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A APPENDIX

A.1 COMPUTING INFRASTRUCTURE

All experiments are conducted on Ubuntu 20.04.5 LTS server equipped with NVIDIA GeForce RTX
3090 GPUs (24G Memory), Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz, Pytorch 1.13.0,
and CUDA 11.8.

A.2 EXPERIMENTAL CONFIGURATION

In this section, we present the detailed experimental setups, including datasets, pre-processing,
model architectures, and specific hyperparameters used in each task.

A.2.1 DATASETS

• Seq-MNIST and PS-MNIST (Le et al., 2015) are two variants of the MNIST handwritten
digit recognition dataset. Each task involves reading a 28 × 28 grayscale digit image into
the network pixel by pixel through a raster scan. In the Seq-MNIST task, the sequence
order mimics the way humans read: row-by-row. Conversely, the PS-MNIST task involves
a pre-processing step where the order is shuffled using a fixed random permutation matrix,
which notably increases the task’s complexity.

• Sequential CIFAR10 and Sequential CIFAR100 are tasks based on the CIFAR-
10/CIFAR-100 dataset introduced by Krizhevsky et al. (2009). In these tasks, a 32 × 32
full-color image is used as the network input. In the column-by-column task, the image’s
columns (32 pixels each) are sequentially fed into the network from left to right, resulting
in a sequence length of 32. For the pixel-by-pixel task, the image is read through a one-
dimensional raster scan, leading to a sequence length of 1024. The primary objective of
these tasks is to classify the image into one of ten categories.

• Spiking Heidelberg Digits (SHD) (Cramer et al., 2020) is a spike-based sequence classi-
fication benchmark that consists of spoken digits from 0 to 9 in both English and German,
resulting in 20 classes. The dataset comprises recordings from twelve speakers, two of
whom only appear in the test set. Each original waveform is converted into spike trains
over 700 input channels. The training set includes 8,332 examples, while the test set com-
prises 2,088 examples (no validation set). The SHD dataset is a widely used task to assess
the performance of SNNs in processing and classifying speech data represented in spiking
format.

A.2.2 PRE-PROCESSING

In column-by-column Sequential CIFAR10/Sequential CIFAR100, we employ the same data aug-
mentation techniques as those utilized in Fang et al. (2021a) to ensure a fair comparison. For all
other tasks, no specific augmentation method is implemented.

A.2.3 MODEL ARCHITECTURES AND HYPERPARAMETERS

We specify all architecture configurations as follows:

• Column-by-column Sequential CIFAR10/Sequential CIFAR100: To enhance consis-
tency in comparison, we use the identity model architecture in Fang et al. (2023).

• SHD: Following the previous works on this dataset (Wang et al., 2023; Sun et al., 2023),
we adopts two-hidden-layer fully connection network architecture. The hidden dimension
is set to 256 and 352 to provide results under different parameter amounts.

• Pixel-by-pixel S-MNIST, PS-MNIST, and Sequential CIFAR10: In this task, we uti-
lized the network architecture that could be regarded as a stack of residual blocks, which
we denote as RB. Each residual block comprises a residual connection and a sequence of
‘1x1 convolution - Batch normalization 1D - Spiking Neuron model’. For S-MNIST/PS-
MNIST tasks, we utilize 3-hidden-layer architecture (FC128-BN-PMSN)-RB128-RB128
and (FC208-BN-PMSN)-RB208-RB208, respectively, for different parameter counts. FC
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represents the fully connected layer while BN signifies the 1D batch normalization layer.
For more challenging Sequential CIFAR10, the architecture is expanded to (FC128-BN-
PMSN)-RB128-RB128-AP4-(FC256-BN-PMSN)-RB256-RB256, where AP is the aver-
age pooling layer.

In Table 3, we list all task-specific hyperparameters as follows:

Table 3: Hyperparameters used in different tasks.
Datasets Global

Learning Rate
Neuronal

Learning Rate Weight Decay Dropout Batchsize Epochs θ γ

S-MNIST 1e-2 1e-3 1e-2 0.1 64 200 1 1
PS-MNIST 1e-2 1e-3 1e-2 0 64 200 1 1

SHD 1e-2 1e-3 0 0.4 40 150 1 1
Sequential CIFAR10
(column-by-column) 1e-3 1e-3 0 0 128 200 1 1

Sequential CIFAR100
(column-by-column) 1e-3 1e-3 0 0 128 200 1 1

Sequential CIFAR10
(pixel-by-pixel) 1e-2 1e-3 1e-2 0.1 64 200 1 1

For all experiments, we adopt the same initialization of the PMSN model, wherein the coupling
coefficient βi+1,i = −βi,i+1 = 5i, decaying factor τi = 2, step size dt ∼ U(1e − 3, 1e − 1), and
current gain γ0:n−1 = 1, γn ∼ U(0, 1). The AdamW optimizer and Cross-entropy (CE) loss are
adopted across all datasets

A.3 ABLATION STUDY

In Figure 5, we report the accuracy of the PMSN model with various compartment numbers when
implemented to pixel-by-pixel Sequential CIFAR10 task (T = 1024). In this section, we fur-
ther evaluate the effect of the compartment number of the PMSN model on spatiotemporal tasks
(T = 32). As presented in Table 4, when the compartment number n increases from 2 to 5, the
accuracy improves quickly. However, as n continues to increase, the accuracy sees only marginal
improvement, but at the cost of a substantial increase in computational consumption.

Table 4: Ablation study of compartment number n

Dataset Compartment number n
2 3 4 5 9 17

Sequential CIFAR10 88.79% 90.49% 90.75% 90.97% 91.05% 91.43%
Sequential CIFAR100 61.84% 65.16% 65.83% 66.08% 66.51% 66.81%

A.4 DERIVIATION

A.4.1 MODEL DISCRETIZATION OF OUR PROPOSED PMSN MODEL (EQS.7,8,9)

Recall the continuous-time formulation of the PMSN model from Eq. 5 and Eq. 6 as:

V̇h(t) =


− 1

τ1
β2,1 0 · · · 0

β1,2 − 1
τ2

β3,2 · · · 0
...

...
...

. . .
...

0 0 · · · βn−2,n−1 − 1
τn−1

Vh(t) +


γ1
γ2
...

γn−1

 I(t), (18)

v̇s(t) = [ 0 0 · · · βn−1,n ]Vh(t)−
1

τn
vs(t) + γnI(t)− θS(t), S(t) = H(vs(t), θ). (19)

The first full-rank state transition matrix in Eq. 18 is denoted by T ∈ Rn−1×n−1, which could be
diagonalized using eigenvalue decomposition T = PΛP−1, where Λ is the eigenvalue matrix, and
P ∈ Cn−1×n−1 denotes eigenvector matrix. This yields:

V̇h(t) = PΛP−1Vh(t) + [γ1, .., γn−1]
T I(t). (20)
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After multiplying both sides of Eq. 20 by P−1, we could obtain the following form:

P−1V̇h(t) = ΛP−1Vh(t) + P−1[γ1, .., γn−1]
T I(t). (21)

By replacing variable Vh = P−1Vh, ϕc = P−1[γ1, .., γn−1]
T , Φs = [0, 0, .., βn−1,n]P , Eq. 21 and

Eq. 19 could be written as:
V̇h(t) = ΛVh(t) + ϕcI(t), (22)

v̇s(t) = ΦsVh(t)−
1

τn
vs(t) + γnI(t)− θS(t), S(t) = H(vs(t), θ). (23)

Then, we denote the total input current compartment as Ih(t):

Ih(t) = ΦsVh(t) + γnI(t). (24)

Plugging Ih(t) into Eq. 23, we have:

v̇s(t) = − 1

τn
vs(t) + Ih(t)− θS(t), S(t) = H(vs(t), θ). (25)

By applying Zero-order Hold technique (DeCarlo, 1989), Eq. 22 can be calculated in the following
closed-form:

Vh (t+ dt) = eΛdtVh (t) + ϕcI (t)

∫ t+dt

τ=t

eΛ(t+dt−τ)dτ

= eΛdtVh (t) + ϕcI (t)

∫ dt

τ=0

eΛτdτ

= eΛdtVh (t) + Λ−1
(
eΛdt − I

)
ϕcI (t) ,

(26)

where dt is the step size. Similarly, the update formula of vs in Eq. 23 can be deduced as:

vs(t+ dt) = e−
dt
τn vs(t) + Ih(t+ dt)− θS(t), S(t) = H(vs(t), θ). (27)

By substituting T̄ = exp(Λdt), Φc = Λ−1(exp(Λdt) − I)ϕc in Eq. 26 and α = exp(− dt
τn
) in Eq.

27, we could finally obtain the following update formula of Vh and vs as:

Vh[t] = T̄ Vh[t− 1] + ΦcI[t], (28)

vs[t] = αvs[t− 1] + Ih[t]− θS[t− 1], S[t] = H(vs[t], θ). (29)

A.4.2 PARALLELIZED COMPUTING OF THE OUTPUT COMPARTMENT WITH RESET (EQ. 15)

According to the update formula of vs in Eq. 13, setting α = 1, we could rewrite it as the following
form:

vr[t− 1] = Ih[t] + vs[t− 1]− vs[t], (30)

Cumulating Eq. 30 from t = 0 to t yields:
t−1∑
i=0

vr[i] =

t∑
i=0

Ih[i]− vs[t], (31)

As vr[t] = θS[t] · ⌊vs[t]⌋θ, by moving vs[t] to the left side of the equation, dividing both sides of
Eq. 31 by θ and rounding down, it can be expressed as:

t−1∑
i=0

S[i] · ⌊vs[i]⌋θ + ⌊vs[t]⌋θ = ⌊
t∑

i=0

Ih[i]⌋θ (32)

Given that all input is non-negative and thus vs[t] is non-negative at any given moment, we can
reformulate ⌊vs[t]⌋θ as S[t] · ⌊vs[t]⌋θ and substitute it into the preceding equation. This leads us to
the conclusion that:

t∑
i=0

S[i]⌊vs[i]⌋θ = ⌊
t∑

i=0

Ih[i]⌋θ. (33)
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By multiplying both sides of the above equation by θ, we could obtain:

t∑
i=0

vr[i] = θ

t∑
i=0

S[i]⌊vs[i]⌋θ = θ⌊
t∑

i=0

Ih[i]⌋θ. (34)

Ultimately, by substituting Eq. 34 into Eq. 31, we could derive the conclusion in the Eq. 15 that:

t−1∑
i=0

vr[i] = θ⌊
t−1∑
i=0

Ih[i]⌋θ, vs[t] =

t∑
i=0

Ih[i]− θ⌊
t−1∑
i=0

Ih[i]⌋θ, (35)

A.4.3 GRADIENT BACKPROPAGATION OF PMSN WITH SURROGATE GRADIENT (EQ. 17)

As mentioned in Eq. 17, the gradient flow for the PMSN parameter update is formulated as:

∆W l ∝ ∂L
∂W l

=

T∑
t=1

∂L
∂I l[t]

Sl−1[t], ∆bl ∝ ∂L
∂bl

=

T∑
t=1

∂L
∂I l[t]

, (36)

where L is the loss function. W l and bl refer to weight and bias terms of layer l, respectively.
Subsequently, ∂L

∂Il[t]
can be derived from:

∂L
∂I l[t]

=

T∑
i=t

∂L
∂Sl[i]

∂Sl[i]

∂vls[i]

∂vls[i]

∂I l[t]
+

T−1∑
i=t

∂L
∂vls[i+ 1]

∂vls[i+ 1]

∂vls[i]

∂vls[i]

∂I l[t]

=

T∑
i=t

∂L
∂Sl[i]

∂Sl[i]

∂vls[i]

∂vls[i]

∂I l[t]
+

T−1∑
i=t

∂L
∂vls[i+ 1]

(
1− ∂vlr[i]

∂vls[i]

)
∂vls[i]

∂I l[t]
.

(37)

Recalling Eq. 11 and Eq. 13, we could obtain ∂vl
s[i]

∂Il[t]
as:

∂vls[i]

∂I l[t]
=

∂vls[i]

∂I lh[i]

∂I lh[i]

∂I l[t]
=

 ΦsT̄ i−tΦc, if i > t,
ΦsT̄ i−tΦc + γn, if i = t,
0 otherwise.

(38)

To overcome the discontinuity that happened during spike generation and reset, we employ trian-
gle function (Deng et al., 2022) and straight-through estimator (Bengio et al., 2013) as surrogate
gradients:

∂Sl[i]

∂vls[i]
= g′[i] =

{
(Γ− |∆|)/Γ2, if |∆| < Γ
0, otherwise ,

∂vlr[i]

∂vls[i]
= 1, (39)

where ∆ = vs[t] − θ. Γ is a hyperparameter that determines the permissible range for gradients
to pass. When plugging Eq. 38 and Eq. 39 into Eq. 37, we could derive the spatiotemporal credit
assignment of PMSN as:

∂L
∂Il[t]

=

T∑
i=t

∂L
∂Sl[i]

g′[i]
∂vls[i]

∂Il[t]
=

∂L
∂Sl[t]

g′[t]γn︸ ︷︷ ︸
Spatial

+

T∑
i=t

∂L
∂Sl[i]

g′[i]ΦsT̄ i−tΦc︸ ︷︷ ︸
Temporal

,
(40)

A.5 COMPUTATION PROCESS OF ENERGY COST (FIGURE 5)

In Section 5.4, we carry out a comparative study of computational cost and accuracy among vari-
ous spiking neuron models by varying their neuronal or network dimensions. Here, we detail the
computation process of the theoretical and empirical energy costs for each model.

The number of Multiply-Accumulate (MAC) operations and cheap Accumulate (AC) operations
are used to quantify the energy consumption during one inference. Due to the binary nature of
spikes in SNNs, the multiplication in synaptic operations between layers employs more efficient
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Table 5: Comparative analysis of energy cost among diverse models with an equivalent network
structure, where Frin is the average spike frequency of each presynaptic layer, h denotes input
dimension, m signifies neurons numbers, t is simulation time. k is the order of PSN families (rep-
resenting the receptive field scale of each neuron), and n is the compartment number of our PMSN.

Neuron Model Dynamics Theoretical Energy Cost
LIF V [t] = αV [t− 1] + I[t]− θS[t− 1] hmtFrinEAC +mtEMAC

PSN V [t] =
∑t

i=0 Wt,iI[i] hmtFrinEAC +mt2EMAC

masked PSN V [t] =
∑t

i=t−k+1 Wt,iI[i] hmtFrinEAC + kmtEMAC

SPSN V [t] =
∑t

i=t−k+1 WiI[i] hmtFrinEAC + kmtEMAC

PMSN(Ours)
Vh[t] = T̄ Vh[t− 1] + ΦcI[t]
Ih(t) = ΦsVh(t) + γnI(t)

vs[t] = vs[t− 1] + Ih[t]− θS[t− 1].
hmtFrinEAC +8(n− 1)mtEMAC

AC operations. However, the operations of neuronal updates, which involve the updates of full-
resolution analog signals ( i.e., membrane potential and input current), induce more energy-intensive
MAC operations. According to the neuronal dynamics of each model, we could derive the theoretical
cost of each neuron model within a layer as Table 5.

Following the data collected by Horowitz (2014) on the 45nm CMOS , we assign values of
EAC = 0.9 pJ and EMAC = 4.6 pJ respectively. Additionally, to ascertain the spiking fre-
quency of each presynaptic layer, denoted Frin, we carry out one inference process on all spiking
neuron models with a randomly selected input batch. The recorded spike frequencies of all hidden
layers are demonstrated in Figure 5(a). Thus, by substituting the collected values into the theoretical
cost, summing up the cost of each layer, we could compute the total energy cost of each model as
presented in 5(b).

A.6 TRAINING SPEED AND MEMORY COMPARISON BETWEEN PMSN AND PSN

Regarding our PMSN model, which incorporates a higher number of neuronal compartments com-
pared to single-compartment models, it is intuitive to reason that the PMSN model might necessitate
increased computational resources during training. To shed light on how significant the difference
is, we conducted a detailed comparative analysis between the PMSN and PSN models, specifically
focused on evaluating the maximum memory consumption and training speed. To this end, we
employed three distinct benchmarks, S-MNIST, Sequential CIFAR10 (T = 32), and Sequential CI-
FAR10 (T = 1024). Note that all experiments are carried out under uniform training configurations
and consistent network architectures. The compartment number of the PMSN model is n = 5. The
results are presented as follows:

Table 6: Computational metrics of PMSN and PSN on different datasets
Matrix Model S-MNIST (T=784) Sequential CIFAR10 (T=32) Sequential CIFAR10 (T=1024)
Training time
(seconds/epoch)

PMSN 35.32 73.21 61.7562
PSN 21.18 49.02 34.0634

Memory
consumption (GB)

PMSN 1.44 3.14 9.40
PSN 0.61 1.76 9.08

Accuracy (%) PMSN 99.40 90.97 82.14
PSN 97.90 88.45 55.24

As expected, the PMSN model requires more time and memory than the PSN model across all
datasets. This increased demand is primarily attributed to a larger number of neuronal compart-
ments being used (i.e., five in PMSN v.s. one in PSN). However, the increase in actual time and
memory consumption is relatively modest, generally less than twice that of the PSN model in all
experiments. This highlights the effectiveness of our proposed parallelization method. Furthermore,
we believe this additional computational cost is worthwhile when considering the significantly en-
hanced sequential modeling capacity as demonstrated on the Sequential CIFAR10 dataset.
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A.7 SUPPLEMENT OF MULTI-COMPARTMENT DYNAMICS VISUALIZATION

In Figure 6, we delve into the layer-wise dynamics of each compartment within the same neuron, as
well as the distribution of dynamic coefficients across various neurons in the same layer, to shed light
on the underlying mechanism of our PMSN model in preserving long-term memory and processing
multi-scale temporal information. We employ the five-compartment PMSN model trained in pixel-
by-pixel Sequential CIFAR task for illustration.

In the left column of the figures, we first present the impulse response of one spiking neuron in each
layer. Given that each neuron possesses unique dynamics within the same layer, we average the
dynamic coefficients of each neuron to derive the averaged dynamic of the layer to enhance consis-
tency. Each compartment has its distinct decay coefficient λi = eα+βi, which is one-by-one coupled
with another compartment possessing a conjugated decay coefficient after training. Consequently,
as shown in the figures, the dynamic of each compartment exhibits a damped oscillation pattern. The
duration of the oscillatory activity within a compartment is directly proportional to the temporal ex-
tent of the long-term memory preserved. The real part α, namely the damping coefficient, indicates
the decay rate of membrane potential, while the image part β determines the oscillation frequency.

The divergence between different compartment couples within the same neuron underscores the
multi-scale temporal information processing mechanism inherent in a single neuron. Each couple
of compartments (i.e., 1 and 4, 2 and 3) consistently displays different oscillation frequencies and
decay rates. Therefore, the PMSN model is endowed with the capacity to preserve temporal infor-
mation across diverse frequency domains. Notably, the 2, 3 compartments always exhibit a longer
oscillation period than the 1, 4 compartments. This suggests that the hidden compartments tend to
retain information for a longer duration when they are not in close proximity to the input or output
compartments.

The variance among dynamics of different neurons within the same layer also holds significance. To
highlight this, we illustrate the distribution of the oscillation frequency β

2π and damping coefficient
α among diverse neurons in the same layer within the middle column and right column of the fig-
ures, respectively. The results indicate different neuron owns different decaying rate of information,
as well as restoring information in different oscillation frequency. This diversity among neurons
enables the SNNs to incorporate multi-scale information integration, thereby facilitating the storage
of various scale memory in sequential modeling tasks.

B CODE AVAILABILITY

The source codes developed will be publicly available after the review process.
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Figure 6: The visualization of PMSN model dynamics(n = 5) within distinct layers. Left: the
impulse response of different compartments in the same neuron. Each hidden compartment is char-
acterized by its own dynamic coefficient λi = eα+βi, exhibiting damped oscillation patterns after
receiving inputs, while the compartment5 is responsible for spike generation and reset. The transient
response time of the oscillation in each compartment reflects the preservation time of memory within
the membrane potential. Middle: the distribution of oscillation frequencies β

2π for each hidden com-
partment among a variety of neurons in layer i, reveals each compartment or each neuron process
information in the varied frequency domains. Right: the distribution of damping coefficients α for
each hidden compartment among diverse neurons, which indicates the information decay speeds in
each compartment.

19


	Introduction
	Related Works
	Preliminaries
	Methods
	A Generalized Multi-compartment Spiking Neuron Model
	PMSN: A Parallel Multi-compartment Spiking Neuron
	Effective Temporal Gradient Propagation

	Experiments
	Establishing Temporal Dependencies across Distinct Time Scales
	Visualization of Multi-compartment Dynamics
	Simulation Acceleration
	Computational Cost

	Conclusion
	Appendix
	Computing Infrastructure
	Experimental Configuration
	Datasets
	Pre-processing
	Model Architectures and Hyperparameters

	Ablation study
	Deriviation
	Model Discretization of our proposed PMSN model (Eqs.7,8,9)
	Parallelized Computing of the Output Compartment with Reset (Eq. 15)
	Gradient Backpropagation of PMSN with Surrogate Gradient (Eq. 17)

	Computation Process of Energy Cost (Figure 5)
	Training Speed and Memory Comparison between PMSN and PSN
	Supplement of Multi-compartment Dynamics Visualization

	Code Availability



