(T ) independent of ϵ.
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G Discussion on the Unbounded Case

In Section 3, we considered the torus case, i.e. X is a d-dimensional box with size L with a periodic
boundary condition. In this section, we consider the unbounded case, i.e. X = Rd. There are two
major differences:

1. The first difference is that when X = Rd, we would obtain an additional integral-of-divergence
term from the operation of integration by parts. When X is a torus, using Gauss’s divergence
theorem and the periodic boundary condition, this term immediately vanishes, which simplifies
the analysis. In contrast, for the unbounded case, we need to handle this term by assuming some
additional regularity conditions.

2. The second difference is that for the torus, it is reasonable to assume that the initial distribution
ρ̄0 is fully supported, which is equivalent to the existence of some constant c > 0 such that
ρ̄0(x) ≥ c for all x ∈ X . Such an assumption will allow us to propagate the regularity of the
initial distribution ρ̄0 to the solution at time t, i.e. ρ̄t. In contrast, for the unbounded case, such
an assumption clearly does not hold since otherwise ρ̄0 would not be integrable. Consequently,
we can no long propagate the regularity of the initial distribution and hence we need to directly
make regularity assumptions on ρ̄t.

In the following, we will focus on addressing the first point and provide sufficient conditions such
that Lemmas 1 and 2 can be recovered even in the unbounded case. To elaborate a bit on the second
point, the theorems that are derived in the main body of the submission remain valid under the
regularity assumptions given therein. However, unlike the torus case, it is difficult to establish these
regularity results for the unbounded case by assuming the regularity of the initial distribution ρ̄0.

Lemma 8 (Analogy of Lemma 1 in the unbounded case). Given the hypothesis velocity field f =
f(t, x) ∈ C1

t,x. Assume that (ρft )t∈[0,T ] and (ρ̄t)t∈[0,T ] are classical solutions to equation (7) and
equation (6) respectively. It holds that (recall the definition of δt in equation (11))

d

dt
∫
X
ρft log

ρft
ρ̄t
= − ν ∫

X
ρft ∣∇ log

ρft
ρ̄t
∣2 + ∫

X
ρftK ∗ (ρ

f
t − ρ̄t) ⋅ ∇ log

ρft
ρ̄t

+ ∫
X
ρft δt ⋅ ∇ log

ρft
ρ̄t
− ∫ div(ρft (ft log

ρft
ρ̄t
− f̄t)).

where X is the tours Πd. All the integrands are evaluated at x.

Proof. Recall the McKean-Vlasov equation 6 and the continuity equation 10. For simplicity, we
write that ρt = ρft and f̄t = A[ρ̄t]. Then

d

dt
∫ ρt log

ρt
ρ̄t
= − ∫ div(ρtft) log

ρt
ρ̄t
+ ∫

ρt
ρ̄t

div(ρ̄tf̄t)

= ∫ ρtft∇ log
ρt
ρ̄t
− ∫ ∇

ρt
ρ̄t
ρ̄tf̄t − ∫ div(ρt(ft log

ρt
ρ̄t
− f̄t)).

We handle the first two terms on the R.H.S. just like the torus case and we can have the result.

Lemma 9 (Analogy of Lemma 2 in the unbounded case). Under the same assumptions as in Lemma
1, given the diffusion coefficient ν ≥ 0, it holds that (recall the definition of δt in equation (11))

d

dt
F (ρft , ρ̄t) = − ∫

X
ρft ∥K ∗ (ρ

f
t − ρ̄t)∥2 − ∫

X
ρft δt ⋅K ∗ (ρ

f
t − ρ̄t) + ν ∫

X
ρft K ∗ (ρ

f
t − ρ̄t) ⋅ ∇ log

ρft
ρ̄t

− 1

2
∫
X 2
K(x − y) ⋅ (A[ρ̄t](x) −A[ρ̄t](y))d(ρft − ρ̄t)⊗2(x, y)

− ∫ div{g ∗ (ρft − ρ̄t)(x)(ρ
f
t (x)ft(x) − ρ̄t(x)f̄t(x))}dx

where we recall that the operator A is defined in equation (5).
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Proof. Recall that K = −∇g. For simplicity, we write that ρt = ρft . Then

d

dt
F (ρt, ρ̄t) =

d

dt

1

2
∫
X 2
g(x − y)d(ρt − ρ̄t)⊗2(x, y)

= ∫
X
g ∗ (ρt − ρ̄t)(x)(∂tρt(x) − ∂tρ̄t(x))dx

= − ∫ g ∗ (ρt − ρ̄t)(x)div{ρt(x)ft(x) − ρ̄t(x)f̄t(x)}dx

= ∫ ∇g ∗ (ρt − ρ̄t)(x){ρt(x)ft(x) − ρ̄t(x)f̄t(x)}dx

− ∫ div{g ∗ (ρt − ρ̄t)(x)(ρt(x)ft(x) − ρ̄t(x)f̄t(x))}dx

We handle the first term on the R.H.S. just like the torus case and we can have the result.

G.1 Handling the Integral of the Divergence

Given a vector field, the following lemma provides a sufficient condition for the volume integral
of its divergence over X to be zero. The idea is to construct a sequence of approximations to the
integral of interest, each of which involves integration over a compact set. Consequently, Gauss’s
divergence theorem can be applied. We then utilize the dominant convergence theorem to exchange
the order of the limit and integral.
Lemma 10. For a vector function g ∶ Rd → Rd which satisfies

∫
Rd

dx ∣div g(x)∣ <∞ and ∫
Rd

dx ∥g(x)∥ <∞, (74)

we have

∫
Rd

dx div g(x) = 0. (75)

Proof. Choose a cut-off function, indexed by r > 1, satisfying

Φr(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if ∥x∥ ≤ r,
1
2
(1 + cos(π∥x∥/r − 1)), if r < ∥x∥ ≤ 2r,

0, if 2r < ∥x∥.
(76)

We have ∥∇Φr∥L∞ = O(1/r). Using the chain rule of divergence, we have that

divx(g ⋅Φr) = divx(g) ⋅Φr + g ⋅ ∇Φr. (77)

We have ∫Rd dxdivx(gΦr)(x) = 0 for all r and x, by noting gΦr(x) = 0 for ∥x∥ > 2r and using
Gauss’s divergence theorem on the x variable. Using conditions (74) and the dominated convergence
theorem, we have

0 = lim
r→∞
∫
X
dx [divx(g) ⋅Φr](x) + lim

r→∞
∫
X
dx [g ⋅ ∇Φr](x)

= ∫
X
dx lim

r→∞
[divx(g) ⋅Φr](x) + ∫

X
dx lim

r→∞
[g ⋅ ∇Φr](x)

= ∫
X
dx divx(g)(x),

where in the last equality, we use g ⋅ ∇Φr(x) ≤ ∥g(x)∥∥∇Φr(x)∥→ 0 as r →∞.

We now show that the divergence integrals in Lemmas 8 and 9 satisfy the requirements (74), under
the following regularity assumptions on the hypothesis velocity field f , initial distribution ρ̄0, and
the ground truth solution ρ̄.
Assumption 3. f ∈ Lip(X ) and there exists some constant L, such that for all t ∈ [0, T ] and x ∈ X
∥[∇(divf)](t,x)∥ ≤ L.
Assumption 4. The initial distribution ρ̄0 satisfies

∫
X
dx ρ̄0(x)(∣ log ρ̄0(x)∣ + 1)(∥x∥ + 1)α+1(∥∇ log ρ̄0(x)∥ + 1) <∞ (78)
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Assumption 5. Suppose that the ground truth ρ̄t ∈ L∞ is sufficiently regular such that

∣ log ρ̄t(x)∣ + ∥∇ log ρ̄t(x)∥ ≤ L(1 + ∥x∥)α and ∥f̄t(x)∥ + ∣divf̄t(x)∣ ≤ L(1 + ∥x∥)α (79)

holds for all x ∈ X and t ∈ [0, T ] with some constant α and L. Here we denote f̄t = A[ρt].

The following estimations of regularity will be helpful. The proof is deferred to the end of this
section.

Lemma 11. Under Assumption 3, we have the following estimations

∥xt∥2 ≤ exp(t(1 + 2L2))(∥x0∥2 + 1)
∣ log ρft (xt)∣ ≤ ∣ log ρ̄0(x0)∣ +Lt

∥∇ log ρft (xt)∥2 ≤ exp(t(1 + 2L2))(∥∇ log ρ̄0(x0)∥2 + 1).

We now show that the integrals of the divergence in Lemmas 12 and 13 are zero.

Lemma 12. Under Assumptions 3 to 5, we have

∫
X

div(ρt(ft log
ρft
ρ̄t
− f̄t)) = 0. (80)

Proof. To establish Lemma 12, we need to show that all the terms inside the divergence of equa-
tion 80 satisfy the integrability requirements (74) in Lemma 10, which are handled one by one in
the following.

• We handle the term ρft log ρ
f
t ft.

– To show that ∫X dx ∥ρft log ρ
f
t ft(x)∥ <∞

∫
X
dx ∥[ρft log ρ

f
t ft](x)∥ = ∫

X
dx ρft (x)∥[log ρ

f
t ft](x)∥

= ∫
X
dx ρ̄0(x0) ⋅ ∣ log ρft (xt)∣ ⋅ ∥ft(xt)∥

≤ ∫
X
dx ρ̄0(x0) ⋅ (∣ log ρ̄0(x0)∣ +Lt) ⋅ exp(t(1 + 2L2))(∥x0∥ + 1) <∞.

– To show that ∫X dx ∣div (ρft log ρ
f
t ft) (x)∣ <∞

div (ρft log ρ
f
t ft) = divft ⋅ ρft log ρ

f
t + ft ⋅ ∇(ρ

f
t log ρ

f
t )

= divft ⋅ ρft ⋅ log ρ
f
t + (ft ⋅ ∇ρ

f
t ) ⋅ log ρ

f
t + (ft ⋅ ∇ log ρft ) ⋅ ρ

f
t

= ρft (divft ⋅ log ρ
f
t + (ft ⋅ ∇ log ρft ) ⋅ (1 + log ρ

f
t ))

We now bound

∫
X
dx ρft (x)∣[divft ⋅ log ρ

f
t ](x)∣

= ∫
X
dx ρ̄0(x0)∣[divft ⋅ log ρft ](xt)∣ ≤ ∫

X
dx ρ̄0(x0) ⋅L ⋅ (tL + ∣ log ρ̄0(x0)∣) <∞.

and

∫
X
dx ρft (x)∣[(ft ⋅ ∇ log ρft ) ⋅ (1 + log ρ

f
t )](x)∣

= ∫
X
dx ρ̄0(x0)∣[(ft ⋅ ∇ log ρft ) ⋅ (1 + log ρ

f
t )](xt)∣

≤ ∫
X
dx ρ̄0(x0)L(1 + ∥x0∥) exp(t(1 + 2L2))(∥∇ log ρ̄0(x0)∥ + 1)(1 +Lt + ∣ log ρ̄0(x0)∣) <∞.

• We handle the term ρft log ρ̄tft.
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– To show that ∫X dx ∥ρft log ρ̄tft(x)∥ <∞

∫
X
dx ρft ∥ log ρ̄tft(x)∥ = ∫

X
dx ρ̄0∥[log ρ̄tft](xt)∥

≤ ∫
X
dx ρ̄0(x0)∣ log ρ̄t(xt)∣∥ft(xt)∥ ≤ ∫

X
dx ρ̄0(x0)L2(1 + ∥xt∥)α+1 <∞.

– To show that ∫X dx ∣div (ρft log ρ̄tft) (x)∣ <∞

div (ρft log ρ̄tft) = divft ⋅ ρft log ρ̄t + ft ⋅ ∇(ρ
f
t log ρt)

= divft ⋅ ρft ⋅ log ρ̄t + (ft ⋅ ∇ρ
f
t ) ⋅ log ρ̄t + (ft ⋅ ∇ log ρt) ⋅ ρft

= ρft (divft ⋅ log ρ̄t + (ft ⋅ ∇ log ρft ) log ρ̄t + ft ⋅ ∇ log ρt)

We now bound

∫
X
dx ρft (x)∣divft(x)∣ ⋅ ∣ log ρ̄t(x)∣ = ∫

X
dx ρ̄0(x0)∣divft(xt)∣ ⋅ ∣ log ρ̄t(xt)∣

≤ ∫
X
dx ρ̄0(x0)L(1 + ∥xt∥)(1 + ∥xt∥)α <∞.

∫
X
dx ρft (x)∣[(ft ⋅ ∇ log ρft ) log ρt](x)∣ = ∫

X
dx ρ̄0(x0)∣[(ft ⋅ ∇ log ρft ) log ρt](xt)∣

≤ ∫
X
dx ρ̄0(x0)∥ft(xt)∥∥∇ log ρft (xt)∥∣ log ρ̄t(xt)∣

≤ ∫
X
dx exp(t(1 + 2L2))(∥∇ log ρ̄0(x0)∥ + 1)L(1 + ∥xt∥)(1 + ∥xt∥)α <∞.

∫
X
dx ρft (x)∣[ft ⋅ ∇ log ρt](x)∣ = ∫

X
dx ρ̄0(x0)∥ft(xt)∥∥∇ log ρ̄t(xt)∥

≤ ∫
X
dx ρ̄0(x0)∥ft(xt)∥∥∇ log ρ̄t(xt)∥ ≤ ∫

X
dx ρ̄0(x0)L(1 + ∥xt∥)(1 + ∥xt∥)α <∞.

• We handle the term ρft f̄t.

– To show that ∫X dx ∥[ρft f̄t](x)∥ <∞

∫
X
dx ρft (x)∥f̄t(x)∥ = ∫

X
dx ρ̄0(x0)∥f̄t(xt)∥ <∞

– To show that ∫X dx ∣div(ρft f̄t)(x)∣ <∞

∫
X

div(ρft f̄t) = ∫
X
∇ρft ⋅ f̄t + ρ

f
t divf̄t = ∫

X
ρft (∇ log ρft ⋅ f̄t + divf̄t)

= ∫
X
dx0 ρ̄0(x0) (∇ log ρft (xt) ⋅ f̄t(xt) + divf̄t(xt)) <∞,

using the polynomial growth assumption on the ground truth velocity field f̄t.

We now focus on addressing the integral-of-divergence term in Lemma 9. The following result will
be useful.
Remark 2. Let Xf

t be the flow map generated by the velocity field f ∈ Lip(Rd). We have that
Xf
t ∈ Lip(Rd) and that ρft = X

f
t ♯ ρ̄0 remains bounded for t ∈ [0, T ] if ρ̄0 is bounded on Rd. This

can be established using the change-of-variable formula of the probability density function.

Lemma 13. Under Assumptions 3 to 5, we have

∫
X
dx div{g ∗ (ρft − ρ̄t)(x)(ρ

f
t (x)ft(x) − ρ̄t(x)f̄t(x))} = 0. (81)
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Proof. Denote h = g ∗ (ρt − ρ̄t)(x)(ρt(x)ft(x) − ρ̄t(x)f̄t(x)). To show that h ∈ L1(X ), we can
show that, after splitting into simple terms, every term from h is in L1. In the following, we show

g ∗ ρt(x)ρt(x)ft(x) ∈ L1(X ).
Other terms can be proved similarly. First, we show that g ∗ ρt ∈ L∞(X ) if ρt ∈ L∞(X ). For any
constant C, we have

g ∗ ρt(x) = ∫
X
g(x − y)ρt(y)dy

= ∫
∥x−y∥≤C

g(x − y)ρt(y)dy + ∫
∥x−y∥>C

g(x − y)ρt(y)dy

≤ ∥ρt∥L∞(X) ∫
∥x−y∥≤C

∥x − y∥2−ddy +C2−d ∫
∥x−y∥>C

ρt(y)dy

≤ ∥ρt∥L∞(X)C2 +C2−d,

where in the last inequality, we use

∫
∥x−y∥≤C

∥x − y∥2−ddy = ∫
∥y∥≤C

∥y∥2−ddy ≤ ∫
0≤r≤C

r2−ddr∫ Jθdθ ≤ ∫
0≤r≤C

dr r ≤ C2.

Here Jθ denotes the determinant of the Jacobian obtained from changing to the polar coordinate,
which is bounded by rd−1. We hence obtain

∫
X
dx ∥g ∗ ρt(x)ρt(x)ft(x)∥ ≤ C ′ ∫

X
dx ρt(x)∥ft(x)∥ = C ′ ∫

X
dx0 ρ̄0(x0)∥ft(xt)∥ <∞,

where we use ft ∈ Lip(X ) and the estimation in Lemma 11.

Similarly, to show that div(h) ∈ L1(X ), we can show that, after splitting into simple terms, every
term from div(h) is in L1. In the following, we show that

∇g ∗ ρt(x)ρt(x)ft(x) ∈ L1(X ) and g ∗ ρt(x)∇ρt(x) ⋅ ft(x) ∈ L1(X ).
Other terms can be proved similarly.

To show that ∇g ∗ ρt(x)ρt(x)ft(x) ∈ L1(X ), we first show that ∇g ∗ ρt(x) ∈ L∞(X ) for ρt ∈
L∞(X ). We can then apply the same argument as above to establish the absolute integrability of
the whole term.

∥∇g ∗ ρt(x)∥ ≤ ∫
X
∥∇g(x − y)∥ρt(y)dy

= ∫
∥x−y∥≤C

∥∇g(x − y)∥ρt(y)dy + ∫
∥x−y∥>C

∥∇g(x − y)∥ρt(y)dy

≤ ∥ρt∥L∞(X) ∫
∥x−y∥≤C

∥x − y∥1−ddy +C1−d ∫
∥x−y∥>C

ρt(y)dy

≤ ∥ρt∥L∞(X)C +C1−d.

To show that g ∗ ρt(x)∇ρt(x) ⋅ ft(x) ∈ L1(X ), we use the fact that g ∗ ρt ∈ L∞(X ) and that

∫
X
dx ∇ρt(x) ⋅ ft(x) = ∫

X
dx0 ρ̄0(x0)∇ log ρt(xt) ⋅ ft(xt). (82)

Using the estimation in Lemma 11 and that ft ∈ Lip(X ), we obtain the result.

Proof of Lemma 11.

d

dt
∥xt∥2 ≤ ∥xt∥2 + ∥f̄t(xt)∥2 ≤ ∥xt∥2 + 2L2(1 + ∥xt∥2) = (1 + 2L2)∥xt∥2 + 2L2. (83)

Using Grönwall’s inequality, we have

∥xt∥2 ≤ exp(t(1 + 2L2))(∥x0∥2 + 2L2/(1 + 2L2)) ≤ exp(t(1 + 2L2))(∥x0∥2 + 1). (84)

We have
d

dt
log ρft (xt) = −divf̄t(xt) (85)
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We have

d

dt
∇ log ρft (xt) = −∇ (divf̄t(xt)) − (Jf̄t(xt))

⊺∇ log ρft (xt) (86)

d

dt
∥∇ log ρft (xt)∥2 ≤ ∥∇ log ρft (xt)∥2 + 2∥∇ (divf̄t(xt)) ∥2 + 2∥ (Jf̄t(xt))

⊺∇ log ρft (xt)∥2

(87)

≤ ∥∇ log ρft (xt)∥2(1 + 2∥Jf̄t(xt)∥
2) + 2∥∇ (divf̄t(xt)) ∥2 (88)

≤ ∥∇ log ρft (xt)∥2(1 + 2L2) + 2L2 (89)

Using Grönwall’s inequality, we have

∥∇ log ρft (xt)∥2 ≤ exp(t(1 + 2L2))(∥∇ log ρ̄0(x0)∥2 + 1). (90)
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