
A Proofs
Proof of Theorem 3.1. From the definition of Q-function, we have

|Q
⇡(s, a)�Q

⇡(s0, a)|  |r(s, a)� r(s0, a)|

+ �|
P

s12S P(s1|s, a)V ⇡(s1)�
P

s12S P(s1|s0, a)V ⇡(s1)|

 Lr ks� s
0
k+ �LP

1��
ks� s

0
k ,

where the last inequality also uses the fact that kV ⇡
k1 

1
1��

.

From the relation of Q⇡ and V
⇡ , we have

|V
⇡(s)� V

⇡(s0)|

=|hQ
⇡(s, ·),⇡(·|s)i � hQ

⇡(s0, ·),⇡(·|s0)i|

=|hQ
⇡(s, ·),⇡(·|s)� ⇡(·|s0)i+ hQ

⇡(s, ·)�Q
⇡(s0, ·),⇡(·|s0)i|

|hQ
⇡(s, ·),⇡(·|s)� ⇡(·|s0)i|+ |hQ

⇡(s, ·)�Q
⇡(s0, ·),⇡(·|s0)i|


L⇡
1��

ks� s
0
k+ LQ ks� s

0
k .

Proof of Theorem 3.2. Let Q⇤
2 R|S|⇥|A| denotes the optimal state-action value function. Let ⇡⇤

denote any optimal policy. From the Bellman optimality condition, it is clear that

sup(⇡(·|s)) ✓ Argmaxa2AQ
⇤(s, a). (6)

From the performance difference lemma, we obtain that for any policy ⇡, the optimality gap of ⇡ can
be bounded by

0  V
⇡
⇤
(s)� V

⇡(s) = �

⇣
V

⇡(s)� V
⇡
⇤
(s)

⌘

= �Es0⇠d⇡
s

h
hQ

⇡
⇤
(s0, ·),⇡(·|s0)� ⇡

⇤(·|s)i
i

= Es0⇠d⇡
s

h
hQ

⇡
⇤
(s0, ·),⇡⇤(·|s0)� ⇡(·|s0)i

i

 sup
s2S

hQ
⇡
⇤
(s, ·),⇡⇤(·|s)� ⇡(·|s)i

where the last inquality uses (6), which implies that inner product is non-negative for every s 2 S .

Now consider the special policy

⇡⌘(·|s) = Softmax(⌘Q⇤(s, ·)),

where operator Softmax : R|A|
! R|A| is defined as [Softmax(x)]

i
= exp(xi)/

P
j
exp(xj).

For any ✏ > 0, let us define

A✏ =

⇢
a 2 A : Q

⇤(s, a)  max
a02A

Q
⇤(s, a0)� ✏

�
.

Consequently, we have

hQ
⇡
⇤
(s, ·),⇡⇤(·|s)� ⇡⌘(·|s)i 

✏

1��
+
P

a2A✏
⇡⌘(a|s).

It then suffices to set ⌘ properly to control the second term above. Specifically, we have

P
a2A✏

⇡⌘(a|s) 

P
a2A✏

exp(�⌘✏)
1+|Ac

✏| exp(�⌘✏)  |A
c
✏
| exp(�⌘✏),

By setting ⌘ = log|A|/✏, we immediately obtain that
P

a2A✏
⇡⌘(a|s)  ✏, and hence

hQ
⇡
⇤
(s, ·),⇡⇤(·|s)� ⇡⌘(·|s)i 

✏

1��
+
P

a2A✏
⇡⌘(a|s) 

2✏
1��

, 8s 2 S.

Hence, we obtain that V ⇡
⇤
(s)� V

⇡(s)  2✏
1��

, 8s 2 S.

14

It remains to show that ⇡⌘(·|s) with the ⌘ = log|A|/✏ is indeed Lipschitz continuous with respect to
state s. To this end, let us denote the Jacobian matrix of Softmax at point x as Jx. Simple calculation
yields that

[Jx]i,i =
exp(xi)

P
j 6=i

exp(xj)

(
P

j
exp(xj))2

,

[Jx]i,j = �
exp(xi) exp(xj)

(
P

j
exp(xj))2

.

From the intermediate value theorem, we obtain that kSoftmax(x)� Softmax(y)k1 

kJzk1 kx� yk1 , for z = ↵x + (1 � ↵)y and ↵ 2 [0, 1]. Since it is clear that kJzk1  1 ,
we conclude that

k⇡⌘(·|s)� ⇡⌘(·|s
0)k1  ⌘ kQ

⇤(s, ·)�Q
⇤(s0, ·)k1

(a)
 ⌘LQ|A| ks� s

0
k  |A| log|A|LQ ks� s

0
k /✏,

where inequality (a) applies Theorem 3.1.

Proof of Theorem 3.3. We first recall that for any stationary policy ⇡, the value function V
⇡ at any

state s admits the following description,
V

⇡(s) = E [
P1

t=0 �
t
r(st, at)|s0 = s]

=
P

s2S,a2A
P1

t=0 �
tP⇡(st = s, at = a|s0 = s)r(s, a)

=
P

s2S,a2A
P1

t=0 �
tP⇡(st = s|s0 = s)⇡(a|s)r(s, a). (7)

Similarly, given the definition of V e⇡ for the non-stationary policy, we know that

V
e⇡(s) =

P
s2S,a2A

P1
t=0 �

tPe⇡(st = s|s0 = s)e⇡(a|s)r(s, a). (8)

By definition, we have the following observations,

Pe⇡,t := Pe⇡(st = ·|s0 = s) =
t�1Y

i=0

Pe⇡
i
e(s), P⇡,t := P⇡(st = ·|s0 = s) = (P⇡)t e(s),

where Pe⇡
i
(s0, s) :=

P
a2A e⇡i(a|s)P(s0|s, a), and P⇡

i
(s0, s) :=

P
a2A ⇡i(a|s)P(s0|s, a), and e(s) 2

R|S| denotes the one-hot vector with non-zero entry corresponding to the state s . Hence
���Pe⇡,t

� P⇡,t

���
1

=

�����

t�1Y

i=0

Pe⇡
i
e(s)� (P⇡)t e(s)

�����
1



�����

t�1Y

i=0

Pe⇡
i
� (P⇡)t

�����
1



�����

t�1Y

i=0

Pe⇡
i
� P⇡

t�1Y

i=1

Pe⇡
i
+ P⇡

t�1Y

i=1

Pe⇡
i
� (P⇡)2

t�1Y

i=2

Pe⇡
i
+ · · ·+ (P⇡)t�1 Pe⇡

t�1 � (P⇡)t
�����
1



�����

t�1Y

i=0

Pe⇡
i
� P⇡

t�1Y

i=1

Pe⇡
i

�����
1

+

�����P
⇡

t�1Y

i=1

Pe⇡
i
� (P⇡)2

t�1Y

i=2

Pe⇡
i

�����
1

+ · · ·+
���(P⇡)t�1 Pe⇡

t�1 � (P⇡)t
���
1

(9)

To handle each term above, we make use of the following lemma.

Lemma A.1. For any P,Q 2 Rd that are left stochastic matrices, and any matrix � of the same
dimension, we have

kP�Qk1  k�k1 .

Proof. Note that k·k1 is an induced norm and hence is sub-multiplicative. In addition, we have
kPk1 = kQk1 = 1 since they are left stochastic matrices. We have

kP�Qk1  kP�k1  k�k1 .

15

Now for the k-th term in inequality (9), it can be rewritten and bounded as
�����(P

⇡)k�1
⇣
Pe⇡
k
� P⇡

⌘ t�1Y

i=k+1

Pe⇡
i

�����
1

(a)


���Pe⇡
k
� P⇡

���
1

(b)
 L⇡✏.

where the inequality (a) follows from Lemma A.1; and (b) use the following fact
P

s02S |Pe⇡
k
(s0, s)� P⇡(s0, s)| =

P
s02S |

P
a2A (e⇡k(a|s)� ⇡(a|s))P(s0|s, a)|


P

a2A|e⇡k(a|s)� ⇡(a|s)|
P

s02S P(s0|s, a)
= ke⇡k(·|s)� ⇡(·|s)k1  L⇡✏,

together with the definition of matrix k·k1-norm. Thus we obtain
���Pe⇡,t

� P⇡,t

���
1
 tL⇡✏. (10)

Given (10), we can further obtain that
|
P1

t=0 �
t
P

s2S P⇡(st = s|s0 = s)
P

a2A ⇡(a|s)r(s, a)� (11)
P1

t=0 �
t
P

s2S Pe⇡(st = s|s0 = s)
P

a2A ⇡(a|s)r(s, a)|


P1

t=0 �
t
��P⇡,t

� Pe⇡,t
��
1


P1

t=0 �
t
· tL⇡✏ 

L⇡✏

(1��)2 . (12)

In addition, it is also clear that
|
P1

t=0 �
t
P

s2S
P

a2A Pe⇡(st = s|s0 = s)(⇡(a|s)� e⇡t(a|s))r(s, a)| 
L⇡✏

1��
. (13)

Hence by combining (7), (8), (12) and (13), we conclude that

|V
⇡(s)� V

e⇡(s)| 
2L⇡✏

(1� �)2
.

From the relation between Q
⇡ and V

⇡ , and the above inequality, we have

|Q
⇡(s, a)�Q

e⇡(s, a)| = �
P

s02S P(s0|s, a)|V ⇡(s0)� V
e⇡(s0)|  2L⇡✏

(1��)2 .

Theorem A.1 (Function approximation with Lipschitz continuity). Suppose that the target function
f
⇤ satisfies

f
⇤
2 W

↵,1 (⌦) and kf
⇤
kW↵,1(⌦)  1

for some ↵ � 2. Given a pre-specified approximation error ✏ 2 (0, 1/
p
d], there exists a neural

network model ef 2 F(L, p) with L = eO(log(1/✏)) and p = eO(✏�
d

↵�1), such that

k ef � f
⇤
k1  ✏ and k efkLip  1 +

p

d✏,

where eO hides some negligible constants or log factors.

Proof. Theorem A.1 can be proved based on [48], where under the same condition, they show
��� ef � f

���
W 1,1(⌦)

 ✏.

Since f
⇤
2 W

↵,1 and kf
⇤
kW↵,1(⌦)  1, we have

krf
⇤
k2  1 and

���r ef �rf
⇤
���
1

 ✏,

Note that though ef is using a ReLU activation, rf is well-defined except a measure zero set.
Eventually, we obtain

k efkLip  sup
⌦

���r ef
���
2
 sup

⌦

���rf
⇤ +r ef �rf

⇤
���
2
 sup

⌦
krf

⇤
k2 +

p

d

���r ef �rf
⇤
���
1

 1 +
p

d✏  2.

16

B Wide Networks
Section 3 tells us that smooth and close to optimal policies exist under certain conditions and ERNIE
provides algorithms to find them. Now, a practical question remains: can neural networks be used
to learn such policies? We show that as long as the width is sufficiently large, there exists a neural
network with the desired optimality and smoothness properties. This finding further supports ERNIE’s
deployment as a tool for practical deep MARL.

Before we continue with further analysis, we will first introduce some necessary preliminaries.
Specifically, we consider the Sobolev space, which contains a class of smooth functions [49].
Definition B.1. Given ↵ � 0 and domain ⌦ ⇢ Rd, we define the Sobolev space W

↵,1(⌦) as

W
↵,1(⌦) =

�
f 2 L

1(⌦) : D↵
f 2 L

1(⌦), 8 |↵|  ↵

,

where D
↵
f = @

|↵|
f

@x
↵1
1 ···@x↵D

D

with multi-index ↵ = [↵1, ...,↵D]> 2 ND.

For f 2 W
↵,1(⌦), we define its Sobolev norm as

kfkW↵,1(⌦) = max|↵|↵ kD
↵
fkL1(⌦)

The Sobolev space has been widely investigated in the existing literature on function approximation
of neural networks. For a special case ↵ = 1, kfkW 1,1 < 1 implies both the function value and its
gradient are bounded.

We consider an L-layer ReLU neural network
f(x) = WL · �(· · ·�(W1s+ b1) · · ·) + bL, (14)

where W1, . . . ,WL and b1, . . . , bL are weight matrices and intercept vectors of proper sizes, respec-
tively, and �(·) = max{·, 0} denotes the entry-wise ReLU activation. We denote F as a class of
neural networks:

F(L, p) =
�
f | f(x) in the form (14) with L-layers

and width bounded by p}. (15)

We next present the function approximation results.
Theorem B.1 (Function approximation with Lipschitz continuity). Suppose that the target function
f
⇤ satisfies

f
⇤
2 W

↵,1 (⌦) and kf
⇤
kW↵,1(⌦)  1

for some ↵ � 2. Given a pre-specified approximation error ✏, there exists a neural network
ef 2 F(L, p) with L = eO(log(✏�1)) and p = eO(✏�

d
↵�1), such that

k ef � f
⇤
k1  ✏ and k efkLip  1 +

p

d✏
1�1/↵

,

where eO hides some negligible constants or log factors and k efkLip denotes the Lipschitz constant of
ef .

For reinforcement learning, f⇤ in Theorem B.1 can be viewed as either the near-optimal smooth
policy ⇡

⇤ or optimal smooth action-value function Q
⇤, and the input can be viewed as the state s or

the state-action pair (s, a). As can be seen, a wider neural network not only better approximates a
smooth target function f

⇤ well, but also further reduces the upper bound of its Lipschitz constant,
which leads to a more robust policy. Moreover, we can certify the existence of a neural network ef
such that k efkLip is below 2, given a sufficient width p = eO

⇣
d

d↵
2(↵�1)2

⌘
. This result indicates that

when training policies with the ERNIE algorithm, we should use wide neural networks.

C ERNIE for Mean-Field MARL
As mentioned in 4.4, to learn robust policies we aim to use the regularizer

R
Q

W(s; ✓) = max
W(d0

s,ds)✏

X

a2A
kQ✓(s, d

0
s
, a)�Q✓(s, ds, a)k

2
2 .

17

However, this optimization problem is difficult to optimize due to the explicit Wasserstein distance
constraint. To avoid this computational difficulty, we instead solve the regularized problem

R
Q

W(s; ✓) = max
P

a2A kQ✓(s, d0s, a)�Q✓(s, ds, a)k
2
2 � �WW(d0

s
, ds).

The Wasserstein distance term can be computed using IPOT methods with little added computational
cost, and we can therefore use this regularizer in a similar manner to the original ERNIE regularizer
[50].

D Traffic Light Control Implementation Details
In our experiments we train four agents in a two by two grid. The length of each road segment is 400
meters and cars enter through each in-flowing lane at a rate of 700 car/hour. The control frequency is
1 Hz, i.e. we need to input an action every second. The reward is based on the following attributes for
each agent n:

• q
n: The sum of queue length in all incoming lanes.

• wt
n: Sum of vehicle waiting time in all incoming lanes.

• dl
n: The sum of the delay of all vehicles in the incoming lanes.

• em
n: The number of emergency stops by vehicles in all incoming lanes.

• fl
n: A Boolean variable indicating whether or not the light phase changed.

• vl
n: The number of vehicles that passed through the intersection.

We can then define the individual reward as

R
n = �0.5qn � 0.5wtn � 0.5dln � 0.25emn

� fl
n + vl

n
.

All algorithms have the same training strategy. Each agent is trained for five episodes with 3000
SUMO time steps each. At the beginning of training the agent makes random decisions to populate
the road network before training begins. Each algorithm is evaluated for 5000 time steps, where the
first 1000 seconds are used to randomly populate the road. For adversarial regularization, we use the
`2 norm to bound the attacks �.

D.1 Evaluation Traffic Flows
The traffic flows used to evaluate the MARL policies in a different environment are shown in table 1.
In each flow the total number of cars is similar to the number of cars in the training environment.

D.2 Details on Changes to Network Topology
In addition to evaluating traffic light control MARL algorithms when the traffic pattern/speed changes,
we also evaluate said MARL algorithms when the traffic network topology slightly changes. We
consider two changes to the traffic topology: we slightly change the length of road segments and we
evaluate the agents in a larger grid.

To test performance on a larger grid, we evaluate the trained agents on a four by four and six by six
traffic light network. Because we only train four agents, we duplicate the trained agents in order to
fill out the grid. In the four by four case, we will have four sets of the originally trained four agents,
arranged to cover each of the four two by two grids. This setting is especially relevant to the real
world deployment of MARL-controlled traffic lights as directly training on a large network may be
computationally infeasible.

D.3 Computing resources
Experiments were run on Intel Xeon 6154 CPUs and Tesla V100 GPUs.

D.4 Training Details
Both the actor and critic functions are parametrized by a three-layer multi-layer perceptron with 256
nodes per hidden layer. We use the ADAM optimizer [51] to update parameters and use a grid search
to find �Q and �⇡ .

18

Table 1: Evaluation Traffic Flows
Flow Number Traffic Flow

1 [1000, 1000, 80, 80, 800, 800, 550, 550]
2 [1000, 1000, 20, 20, 700, 300, 900, 900]
3 [700, 700, 70, 700, 1400, 600, 80, 80]
4 [1000, 1200, 200, 200, 300, 300, 900, 900]
5 [300, 300, 900, 900, 700, 900, 10, 10]

(a) Environment Image (b) Agent 1 Robustness (c) Agent 2 Robustness

Figure 6: Evaluation of ERNIE in the multi-agent drone environment (see Figure 3a). The baseline
algorithm we use is MAPPO. We then perturb the observation of each of the two agents with Gaussian
noise to evaluate robustness (see Figure 3b-c). The task is follow the leader, where the agents have to
navigate while remaining close to each other.

E Additional Results
In this section we include results that we could not fit in the main paper due to limited space. In
particular, we show an evaluation of COMA’s robustness with the ERNIE framework and some
additional environment changes.

E.1 Multi-Agent Drone Control
To evaluate the performance of ERNIE in multi-agent robotics environments, we use the multi-agent
drone environment [52]. We find that ERNIE can indeed provide enhanced robustness against input
perturbations. The results can be found in Figure 6.

E.2 ERNIE for COMA (Traffic Light Control)
We apply ERNIE to improve the robustness COMA for traffic light control. Figure 7 shows the
performance of COMA with and without ERNIE on various environment changes. From Figure 7 we
can see that the ERNIE and ERNIE w/o ST frameworks are able to outperform the baseline in all of
the perturbed environments, indicating increased robustness. From table 2, we can again see that the
ERNIE framework provides increased robustness to every environment change. Interestingly, ERNIE
outperforms ERNIE w/0 ST in the training environment and in the setting with small amounts of
observation noise (see Figure 7), suggesting that the Stackelberg formulation allows for a better fit to
the lightly perturbed data than conventional adversarial training does.

Table 2: Evaluation rewards and standard deviation for the traffic light control task under different
environment perturbations. The baseline algorithm is COMA.

Algorithm Train Obs. Noise (0.1) Obs. Noise (1.0) Speed (30 m/s)

ERNIE �78.39(3.12) �86.37(7.1) �102.45(3.45) �91.73(6.84)
ERNIE w/o ST �83.07(3.52) �84.66(6.15) �101.37(3.05) �91.69(8.82)

Baseline �93.97(7.34) �108.05(8.68) �113.24(5.82) �108.45(3.98)

E.3 Additional Results on Changed Networks
In addition to evaluating the performance of ERNIE and the baseline algorithms on the 4⇥ 4 network,
we evaluate the performance of these algorithms on a 6⇥ 6 network. The results shown in table 3

19

(a) Different Speed (40 m/s) (b) Gaussian Noise (0.01)

(c) Different Traffic Flow (Flow-3) (d) Irregular Grid Topology (COMA)

(e) Larger Grid Topology (COMA)

Figure 7: Evaluation curves from COMA on different environment changes for traffic light control.

shows that ERNIE and ERNIE-S again outperform the baseline algorithm in the changed environment,
indicating increased robustness.

Table 3: Evaluation rewards and standard deviations on larger networks.
Algorithm 4 ⇥ 4 6 ⇥ 6

Baseline (QCOMBO) �401.64(22.25) �320.66(40.80)
ERNIE w/o ST �221.24(13.88) �213.20(14.04)

ERNIE �217.21(8.36) �152.60(3.91)
Baseline (COMA) �384.17 �330.55(5.70)

ERNIE �394.14(1.29) �337.25(3.86)
ERNIE w/o ST �369.40(6.04) �319.16(3.95)

We also evaluate the performance of ERNIE in another irregular traffic network from Atlanta. This
grid can be see in Figure 8, and the performance of ERNIE and the baselines can be seen in table 4.
As with the other environment changes, we can see that the ERNIE framework exhibits increased
robustness over the baseline algorithms.

20

Figure 8: Irregular 2⇥ 2 traffic network from Atlanta.

Table 4: Evaluation rewards and standard deviation on irregular networks
Algorithm Atlanta

Baseline (QCOMBO) �435.69(27.09)
ERNIE w/o ST �339.48(28.98)

ERNIE �285.84(28.44)
Baseline (COMA) �477.54(4.41)

ERNIE w/o ST �402.12(5.67)
ERNIE �432.87(5.43)

E.4 Additional Ablation Experiments
To further verify the effectiveness of the Stackelberg reformulation of adversarial regularization,
we compare the performance of ERNIE with and without ST (Stackleberg Training) in the particle
environments. The results are shown in Figure 9, where we can see that the Stackelberg formulation
performs better or equivalently to normal adversarial regularization in all settings.

(a) Covert Comm. (b) Tag (c) Navigation (d) Predator Prey

Figure 9: Ablation study comparing ERNIE with and without Stackelberg Training (ST).

E.5 Time Comparison
In the cooperative navigation environment with 3 agents, we find that the baseline MADDPG takes
1.127 seconds for 50 episodes, ERNIE takes 1.829 seconds, and M3DDPG takes 3.250 seconds.
Although ERNIE is more expensive than vanilla training, it is significantly more efficient than
competitive baselines.

F Baseline Algorithms
In this section we describe the baseline algorithms in detail.

F.1 QCOMBO
QCOMBO [45] is a Q-learning based MARL algorithm that couples independent and centralized
learning with a novel regularization method. QCOMBO consists of three components, an individual
part, a global part, and a consistency regularization. The individual part consists of Q-learning for
each agent

L(✓) =
1

N

NX

n=1

E

1

2
(yn

t
�Q

n(on
t
, a

n

t
; ✓n))2

�
,

21

where y
n
t
= r

n
t
+ � maxban Q

n(on
t+1,ban; ✓n), 8n 2 [N], and ✓ = [✓1, . . . , ✓n] denotes the concate-

nation of local parameters.

The global part consists of a global Q-network that learns a global Q function. We parameterize the
global Q-function by !, and minimize the approximate Bellman residual

L(!) = E
⇥1
2
(yt �Q(st,at;!))

2
⇤
, (16)

where yt = r
g

t
+ �Q(st+1,a0t;!) and a0

t
= (at1, . . . , a

t

N
), at

n
2 argmaxban2An Q

n(on
t+1,ban; ✓n).

Finally a consistency regularization

Lreg(!, ✓) = E
⇥1
2
(Q(s,a;!)�

NX

n=1

Q
n(on, an; ✓n))2

⇤

ensures that global and individual utility functions are similar, to encourage cooperation. The
complete QCOMBO loss is then given by

LQC(!, ✓) = L(!) + L(✓) + �QLreg(!, ✓).

Here �Q is a hyperparameter that can be tuned. In execution decisions are made with the individual
utility functions, {Qn

}
N
n=1. In practice we apply ERNIE to the individual Q-functions Qn.

F.2 MADDPG
MADDPG is a multi-agent version of Deep Deterministic Policy Gradient (DDPG). DDPG uses
the actor-critic architecture where a state-action value function Q� is used to update a deterministic
policy µ✓. The state-action value function is updated to minimize the squared bellman loss

L(�) = Est⇠⇢[(Q�(st, at)� yt)
2]

where yt = rt + Q
0(st+1, µ

0
✓
(st+1)) and Q

0
�
(·), µ0

✓
(·) are target networks. The policy function is

updated with the policy gradient taking the form

Est⇠⇢

⇥
rQ�(st, at)|at=µ✓(st)rµ✓(st)

⇤
.

The target networks are gradually updated throughout training to track the actor and critic networks.

MADDPG extends DDPG to the multi-agent setting with the paradigm of centralized training with
decentralized execution. In particular, MADDPG employs a centralized state-action value function
Q� and independent actor functions {µ✓1 , ..., µ✓N }. Denoting at as the joint action of the agents at
time t, the state-action value function is updated to minimize the squared bellman loss

L(�) = Est⇠⇢[(Q�(st,at)� yt)
2]

where yt = rt + Q
0(st+1, µ

0
✓1
(o1,t+1), ..., µ0

✓N
(oN,t+1)) and Q

0
�
(·), µ0

✓1
(·), ..., µ0

✓N
(·) are target

networks. Each policy function µ✓i is updated with the policy gradient

Es⇠⇢

⇥
rQ�(s,a)|a=µ✓1 (o1),...,µ✓N

(oN)rµ✓i(oi)
⇤
.

where ⇢ is the state visitation distribution. Note that the state-action value function is only used
during training and that actions are only taken with the decentralized policy functions. In practice we
apply ERNIE to the individual policies µ✓.

F.3 COMA
COMA is a policy gradient algorithm that directly seeks to minimize the negative cumulative reward
LNCR by learning {⇡n}

N
n=1 parametrized by ✓ = {✓n}

N

n=1 with the actor-critic training paradigm.
Specifically, COMA updates local policies (actors) with policy gradient

rLNCR(✓) = E⇡

⇥ NX

n=1

r✓log ⇡
n(an|on)An(s,a)

⇤
, (17)

where A
n(s,a) is the counterfactual baseline given by A

n(s,a) = Q(s,a) �P
ean ⇡

n(ean|on)Q(s, (a�n
,ean)). The critic parametrized by ✓

c is with trained with
L(✓c) = E⇡

⇥
1
2 (yt � Q✓c(st,at))2

⇤
, where y

n
t

is the target value defined in TD(�) [53]. In
execution decisions are made with the individual policy functions {⇡n

}
N
n=1. In practice we apply

ERNIE to the individual policies ⇡n.

22

G Particle Environments Implementation Details
For the particle environments task, we follow the implementation of maddpg-pytorch. For each task
we parametrize the policy function with a three layer neural network, with 64 units hidden units.
We then train for 25000 epochs (covert communication) 15000 epochs (cooperative navigation and
predator prey), or 5000 epochs (tag). As we are considering the cooperative setting, we only apply
ERNIE to the cooperating agents. The reward in the perturbed environments is that of the cooperative
agents (note that we do not perturb the observations of the opposition agent). For adversarial
regularization, we use the `2 norm to bound the attacks �. We use SGD to update parameters and use
a grid search to find and �⇡ .

G.1 Mean-Field Implementation
For our mean-field implementation, we use the implementation of Li et al. [40]. For N = 3, 30
agents we use a batch size of 32. For N = 6, 15, we use a batch size of 100. We train for 10000
episodes, and use a replay buffer of size 100. All other configurations should be the same as used in
Li et al. [40].

G.2 M3DDPG Implementation
We implement our own version of M3DDPG in PyTorch [54], as the original implementation uses
Tensorflow [55]. In each setting, we tune the attack steps size ✏ 2 [1e� 5, 1e� 2].

H ERNIE-A
We show our algorithm for solving (5). Note that a0 [ai,j refers to the joint action a where the action
of agent i is changed to j.

I Gaussian Baseline
The baseline-Gaussian is similar to ERNIE. However, instead of generating � as

� = argmax
||�||✏

D(⇡✓k(ok + �),⇡✓k(ok)),

� is sampled from the standard normal N (0, I). Similar to ERNIE, this baseline will ensure the
policy does not change to much given Gaussian input perturbations. This baseline therefore performs
well in several environments, especially those with Gaussian observation noise. However, robustness
against Gaussian noise does not ensure robustness against all noise, and the Gaussian baseline may
therefore fail in some perturbed environments.

23

https://github.com/shariqiqbal2810/maddpg-pytorch

	Introduction
	Background
	From Lipschitz Continuity to Robustness
	Method
	Learning Robust Policy with ERNIE
	Stackelbeg Training with Differentiable Adversary
	Robustness against Malicious Actions
	Extension to Mean-field MARL

	Experiments
	Discussion
	Proofs
	Wide Networks
	ERNIE for Mean-Field MARL
	Traffic Light Control Implementation Details
	Evaluation Traffic Flows
	Details on Changes to Network Topology
	Computing resources
	Training Details

	Additional Results
	Multi-Agent Drone Control
	ERNIE for COMA (Traffic Light Control)
	Additional Results on Changed Networks
	Additional Ablation Experiments
	Time Comparison

	Baseline Algorithms
	QCOMBO
	MADDPG
	COMA

	Particle Environments Implementation Details
	Mean-Field Implementation
	M3DDPG Implementation

	ERNIE-A
	Gaussian Baseline

