
Under review as a conference paper at ICLR 2022

A PROOFS

Lemma 1. The algorithm to uniformly draw k samples in S, pick the best and return is a (1, 1)-oracle.

Proof. Consider the following simple (1, 1)-oracle for single-objective optimization: after sampling
k samples, we rank them according to their function values, and split them into two k/2 smaller
subsets S̃good and S̃bad. Other points are randomly assigned to either of the two subsets. Then if x⇤

happens to be among the k collected samples (which happens with probability k/|S|), definitely we
have x⇤ 2 Sgood. Therefore, we have:

P (x⇤ 2 Sgood|x⇤ 2 S) � k

|S| � 1� exp

✓
� k

|S|

◆
(7)

which is an oracle with ↵ = ⌘ = 1. The last inequality is due to ex � 1 + x (and thus e�x �
1� x).

Lemma 2. Define g(�) : R+ 7! R+ as:

g(�) : � 7!
TX

t=1

wt log

✓
1 +

1

�wt

◆
(8)

The following maximization problem

max
{zt}

TX

t=1

log
�
1� e�zt

�
s.t.

TX

t=1

wtzt = K (9)

has optimal solutions

z⇤t = log

✓
1 +

1

�wt

◆
, 1 t T (10)

where � is determined by g(�) = K. With optimal {z⇤t }, the objective reaches �
P

t log(1 + �wt).

Proof. Its Lagrange is:

J ({zt}) =
TX

t=1

log
�
1� e�zt

�
� �

TX

t=1

wtzt �K

!
(11)

Taking derivative w.r.t. zt and we have:

@J

@zt
=

e�zt

1� e�zt
� �wt = 0.

1

1� e�zt
� 1� �wt = 0

1

1� e�zt
= 1 + �wt

1� e�zt =
1

1 + �wt

e�zt = 1� 1

1 + �wt
=

�wt

1 + �wt

zt = � log
�wt

1 + �wt
= log

1 + �wt

�wt
= log

✓
1 +

1

�wt

◆

(12)

Lemma 3. Both g(�) and g�1
(y) are monotonously decreasing. Furthermore, let w̄ :=

T
⇣PT

t=1 w
�1
t

⌘�1
be the Harmonic mean of {wt} and wmax := max

T
t=1 wt, we have:

w̄�1

exp(w̄�1y/T)� 1
 g�1

(y) w�1
max

exp(w�1
maxy/T)� 1

 T

y
. (13)

14

Under review as a conference paper at ICLR 2022

Figure 8: Upper and lower bounds of g�1
(y) with different {wi}. Left: wi = 2

linspace(�0.1,10).
Right: wi = 2

linspace(2,5). Small {wi} span leads to better bounds.

Proof. It is easy to see when � increases, each term in g(�) decreases and thus g(�) is a decreasing
function of �. Therefore, its inverse mapping g�1

(y) is also decreasing.

Let µ(y) := 1/g�1
(y) > 0. Then we have:

y =

TX

t=1

wt log

✓
1 +

µ(y)

wt

◆
(14)

It is clear that when y = 0, µ(y) = 0. Taking derivative with respect to y in both side, we have:

1 = µ0
(y)

TX

t=1

1

1 +
µ(y)
wt

(15)

where µ0
(y) = dµ(y)

dy is the derivative of µ(y). Using the property of Harmonic mean, we have:

µ0
(y) =

TX

t=1

1

1 +
µ(y)
wt

!�1

PT

t=1 1 +
µ(y)
wt

T 2
=

1

T

✓
1 +

µ(y)

w̄

◆
(16)

This gives:
µ0
(y)

1 + µ(y)/w̄
 1

T
(17)

Integrate on both side starting from y = 0, we have:

w̄ log(1 + µ(y)/w̄)

�����

y

0

 y

T

�����

y

0

(18)

Using µ(0) = 0 we thus have:
w̄ log(1 + µ(y)/w̄) y

T
(19)

This leads to µ(y) w̄
⇥
exp(yw̄�1/T)� 1

⇤
. With g�1

(y) = 1/µ(y), we arrive the final lower
bound for g�1

(y).

For an alternative upper bound of g�1
(y), we just notice that (here wmax := maxt wt):

µ0
(y) =

TX

t=1

1

1 +
µ(y)
wt

!�1

�

T

1 +
µ(y)
wmax

!�1

=
1

T

✓
1 +

µ(y)

wmax

◆
(20)

Using the same technique as above, we have µ(y) � wmax

⇥
exp(yw�1

max/T)� 1
⇤

and the upper
bound of g�1

(y) follows.

Finally, note that ex � 1 + x, we have
w�1

max

exp(w�1
maxy/T)� 1

 w�1
max

w�1
maxy/T

=
T

y
(21)

15

Under review as a conference paper at ICLR 2022

Theorem 1. Following optimal sequence, the algorithm yields a reward r⇤ lower bounded by the
following:

r⇤ � rb exp

✓
log 2� ⌘N↵�(↵, T)

K

◆
T

�
(22)

where rb := N�1 and �(↵, T) := (1� 2
�↵T

)/(1� 2
�↵

).

Proof. First note that |ST | |S0|/2T and thus 1
|ST | � 2

T /N . So we just need to bound P (x⇤ 2 ST),
which can be written as:

P (x⇤ 2 ST) =

TY

t=1

P (x⇤ 2 St|x⇤ 2 St�1) �
TY

t=1

✓
1� exp

✓
� kt
⌘|St�1|↵

◆◆
(23)

Therefore we have

logP (x⇤ 2 ST) �
TX

t=1

log

✓
1� exp

✓
� kt
⌘|St�1|↵

◆◆
(24)

We want to find the action sequence {kt} so that logP (x⇤ 2 ST) is maximized. Let wt := ⌘|St�1|↵
and zt := kt/wt, applying Lemma 2, and we know that

max
{kt}

logP (x⇤ 2 ST) � �
TX

t=1

log(1 + �wt) (25)

where the Lagrangian multiplier � satisfies the equation g(�) = K.

Now we have:
TX

t=1

log(1 + �wt)
1�

TX

t=1

log

✓
1 +

T

K
wt

◆
(26)

2�

TX

t=1

log

✓
1 +

T

K
⌘(N/2t�1

)
↵

◆
(27)

3�
 ⌘TN↵

K

TX

t=1

1

2↵(t�1)
(28)

= �(↵, T)
⌘TN↵

K
(29)

Here 1� is due to Lemma 3 which tells that � = g�1
(K) T/K, 2� is due to wt := ⌘|St�1|↵ and

|St�1| N/2t�1, and 3� due to log(1 + x) x.

Putting all of them together, we know that

r⇤ � max
{kt}

1

|ST |
P (x⇤ 2 ST) �

2
T

N
exp

✓
��(↵, T)

⌘TN↵

K

◆
(30)

Optimal action sequence {k⇤t }. From the proof, we could also write down the optimal action
sequence that achieves the best reward: k⇤t = wt log

⇣
1 +

1
�wt

⌘
, where wt := ⌘|St�1|↵. Using

Lemma 3, we could compute the upper and lower bound estimation of � = g�1
(K). Here w̄ :=

T
⇣PT

t=1 w
�1
t

⌘�1
be the Harmonic mean of {wt} and wmax := max

T
t=1 wt:

w̄�1

exp(w̄�1K/T)� 1
 � w�1

max

exp(w�1
maxK/T)� 1

(31)

With �, we could compute approximate {k⇤t }. Here we make a rough estimation of {k⇤t } if we
terminate the algorithm when |ST | is still fairly large. This case corresponds to the setting T =

16

Under review as a conference paper at ICLR 2022

� log2 N where � < 1 and all wt ⇠ N↵. With K = ⇥(N↵
) as in semi-parametric case, w̄�1K =

⇥(1), exp(w̄�1K/T)� 1 ⇡ w̄�1K/T and �wt ⇠ log2 N � 1. Since log(1 + x) ⇡ x for small x,
we have k⇤t ⇡ wt

1
�wt

= 1/�, which is independent of t. Therefore, a constant amount of sampling at
each stage is approximately optimal.
Observation 1. If all fj are isotropic, fj(x) = kx� cjk22, then ⌦P = ConvexHull(c1, . . . , cM).

Proof. Consider J(x;µ) :=
PM

j=1 µjfj(x) where the weights µj � 0 satisfies
P

j µj = 1. For
brevity, we write the constraint as � := {µ : µj � 0,

P
j µj = 1}.

Now consider the Pareto Set ⌦P := {x : 9µ 2 � : rxJ(x;µ) = 0}. We have the following:

rxJ(x;µ) = 0 (32)

()
X

j

µjrxfj(x) = 0 (33)

()
X

j

µj(x� cj) = 0 (34)

() x =

P
j µjcjP
j µj

=

X

j

µjcj (35)

The last step is due to the fact that
P

j µj = 1. Therefore, for any x 2 ⌦P , x is a convex
combination of {c1, . . . , cM} and thus x 2 ConvexHull(c1, . . . , cM). Conversely, for any x 2
ConvexHull(c1, . . . , cM), we know rxJ(x;µ) = 0 and thus x 2 ⌦P .

Observation 2. If M = 2 and fj(x) = (x � cj)>Hj(x � cj) where Hj are positive definite
symmetric matrices, then there exists w1 := H2(c2 � c1) and w2 := H1(c1 � c2), so that for any
x 2 ⌦P , w>

1 (x� c1) � 0 and w>
2 (x� c2) � 0.

Proof. Following Observation 1, similarly we have for all x 2 ⌦P ,
P

j µjHj(x� cj) = 0, which
gives:

x =

0

@
X

j

µjHj

1

A
�1
X

j

µjHjcj (36)

Note that this is an expression of the Pareto Set ⌦P .

Let Aj := (
P

j µjHj)
�1µjHj . Then

P
j Aj = I . Note that while

P
j µjHj and (

P
j µjHj)

�1 are
positive definite matrix. Aj may not be.

Let M :=
P

i µiHi. Since µ 2 �, M is a PD matrix. Note that we have
X

j

µjHjcj =

X

j

µjHjcj �
X

j

µjHjck +

X

j

µjHjck (37)

=

X

j 6=k

µjHj(cj � ck) +Mck (38)

Using Eqn. 36, we know that x = M�1
P

j µjHjcj = ck +M�1
P

j 6=k µjHj(cj � ck).

For M = 2, we have x = c2 +M�1µ1H1(c1 � c2). So we have

(c1 � c2)
>H1x = (c1 � c2)

>H1c2 + (c1 � c2)
>H1M

�1H1(c1 � c2) (39)
� (c1 � c2)

>H1c2 (40)

This is because (c1 � c2)H1M�1H1(c1 � c2) � 0 since H1M�1H1 is a PSD matrix. Therefore,
let w2 := H1(c1 � c2) and we have w>

2 (x� c2) � 0, which is independent of µ 2 �. This means
it holds for any x 2 ⌦P .

Let w1 = H2(c2 � c1), then similarly we have w>
1 (x� c1) � 0 for all x 2 ⌦P .

17

Under review as a conference paper at ICLR 2022

B QUALITY INDICATORS COMPARISON

Table 1: The review of different scalarizing methods.

Quality Indicator Convergence Uniformity Spread No reference set required
HyperVolume

p p p p

GD
p

IGD
p p p

MS
p

S
p

ONVGR
p

Generational Distance(GD) (Van Veldhuizen & Lamont, 1998) measures the distance the pareto
frontier of approximation samples and true pareto frontier, which requires prior knowledge of true
pareto frontier and only convergence is considered. IGD (Bosman & Thierens, 2003) is improved
version of GD. IGD calculates the distance the points on true pareto frontier to the closest point on
pareto frontier of current samples. Inverted Generational Distance(IGD) satisfies all three evaluation
metrics of QI but requires true pareto frontier which is hardly to get in real-world problem. Maximum
Spread(MS) (Zitzler et al., 2000) computes the distance between the farthest two points of samples to
evaluate the spread. Spacing(S) (Bandyopadhyay et al., 2004) measures how close the distribution of
pareto frontier of samples is to uniform distribution. Overall Non-dominated Vector Generation and
Ratio(ONVGR) is the ratio of number of samples in true pareto-frontier. The table 1 demonstrates
the good characteristics of each quality indicators.

C END-TO-END LAMOO PSEUDOCODE

Below we list the pseudocode for the end-to-end workflow of LaMOO in Algorithm 2. Specfically,
it includes search space partition in Function Split. Node(promising region) selection in Function

Select, and new samples generation in Function Sample.

Algorithm 2 LaMOO Pseudocode.
1: Inputs: Initial D0 from uniform sampling, sample budget T .
2: for t = 0, . . . , T do

3: Set L {⌦root} (collections of regions to be split).
4: V, v, n Split(L, Dt)
5: k Select(Cp, Dt)
6: Dt+1 Sample(k)
7: end for

8:
9: Function Split(L, Dt)

10: while L 6= ; do

11: ⌦j pop_first_element(L), Dt,j Dt \ ⌦j , nt,j |Dt,j |.
12: Compute dominance number ot,j of Dt,j using Eqn. 5 and train SVM model h(·).
13: If (Dt,j , ot,j) is splittable by SVM, then L L [Partition(⌦j , h(·)).
14: end while

15:
16: Function Select(Cp, Dt)
17: for k = root, k is not leaf node do

18: Dt,k Dt \ ⌦k, vt,k HyperVolume(Dt,k), nt,k |Dt,k|.
19: k arg max

c 2 children(k)
UCBt,c, where UCBt,c := vt,c + 2Cp

q
2 log(nt,k

nt,c

20: end for

21: return k

22:
23: Function Sample(k)
24: Dt+1 Dt [Dnew, where Dnew is drawn from ⌦k based on qEHVI or CMA-ES.
25: return Dt [Dnew

18

Under review as a conference paper at ICLR 2022

D EXPLORATION FACTOR(Cp) SETUP WITH UNKNOWN MAXIMUM
HYPERVOLUME

(a) BraninCurrin (b) VehicleSafety (c) Nasbench201

Figure 9: Sampling with static Cp(10% of HVmax) and dynamic Cp((10% of HVcurrent))

As we mentioned in the paper, a "rule of thumb" is to set the Cp to be roughly 10% of the maximum
hypervolume HVmax. If HVmax is unknown, Cp can be dynamically set to 10% of the hypervolume
of current samples in each search iteration. The figures below demonstrate the difference between
10% HVmax and 10% current hypervolume in three problems(Branin-Currin, VehicleSafety, and
Nasbench201 from left to right). The final performances by using 10% HVmax and 10% current
hypervolume are similar.

E WALL CLOCK TIME IN DIFFERENT PROBLEMS

(a) BraninCurrin (b) VehicleSafety (c) Nasbench201

Figure 10: Wall clock time in different problems

Fig. 10 shows the wall clock time of different search algorithms in BraninCurrin(Belakaria et al.,
2019), VehicleSafefy (Liao et al., 2008) and Nasbench201 (Dong & Yang, 2020).

F DETAILS OF BENCHMARK PROBLEMS

F.1 PROBLEM DESCRIPTION

BraninCurrin (Belakaria et al., 2019):

f (1)
(x1, x2) = (15x2 �

5.1 ⇤ (15x1 � 5)
2

4⇡2
+

75x1 � 25

⇡
� 5)

2
+ (10� 10

8⇡
)) ⇤ cos(15x1 � 5))

f (2)
(x1, x2) =

1� exp

✓
� 1

(2x2)

◆�
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

19

Under review as a conference paper at ICLR 2022

where x1, x2 2 [0, 1].

VehicleSafefy (Liao et al., 2008):

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3 + 7.7213633x4 + 4.4559504x5

f2(x) = 6.5856 + 1.15x1 � 1.0427x2 + 0.9738x3 + 0.8364x4 � 0.3695x1x4 + 0.0861x1x5

+ 0.3628x2x4 + 0.1106x2
1 � 0.3437x2

3 + 0.1764x2
4

f3(x) = �0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 � 0.0073x1x2 + 0.024x2x3 � 0.0118x2x4

� 0.0204x3x4 � 0.008x3x5 � 0.0241x2
2 + 0.0109x2

4

where x 2 [1, 3]5.

Nasbench201 (Dong & Yang, 2020):

0 1

2

3

zeroize

skip-connect

1x1 convolution
3x3 convolution

3x3 average pool

Figure 11: A general architecture of Nasbench201

In Nasbench201, the architectures are made by stacking the cells together. The difference among
architectures in Nasbench201 is the design of the cells, see fig 11. Specifically, each cell contains 4
nodes, and there is a particular operation connecting to two nodes including zeroize, skip-connect,
1x1 convolution, 3x3 convolution, and 3x3 average pooling. Therefore, there are C2

4 = 6 edges in
a cell and 5

6 =15625 unique architectures in Nasbench201. According to this background, Each
architecture can be encoded into a 6-dimensional vector with 5 discrete numbers (i.e., 0, 1, 2, 3, 4 that
corresponds to zeroize, skip-connect, 1x1 convolution, 3x3 convolution, and 3x3 average pooling).

f1(x) = Accuracy(x)

f2(x) = #FLOPs(x)

where x 2 {0, 1, 2, 3, 4}6.

DTLZ2 (Deb et al., 2002b):

f1(x) = (1 + g(xM)) cos
�⇡
2
x1

�
· · · cos

�⇡
2
xM�2

�
cos
�⇡
2
xM�1

�

f2(x) = (1 + g(xM)) cos
�⇡
2
x1

�
· · · cos

�⇡
2
xM�2

�
sin
�⇡
2
xM�1

�

f3(x) = (1 + g(xM)) cos
�⇡
2
x1

�
· · · sin

�⇡
2
xM�2

�

...

fM (x) = (1 + g(xM)) sin
�⇡
2
x1

�

where g(x) =
P

xi2xM
(xi � 0.5)2,x 2 [0, 1]d, and xM represents the last d�M + 1 elements of

x.

20

Under review as a conference paper at ICLR 2022

F.2 VISUALIZATION OF PARETO-FRONTIER FOR BENCHMARK PROBLEMS

(a) BraninCurrin (b) VehicleSafety (c) Nasbench201

Figure 12: Visualization of Pareto-frontier in BraninCurrin, VehicleSafety as well as Nasbench201.

F.3 REFERENCE POINTS

†: M represents the number of objectives.
Problem Reference Point

BraninCurrin (18.0, 6.0)

VehicleSafety (1864.72022, 11.81993945, 0.2903999384)

Nasbench201 (-3.0, -6.0)

DTLZ2 (1.1, .., 1.1) 2 RM†

Molucule Discovery (0.0, ..., 0.0) 2 RM†

Table 2: The reference points for all problems in this work.

Table 2 elaborates the reference points in the problems throughout the paper.

F.4 MAXIMUM HYPERVOLUME OF EACH PROBLEM

Problem Maximum Hypervolume

BraninCurrin 59.36011874867746

VehicleSafety 246.81607081187002

Nasbench201 8.06987476348877

DTLZ2(2 objectives) 1.4460165933151778

DTLZ2(10 objectives) 2.5912520655298095

Molucule Discovery N/A

Table 3: The maximum hypervolume for all problems in this work.

Table 3 elaborates the observed maximal hypervolume in the problems throughout the paper. We
used these value to calculate the log hypervolume difference in fig 3 and fig 4.

21

Under review as a conference paper at ICLR 2022

G EXPERIMENTS SETUP

Experiment details: For small-scale problems(i.e. Branin-Currin, VehicleSafety, and Nasbench201)
and DTLZ2 with 2 and 10 objectives. We randomly generate 10 samples as the initialization. For
multi-objective molecule discovery, the number of initial samples is 150. In each iteration, we update
5 batched samples(q value) for all search algorithms.

Hyperparameters of LAMOO: For all problems, we leverage polynomials as the kernel type of SVM
and the degree of the polynomial kernel function is set to 4. The minimum samples in the leaf
of MCTS is 10. The cp is roughly set to 10% of maximum of hypervolume(i.e. Branin-Currin ->
5, VehicleSafety -> 20, Nasbench201 -> 6, DTLZ2(2 objectives) -> 0.1, DTLZ2(10 objectives) ->
0.25, molecule discovery(2 objectives) -> 0.03, molecule discovery(3 objectives) -> 0.2, molecule
discovery(4 objectives) -> 0.06).

Hyperparameters of qEHVI and qParEGO: The number of q is set to 5. The acquisition function is
optimized with L-BFGS-B (with a maximum of 200 iterations). In each iteration, 256 raw samples
used for the initialization heuristic are generated to be selected by the acquisition function. As the
same claim in Daulton et al. (2020), each generated sample is modeled with an independent Gaussian
process with a Matern 5/2 ARD kernel.

H VERIFICATION OF LAMOO ON MANY-OBJECTIVE PROBLEMS

Figure 13: Dominance number distribution with 50 random samples on DTLZ2(10 objectives)

Figure 14: The range of hypervolume for 50 samples randomly generated from different regions in DTLZ2(10
objectives). We generate 25 times of 50 samples in total.

While it is theoretically hard to label the samples into good and bad based on their dominance number
in many-objective problems due the the lack of dominance pressure(All samples are non-dominated
with each other). If number of objective is not too large(i.e. 10), the samples can be still split by
dominance number. Given the problem(DTLZ2 with 10 objectives) shown in fig 4, we randomly
generate 50 samples in the search space and draw the dominance distribution of them(see fig 13). We
did this experiment 5 times.

We then partition the search space by a SVM classifier based on the labeled samples into “good”
and “bad”, and randomly generate 50 samples in “good region”, “bad region”, and whole space,

22

Under review as a conference paper at ICLR 2022

respectively. We did this process 5 times with different initial samples. Fig. 14 shows the range of
hypervolume of the samples generated from good regions, the whole space, and bad regions. From
the figure, we can see that the hypervolume of samples generated from good regions are significantly
higher than others.

I COMPUTATIONAL COMPLEXITY ANALYSIS OF LAMOO

Here is a detailed breakdown of the computational complexity of our algorithm (Alg. 1)

Line.6: Compute dominance: O(DNnode
2
) where Nnode is the number of samples in the node and

D is the number of dimensions.

Line 7: Time complexity of SVM : O(N2
) where Nnode is number of searched samples in total.

Line 10: Hypervolume: O(N
D
2 +N logN)(D > 3) (Beume & Rudolph, 2006) or O(N logN)(D

3) (Beume et al., 2009), where N is number of searched samples in total and D is the number of
dimensions.

HV computation is to be the dominating factor in case of D > 3, otherwise, it should be the
computation of SVM.

J VARIATION OF LAMOO WITH A CHEAPER OVERHEAD

Algorithm 3 LaMOO Pseudocode with leaf based selection.
1: Inputs: Initial D0 from uniform sampling, sample budget T .
2: for t = 0, . . . , T do

3: Set L {⌦root} (collections of regions to be split).
4: while L 6= ; do

5: ⌦j pop_first_element(L), Dt,j Dt \ ⌦j , nt,j |Dt,j |.
6: Compute dominance number ot,j of Dt,j using Eqn. 5 and train SVM model h(·).
7: If (Dt,j , ot,j) is splittable by SVM, then L L [Partition(⌦j , h(·)).
8: end while

9: for k = root, k is not leaf node do

10: Dt,k Dt \ ⌦k, nt,k |Dt,k|.
11: end for

12: for l is leaf node do

13: vt,l HyperVolume(Dt,l)

14: end for

15: k arg max
l 2 leaf nodes

UCBt,l, where UCBt,l := vt,l + 2Cp

q
2 log(nt,l)

nt,p
, where p is the parent of l.

16: Dt+1 Dt [Dnew, where Dnew is drawn from ⌦k based on qEHVI or CMA-ES.
17: end for

(a) BraninCurrin (b) VehicleSafety (c) Nasbench201

Figure 15: Search progress with sample

23

Under review as a conference paper at ICLR 2022

(a) BraninCurrin (b) VehicleSafety (c) Nasbench201

Figure 16: Search progress with time

Instead of traversing down the search tree to trace the current most promising search path, this
variation of LaMOO directly select the leaf node with the highest UCB value. Algorithm. 3 illustrates
the detail of this variation. Therefore, this variation avoids calculating the hypervolume in the
non-leaf nodes of the tree, where hypervolume calculation is the main computational cost of LaMOO
especially in many-objective problems. Figure. 15 and figure. 16 validate the variation that is able
to reach similar performance of searched samples but saves lots of time. We leave the validation of
others problems in the future works.

24

