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ABSTRACT

Despite the recent success of Graph Neural Networks (GNNs), training GNNs on
large graphs remains challenging. The limited resource capacities of the existing
servers, the dependency between nodes in a graph, and the privacy concern due
to the centralized storage and model learning have spurred the need to design an
effective distributed algorithm for GNN training. However, existing distributed
GNN training methods impose either excessive communication costs or large
memory overheads that hinders their scalability. To overcome these issues, we
propose a communication-efficient distributed GNN training technique named
Learn Locally, Correct Globally (LLCG). To reduce the communication and mem-
ory overhead, each local machine in LLCG first trains a GNN on its local data by
ignoring the dependency between nodes among different machines, then sends the
locally trained model to the server for periodic model averaging. However, ignoring
node dependency could result in significant performance degradation. To solve the
performance degradation, we propose to apply Global Server Corrections on the
server to refine the locally learned models. We rigorously analyze the convergence
of distributed methods with periodic model averaging for training GNNs and show
that naively applying periodic model averaging but ignoring the dependency be-
tween nodes will suffer from an irreducible residual error. However, this residual
error can be eliminated by utilizing the proposed global corrections to entail fast
convergence rate. Extensive experiments on real-world datasets show that LLCG
can significantly improve the efficiency without hurting the performance.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have achieved impressive results across numerous
graph-based applications, including social networks (Hamilton et al., 2017; Deng et al., 2019),
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Figure 1: Comparison of the
speedup and the memory con-
sumption of distributed multi-
machine training and central-
ized single machine training
on the Reddit dataset.

recommendation systems (Ying et al., 2018; Wang et al., 2018),
and drug discovery (Fout et al., 2017; Do et al., 2019; Ghorbani
et al., 2022; Faez et al., 2021). Despite their recent success, effective
training of GNNs on large-scale real-world graphs, such as Face-
book social network (Boldi & Vigna, 2004), remains challenging.
Although several attempts have been made to scale GNN training by
sampling techniques (Hamilton et al., 2017; Zou et al., 2019; Zeng
et al., 2020; Chiang et al., 2019; Chen et al., 2018; Zhang et al.,
2021; Ramezani et al., 2020), they are still inefficient for training
on extremely large graphs, due to the unique structure of GNNs
and the limited memory capacity/bandwidth of current servers. One
potential solution to tackle these limitations is employing distributed
training with data parallelism, which have become almost a de facto
standard for fast and accurate training for natural language processing (Lin et al., 2021; Hard et al.,
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2018) and computer vision (Bonawitz et al., 2019; Konečnỳ et al., 2018). For example, as shown in
Figure 1, moving from single machine to multiple machines reduces the training time and alleviates
the memory burden on each machine. Besides, scaling the training of GNNs with sampling techniques
can result in privacy concerns: existing sampling-based methods require centralized data storage and
model learning, which could result in privacy concerns in real-world scenarios (Shin et al., 2018; Wu
et al., 2021). Fortunately, the privacy in distributed learning can be preserved by avoiding mutual
access to data between different local machines, and using only a trusted third party server to access
the entire data.

Nonetheless, generalizing the existing data parallelism techniques of classical distributed train-
ing to the graph domain is non-trivial, which is mainly due to the dependency between nodes
in a graph. For example, unlike solving image classification problems where images are mu-
tually independent, such that we can divide the image dataset into several partitions without
worrying about the dependency between images; GNNs are heavily relying on the information
inherent to a node and its neighboring nodes. As a result, partitioning the graph leads to sub-
graphs with edges spanning subgraphs (cut-edges), which will cause information loss and hin-
der the performance of the model (Angerd et al., 2020). To cope with this problem, (Md et al.,
2021; Jiang & Rumi, 2021; Angerd et al., 2020) propose to transfer node features and (Zheng
et al., 2020; Tripathy et al., 2020; Scardapane et al., 2020) propose to transfer both the node
feature and its hidden embeddings between local machines, both of which can cause signifi-
cant storage/communication overhead and privacy concerns (Shin et al., 2018; Wu et al., 2021).
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Figure 2: Comparison of (a) the validation F1-
score and (b) the average data communicated
per round (in bytes and log-scale) for two differ-
ent distributed GNN training settings, including
Parallel SGD with Periodic Averaging (PSGD-
PA) where the cut-edges are ignored and only
the model parameters are transferred and Global
Graph Sampling (GGS), where the cut-edges are
considered and the node features of the cut-edges
are transferred to the corresponding local ma-
chine, on the Reddit dataset using 8 machines.

To better understand the challenge of distributed
GNN training, we compare the validation F1-
score in Figure 2 (a) and the average data com-
municated per round in Figure 2 (b) for two dif-
ferent distributed GNN training methods on the
Reddit dataset. On the one hand, we can ob-
serve that when ignoring the cut-edges, Parallel
SGD with Periodic Averaging (PSGD-PA (Dean
et al., 2012; Li et al., 2020b)) suffers from sig-
nificant accuracy drop and cannot achieve the
same accuracy as the single machine training,
even by increasing the number of communica-
tion. However, Global Graph Sampling (GGS)
can successfully reach the baseline by consider-
ing the cut-edges and allowing feature transfer, at
the cost of significant communication overhead,
and potential violation of privacy.

In this paper, we propose a communication-efficient distributed GNN training method, called Learn
Locally, Correct Globally (LLCG). To reduce the communication overhead, inspired by the recent
success of the distributed optimization with periodic averaging (Stich, 2019; Yu et al., 2019), we
propose Local Training with Periodic Averaging: where each local machine first locally trains a
GNN model by ignoring the cut-edges, then sends the trained model to the server for periodic model
averaging, and receive the averaged model from server to continue the training. By doing so we
eliminate the features exchange phase between server and local machines, but it can result in a
significant performance degradation due to the lack of the global graph structure and the dependency
between nodes among different machines. To compensate for this error, we propose a Global Server
Correction scheme to take advantage of the available global graph structure on the server and refine
the averaged locally learned models before sending it back to each local machine. Notice that without
Global Server Correction, LLCG is similar to PSGD-PA as introduced in Figure 2.

To get a deeper understanding on the necessity of Global Server Correction, we provide the first
theoretical analysis on the convergence of distributed training for GNNs with periodic averaging. In
particular, we show that solely averaging the local machine models and ignoring the global graph
structure will suffer from an irreducible residual error, which provides sufficient explanation on
why Parallel SGD with Periodic Averaging can never achieve the same performance as the model
trained on a single machine in Figure 2 (a). Then, we theoretically analyze the convergence of
our proposal LLCG . We show that by carefully choosing the number of global correction steps,
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LLCG can overcome the aforementioned residual error and enjoys O
(
1/
√
PT
)

convergence rate
with P local machines and T iterations of gradient updates, which matches the rate of (Yu et al.,
2019) on a general (not specific for GNN training) non-convex optimization setting. Finally, we
conduct comprehensive evaluations on real-world graph datasets with ablation study to validate the
effectiveness of LLCG and its improvements over the existing distributed methods.

Related works. Recently, several attempts have been made on distributed GNN training. According
to how they deal with the input/hidden feature of nodes that are associated with the cut-edges (i.e.,
the edges spanning subgraphs of each local machine), existing methods can be classified into two
main categories: (1) Input feature only communication-based methods: In these methods, each local
machine receives the input features of all nodes required for the gradient computation from other
machines, and trains individually. However, since the number of required nodes grows exponentially
with the number of layers, these methods suffer from a significant communication and storage
overhead. To alleviate these issues, (Md et al., 2021) proposes to split the original graph using a
min-cut graph partition algorithm that can minimize the number of cut-edges. (Jiang & Rumi, 2021)
proposes to use importance sampling to assign nodes on the local machine with a higher probability.
(Angerd et al., 2020) proposes to sample and save a small subgraph from other local machines as
an approximation of the original graph structure. Nonetheless, these methods are limited to a very
shallow GNN structure and suffer from significant performance degradation when the original graph
is dense. (2) Input and hidden feature communication-based methods: These methods propose to
communicate hidden features in addition to the input node features. Although these methods reduce
the number of transferred bytes during each communication round (due to the smaller size of hidden
embedding and less required nodes features), the number of communication rounds grows linearly
as the number of layers, and are prone to more communication delay. To address these issues, in
addition to optimal partitioning of the graph, (Zheng et al., 2020) proposes to use sparse embedding
to reduce the number of bytes to communicate and (Tripathy et al., 2020) proposes several graph
partitioning techniques to diminish the communication overhead.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we start by describing Graph Convolutional Network (GCN) and its training algorithm
on a single machine, then formulate the problem of distributed GCN training. Note that we use
GCN with mean aggregation for simplicity, however, our discussion is also applicable to other GNN
architectures, such as SAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018), ResGCN (Li
et al., 2019) and APPNP (Klicpera et al., 2019).

Training GCN on a single machine. Here, we consider the semi-supervised node classification in
an undirected graph G(V, E) with N = |V| nodes and |E| edges. Each node vi ∈ V is associated with
a pair (xi,yi), where xi ∈ Rd is the input feature vector, yi ∈ R|C| is the ground truth label, and C is
the candidate labels in the multi-class classifications. Besides, let X = [x1, . . . ,xN ] ∈ RN×d denote
the input node feature matrix. Our goal is to find a set of parameters θ = {W(`)}L`=1 by minimizing
the empirical loss L(θ) over all nodes in the training set, i.e.,

L(θ) =
1

N

∑
i∈V

φ(h
(L)
i ,yi), h

(`)
i = σ

( 1

|N (vi)|
∑

j∈N (vi)
h
(`−1)
j W(`)

)
, (1)

where φ(·, ·) is the loss function (e.g., cross entropy loss), σ(·) is the activation function (e.g., ReLU),
and N (vi) is the neighborhood of node vi. In practice, we can update the model parameters by the
stochastic gradient computed on a sampled mini-batch (using full-neighbors) by

∇̃L(θ, ξ) =
1

B

∑
i∈ξ
∇φ(h

(L)
i ,yi), (2)

where ξ denotes an i.i.d. sampled mini-batch of size B and we have E[∇̃L(θ, ξ)] = ∇L(θ).

Distributed GCN training with periodic averaging. In this paper, we consider the distributed
learning setting with P local machines and a single parameter server. The original input graph G
is partitioned into P subgraphs, where Gp(Vp, Ep) denotes the subgraph on the p-th local machine
with Np = |Vp| nodes, and Xp ∈ RNp×d as the input feature of all nodes in Vp located on the p-th
machine. Then, the full-batch local gradient∇Llocal

p (θp) is computed as

∇Llocal
p (θp) =

1

Np

∑
i∈Vp
∇φ(h

(L)
i ,yi), h

(`)
i = σ

( 1

|Np(vi)|
∑

j∈Np(vi)
h
(`−1)
j W(`)

p

)
, (3)
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Algorithm 1 Distributed GCN training with “Parallel SGD with Periodic Averaging”

Input: Global parameters θ̄0, local parameters θ0
p = θ̄0, time-step t = 0, learning rate η.

1: for r← 1 to R do
2: for p← 1 to P do in parallel . Parallel training on local machines
3: Local machine p receives the global parameters θt

p ← θ̄t. . Communication
4: for k← 1 to K do
5: t← t+ 1.
6: Local machine p constructs the mini-batch ξtp with neighbor sampling.
7: Local machine p computes the stochastic gradients ∇̃Llocal

p (θt
p, ξ

t
p).

8: Local machine p updates the local parameter by θt+1
p = θt

p− η∇̃Llocal
p (θt

p, ξ
t
p).

9: end for
10: Local machine p sends the local parameters θt+1

p to the server. . Communication
11: end for
12: Server updates the global parameters by parameter averaging θ̄t+1 = 1

P

∑P
p=1 θ

t+1
p .

13: end for
Output: Server returns trained GCN model with mint E[‖∇L(θ̄t)‖2].

where θp = {W(`)
p }L`=1 is the model parameters on the p-th local machine, Np(vi) = {vj |(vi, vj) ∈

Ep} is the local neighbors of node vi on the p-th local machine. When the graph is large, the
computational complexity of forward and backward propagation could be very high. One practical
solution is to compute the stochastic gradient on a sampled mini-batch with neighbor sampling, i.e.,

∇̃Llocal
p (θp, ξp) =

1

Bp

∑
i∈ξp
∇φ(h̃

(L)
i ,yi), h̃

(`)
i = σ

( 1

|Ñp(vi)|
∑

j∈Ñp(vi)
h̃
(`−1)
j W(`)

p

)
, (4)

where ξp is an i.i.d. sampled mini-batch of Bp nodes, Ñp(vi) ⊂ N (vi) is the sampled neighbors.

An illustration of distributed GCN training with Parallel SGD with Periodic Averaging (PSGD-PA) is
summarized in Algorithm 1. Before training, the server maintains a global model θ̄0 and each local
machine keeps a local copy of the same model θ0p. During training, the local machine first updates
the local model θtp using the stochastic gradient ∇̃Llocal

p (θtp, ξ
t
p) computed by Eq. 4 for K iterations

(line 8), then sends the local model θtp to the server (line 10). At each communication step, the server
collects and averages the model parameters from the local machines (line 12) and send the averaged
model θt+1

p back to each local machine.

Limitations. Although PSGD-PA can significantly reduce the communication overhead by transfer-
ring the locally trained models instead of node feature/embeddings (refer to Figure 2 (b)), it suffers
from performance degeneration due to ignorance of the cut-edges (refer to Figure 2 (a)). In the next
section, we introduce a communication-efficient algorithm LLCG that does not suffer from this
issue, and can achieve almost the same performance as training the model on a single machine.

3 PROPOSED ALGORITHM: LEARN LOCALLY CORRECT GLOBALLY

In this section, we describe Learn Locally, Correct Globally (LLCG) for distributed GNN training.
LLCG includes two main phases, local training with periodic model averaging and global server
correction, to help reduce both the number of required communications and size of transferred data,
without compromising the predictive accuracy. We summarize the details of LLCG in Algorithm 2.

3.1 LOCAL TRAINING WITH PERIODIC MODEL AVERAGING

At the beginning of a local epoch, each local machine receives the latest global model parameters
from the server (line 3). Next, each local machine runs Kρr iterations to update the local model
(line 4 to 9), where K and ρ are the hyper-parameters that control the local epoch size. Note that
instead of using a fixed local epoch size as Algorithm 1, we choose to use exponentially increasing
local epoch size in LLCG with ρ > 1. The reasons are as follows.

At the beginning of the training phase, all local models θtp are far from the optimal solution and
will receive a gradient ∇̃Llocal

p (θtp, ξ
t
p) computed by Eq. 4. Using a smaller local update step at

the early stage guarantees each local model does not diverge too much from each other before the
model averaging step at the server side (line 12). However, towards the end of the training, all local
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Algorithm 2 Distributed GCN training by “Learn Locally, Correct Globally”

Input: Global parameters θ̄0, local parameters θ0
p, time-step t = 0, local step size hyper-

parameters K, ρ, and learning rate γ, η
1: for r← 1 to R do
2: for p← 1 to P do in parallel . Parallel training on local machine
3: Local machine p receives the global parameters θt

p ← θ̄t . Communication
4: for k← 1 to Kρr do
5: t← t+ 1
6: Local machine p constructs the mini-batch ξtp with neighbor sampling
7: Local machine p computes stochastic gradients ∇̃Llocal

p (θt
p, ξ

t
p)

8: Local machine p updates model parameter by θt+1
p = θt

p − η∇̃Llocal
p (θt

p, ξ
t
p)

9: end for
10: Local machine p sends the local parameters θt+1

p to the server . Communication
11: end for
12: Server updates the global parameters using parameter averaging θ̄t+1 = 1

P

∑P
p=1 θ

t+1
p

13: for s← 1 to S do . Server Correction
14: t← t+ 1
15: Server constructs a mini-batch ξt with full-neighbors
16: Server computes the stochastic gradient ∇̃L(θ̄t, ξt)

17: Server updates the global parameters by θ̄t+1 = θ̄t − γ∇̃L(θ̄t, ξt)
18: end for
19: end for
Output: Server return GCN model with trained mint E[‖∇L(θ̄t)‖2]

models θtp will receive relatively smaller gradient ∇̃Llocal
p (θtp, ξ

t
p), such that we can chose a larger

local epoch size to reduce the number of communications, without worrying about the divergence of
local models. By doing so, after total number of T =

∑R
r=1Kρ

r iterations, LLCG only requires
R = logρ

T
K rounds of communications. Therefore, compared to the fully-synchronous method, we

can significantly reduce the total number of communications from O(T ) to O(logρ
T
K ).

3.2 GLOBAL SERVER CORRECTION

The design of the global server correction is to ensure that the trained model not only learns from
the data on each local machine, but also learns the global structure of the graph, thus reducing
the information loss caused by graph partitioning and avoiding cut-edges. Before the correction,
the server receives the locally trained models from all local machines (line 10) and applies model
parameter averaging (line 12). Next, S server correction steps are applied on top of the averaged
model (line 13 to 18). During the correction, the server first constructs a mini-batch ξt using full-
neighbors1(line 15), compute the stochastic gradient ∇̃L(θ̄t, ξt) on the constructed mini-batch by
Eq. 2 (line 16) and update the averaged model θ̄t for S iterations (line 17). The number of correction
steps S 2 depends on the heterogeneity among the subgraphs on each local machine: the more
heterogeneous the subgraphs are, the more correction steps are required to better refine the averaged
model and reduce the divergence across the local models. Note that, the heterogeneity is minimized
when employing GGS (Figure 2) with the local machines having access to the full graph, as a result.
However, GGS requires sampling from the global graph and communication at every iteration, which
results in additional overhead and lower efficiency. Instead, in LLCG we are trading computation on
the server for the costly feature communication, and only requires periodic communication.

4 THEORETICAL ANALYSIS

In this section, we provide the convergence analysis on the distributed training of GCN under two
different settings, i.e., with and without server correction. We first introduce the notations and
assumptions for the analysis (Section 4.1). Then, we show that periodic averaging of local machine
models alone and ignoring the global graph structure will suffer from an irreducible residual error
(Section 4.2). Finally, we show that this residual error can be eliminated by running server correction
steps after each periodic averaging step on the server (Section 4.3).

1Note that using full neighbors is required for the server correction but not the local machines
2In practice, we found S = 1 or S = 2 works well on most datasets.
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Figure 3: Comparison of notations∇Llocal
p (θ), ∇̃Llocal

p (θ, ξp), and∇Lfull
p (θ) on two local machines,

where the blue node and green circles represent nodes on different local machines.

4.1 NOTATIONS AND ASSUMPTIONS

Let us first recall the notations defined in Section 2, where L(θ) denotes the global objective function
computed using the all node features X and the original graph G, Lp(θ) denotes the local objective
function computed using the local node features Xp and local graph Gp, θtp denotes the model
parameters on the p-th local machine at the t-th step, and θ̄t = 1

P

∑P
p=1 θ

t
p denotes the virtual

averaged model at the t-th step. In the non-convex optimization, our goal is to show the expected
gradient of the global objective on the virtual averaged model parameters E[‖∇L(θ̄t)‖2] decreases as
the number of local machines P and the number of training steps T increase. Besides, we introduce
∇Lfull

p (θ) as the gradient computed on the p-th local machine but have access the full node features
X and the original graph structure G as

∇Lfull
p (θ) =

1

|Vp|
∑

i∈Vp
∇φ(h

(L)
i , yi), h

(`)
i = σ

( 1

|N (vi)|
∑

j∈N (vi)
h
(`−1)
j W(`)

p

)
. (5)

Please refer to Figure 3 for an illustration of different gradient computations. Besides, we introduce
local-global gradient discrepancy as κ2 = κ2A + κ2X, where κ2A = maxp∈[P ]{‖∇Llocal

p (θ) −
∇Lfull

p (θ)‖2} is the maximum difference between the gradient computed on the local machine with
and without having access to the global graph structure, which is mainly due to fact that the local
machines are oblivious to the full graph information; and κ2X = maxp∈[P ]{‖∇Lfull

p (θ)−∇L(θ)‖2}
is the maximum difference between the gradient computed using the local node and all nodes, which
is mainly due to the heterogeneity of the node features on each local machine, and we have κ2X = 0
if the nodes are i.i.d. sampled to each local machine. Notice that local-global gradient discrepancy
κ2 plays an important role in our theoretical results.

For the convergence analysis, we make the following standard assumptions.

Assumption 1 The stochastic gradient on the p-th local machine (with neighbor sampling) has
stochastic gradient variance bounded by σ2

var and stochastic gradient bias bounded by σ2
bias, i.e.,

E[‖∇̃Llocal
p (θ; ξ)− E[∇̃Llocal

p (θ; ξ)]‖2] ≤ σ2
var, E[‖E[∇̃Llocal

p (θ; ξ)]−∇Llocal
p (θ)‖2] ≤ σ2

bias.

Assumption 2 The stochastic gradient for global server correction (with full neighbors) has stochas-
tic gradient variance bounded by σ2

global, i.e., E[‖∇̃Lfull
p (θ; ξ)−∇Lfull

p (θ)]‖2] ≤ σ2
global.

The existence of stochastic gradient bias and variance in sampling-based GNN training have been
studied in (Cong et al., 2020; 2021), where (Cong et al., 2021) further quantify the stochastic gradient
bias and variance as a function of the number of GCN layers. In particular, they show that the
existence of σ2

bias is due to neighbor sampling and non-linear activation, and we have σ2
bias = 0 if all

neighbors are used or the non-linear activation is removed. The existence of σ2
var is because we are

sampling mini-batches to compute the stochastic gradient on each local machine during training. As
the mini-batch size increases, σ2

var will be decreasing, and we have σ2
var = 0 when using full-batch.

4.2 DISTRIBUTED GNN VIA PARAMETER AVERAGING

In the following, we provide the first convergence analysis on distributed training of GCN. We show
that solely periodic averaging of the local machine models and ignoring the global graph structure
suffers from an upper bound that is irreducible with the number of training steps. Comparing to the
traditional distributed training (e.g., distributed training Convolutional Neural Network for image
classification (Dean et al., 2012; Li et al., 2020b)), the key challenges in the distributed GCN training
is the two different types of gradient bias: (1) The expectation of the local full-batch gradient is
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a biased estimation of the global full-batch gradient, i.e., 1
P

∑P
p=1∇Llocal

p (θ) 6= ∇L(θ). This is
because each local machine does not have access to the original input graph and full node feature
matrix. Note that the aforementioned equivalence is important for the classifcal distributed training
analysis Dean et al. (2012); Yu et al. (2019). (2) The expectation of the local stochastic gradient is a
biased estimation of the local full-batch gradient i.e., E[∇̃Llocal

p (θ, ξp)] 6= ∇Llocal
p (θ). This is because

the stochastic gradient on each local machine is computed by using neighbor sampling, which has
been studied in (Cong et al., 2021).

Theorem 1 (Distributed GCN via Parameter Averaging) Consider applying model averaging for
GNN training under Assumption 1 and 2. If we choose learning rate η =

√
P√
T

and the local step size
K ≤

√
2T 1/4

8LP 3/4 , then for any T ≥ L2P steps of gradient updates we have
1

T

∑T−1

t=0
E[‖∇L(θ̄t)‖2] = O

(
1√
PT

)
+O(κ2 + σ2

bias).

Theorem 1 implies that, by carefully choosing the learning rate η and the local step sizeK, the gradient
norm computed on the virtual averaged model is bounded byO(1/

√
PT ) afterR = T/K = O(P

3/4

T 3/4 )
communication rounds, but suffers from an irreducible residual error upper bound O(κ2 + σ2

bias). In
the next section, we show that this residual error can be eliminated by applying server correction.

4.3 DISTRIBUTED GCN VIA SERVER CORRECTION

Before proceeding to our result, in order to simplify the presentation, let us first define the nota-
tion Grglobal = mint∈Tglobal(r) E[‖∇L(θ̄t)‖2] and Grlocal = mint∈Tlocal(r) E

[∥∥ 1
P

∑P
p=1∇Llocal

p (θtp)
∥∥2]

as the minimum gradient computed at the r-th round global and local step, where Tglobal(r) and
Tlocal(r) are the number of iteration run after the r-th communication round on server and local
machine, respectively. Please refer to Eq. 42 in Appendix C.2 for a formal definition.

Theorem 2 Consider applying model averaging for GCN training under Assumption 1 and 2. If we
choose learning rate γ = η =

√
P√
T

, the local step size K, ρ such that
∑R
r=1K

2ρ2r ≤ RT 1/2

32L2P 3/2 , and

server correction step size S = maxr∈[R]

( κ2+2σ2
bias

1−L(
√
P/T )

−Grlocal

)
Kρr

Gr
local

, then for any T ≥ L2P steps

of gradient updates we have: 1
T

∑T
t=1 E[‖∇L(θ̄t)‖2] = O

(
1√
PT

)
.

Theorem 2 implies that, by carefully choosing the learning rates γ and η, the local step size hyper-
parameters K, ρ, and the number of global correction steps S, after T steps (R rounds of communica-
tion), employing parameter averaging with Global Server Correction, we have the norm of gradient
bounded by O(1/

√
PT ), without suffering the residual error that exists in the naive parameter

averaging (in Theorem 1). Besides, the server correction step size is proportional to the scale of κ2
and local stochastic gradient bias σ2

bias. The larger κ2 and σ2
bias, the more corrections are required to

eliminate the residual error. However, in practice, we observe that a very small number of correction
steps (e.g., S = 1) performs well, which minimizes the computation overhead on the server.

5 EXPERIMENTS

Real-world simulation. In a real-world distributed setting, the server and local machines are located
on different machines, connected through the network (Li et al., 2020a). However, for our experiments,
we only have access to a single machine with multiple GPUs. As a result, we simulate a real-world
distributed learning scenario, such that each GPU is responsible for the computation of two local
machines (8 in total) and the CPU acts as the server. For these reasons, in our evaluations, we opted
to report the communication size and number of communication rounds, instead of the wall-clock
time, which can show the benefit of distributed training. We argue that these are acceptable measures
in real-world scenarios as well since the two main factors in distributed training are initializing
connection overhead and bandwidth (Tripathy et al., 2020).
Baselines. To illustrate the effectiveness of LLCG, we setup two general synchronized distributed
training techniques as the our baseline methods, namely “Parallel SGD with Parameter Averaging”
(PSGD-PA) and “Global Graph Sampling” (GGS), as introduced in Figure 2, where the cut-edges
in PSGD-PA are ignored and only the model parameters are transferred, but the cut-edges in GGS
are considered and the node features of the cut-edges are transferred to the corresponding machine.
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Figure 4: Comparing LLCG against PSGD-PA and GGS on real-world datasets. We show the global
validation score in terms of the number of communications in (a,b,c,d), the training loss per round of
communications in (e,f ), and the global validation score per bytes of exchanged data in (g,h).

Table 1: Comparison of performance and the average Megabytes of node representation/feature
communicated per round on various datasets.

Method No.
Comm.

GCN / SAGE GAT APPNP
Performance Avg. MB Performance Avg. MB Performance Avg. MB

Flickr
(F1-score)

PSGD-PA
50

49.08±0.27 12.57 51.56±0.28 4.24 50.81±0.48 8.40
GGS 51.22±0.13 1849.32 52.41±0.29 1895.61 51.33±0.33 1897.82
LLCG 50.38±0.20 12.57 52.01±0.33 4.24 51.15±0.25 8.40

OGB-Proteins
(ROC-AUC)

PSGD-PA
100

72.85±0.70 6.20 64.95±1.01 3.14 71.10±0.79 7.31
GGS 74.78±0.36 922.42 68.11±0.60 912.79 71.29±0.31 917.20
LLCG 73.92±0.45 6.20 67.62±0.58 3.14 71.18±0.43 7.31

OGB-Arxiv
(F1-score)

PSGD-PA
100

69.43±0.21 3.55 69.88±0.18 3.59 68.48±0.17 7.71
GGS 70.51±0.26 3391.03 70.82±0.23 3396.79 69.01±0.10 3394.33
LLCG 70.21±0.13 3.55 70.58±0.37 3.59 68.73±0.29 7.71

Reddit
(F1-score)

PSGD-PA
75

71.17±1.06 14.83 70.57±1.24 7.48 83.48±0.81 11.63
GGS 94.77±0.20 3798.81 95.03±0.48 3805.28 95.23±0.22 3770.46
LLCG 94.67±0.15 14.83 94.73±0.23 7.48 94.64±0.17 11.63

Note that we choose GGS as a reasonable representation for most existing proposals (Md et al., 2021;
Zheng et al., 2020; Tripathy et al., 2020) for distributed GNN training, since these methods have very
close communication cost and also require a large cluster of machines to truly show their performance
improvement. We also use PSGD-PA as a lower bound for communication size, which is widely
used in traditional distributed training and similar to the one used in (Angerd et al., 2020; Jiang &
Rumi, 2021). However, we did not specifically include these methods in our results since we could
not reproduce their results in our settings. Please refer to Appendix A for a detailed description of
implementation, hardware specification and link to our source code.
Datasets and evaluation metric. We compare LLCG and other baselines on real-world semi-
supervised node classification datasets, details of which are summarized in Table 2 in the Appendix.
The input graphs are splitted into multiple subgraphs using METIS before training, then the same
set of subgraphs are used for all baselines. For training, we use neighborhood sampling (Hamilton
et al., 2017) with 10 neighbors sampled per node and ρ = 1.1 for LLCG. For a fair comparison, we
chose the base local update step K such that LLCG has the same number of local update steps as
PSGD-PA. During evaluation, we use full-batch without sampling, and report the performance on
the full graph using AUC ROC and F1 Micro as the evaluation metric. Unless otherwise stated, we
conduct each experiment five times and report the mean and standard deviation.

5.1 PRIMARY RESULTS

In this section, we compare our proposed LLCG algorithm with baselines on four datasets. Due to
space limitations we defer the detailed discussion on additional datasets to the Appendix A.4.

LLCG requires same number of communications. Figure 4 (a) through 4 (d) illustrate the
validation accuracy per communication rounds on four different datasets. We run a fixed number of
communication rounds and plot the global validation score (the validation score computed using the
full-graph on the server) at the end of each communication step. For PSGD-PA and GGS, the score is
calculated on the averaged model, whereas for LLCG the validation is calculated after the correction
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Figure 6: Effect of sampling on local machine and num-
ber of correction steps on the server

step. It can be seen that PSGD-PA suffers from performance drop compared to other two methods,
due to the residual error we discussed in Section 4, while both GGS and LLCG perform well and
can achieve the expected accuracy. Note that the performance drop of PSGD-PA can vary across
different datasets; in some cases such as Reddit, PSGD-PA can significantly hurt the accuracy,
while on other datasets the gap is smaller. Nevertheless, LLCG can always close the gap between
PSGD-PA and GGS with minimal overhead.
LLCG convergences as fast as GGS. To represent the effect of communication on the real-time
convergence, in Figure 4 (e) and 4 (f), we plot the global training loss (training loss computed on the
full-graph on the server) after each communication round. Similar to the accuracy score, the training
loss is also computed on the server averaged (and corrected, in case of LLCG) global model. These
results clearly indicate that LLCG can improve the convergence over PSGD-PA, while it shows a
similar convergence speed to GGS.
LLCG exchanges data as little as PSGD-PA. Figure 4 (g) and 4 (h) show the relation between
global validation accuracy with the average size (volume) of communication in bytes. As expected,
this figure clearly shows the effectiveness of LLCG . On the one hand, LLCG has a similar amount
of communication volume as PSGD-PA but can achieve a higher accuracy. On the other hand,
LLCG requires significantly less amount of communication volume than GGS to achieve the same
accuracy, which leads to slower training time in real world settings.
LLCG works with various GNN models and aggregations. We evaluate four popular GNN
models, used in recent graph learning literature: GCN Kipf & Welling (2017), SAGE Hamilton et al.
(2017), GAT Velickovic et al. (2018) and APPNP Klicpera et al. (2019). In Table 1, we summarize
the test score and average communication size (in MB) on different datasets for a fixed number of
communication rounds. Note that we only include the results for the aggregation methods (GCN
or SAGE) that have higher accuracy for the specific datasets, details of which can be found in
Appendix A.2. As shown here, LLCG can consistently improve the test accuracy for all different
models compared to PSGD-PA, while the communication size is significantly lower than GGS, since
LLCG only needs to exchange the model parameters.
Effect of local epoch size. Figure 5 compares the effect of various values of local epoch size
K ∈ {1, 4, 16, 64, 128} for fixed ρ and S on the OGB-Arxiv dataset. When using fully synchronous
with K = 1, the model suffers from very slow convergence and needs more communications. Further
increasing the K to larger values can speed up the training; however, we found a diminishing return
point for K > 128 in this dataset and extremely large K in general.
Effect of sampling in local machines. In Figure 6, we report the validation scores per round of
communication to compare the effect of neighborhood sampling at local machines. We can observe
that when the neighborhood sampling size is reasonably large (i.e., 20%), the performance is very
similar to full neighborhood training. However, reducing the neighbor sampling ratio to 5% could
result in a larger local stochastic gradient bias σ2

bias, which requires using more correction steps (S).

6 CONCLUDING REMARKS

In this paper, we propose a novel distributed algorithm for training Graph Neural Networks (GNNs).
We theoretically analyze various GNN models and discover that, unlike the traditional deep neural
networks, due to inherent data samples dependency in GNNs, naively applying periodic parameter
averaging leads to a residual error and current solutions to this issue impose huge communication
overheads. Instead, our proposal tackles these problems by applying correction on top of locally
learned models, to infuse the global structure of the graph back into the network and avoid any costly
communication. In addition, through extensive empirical analysis, we support our theoretical findings
and demonstrate that LLCG can achieve high accuracy without additional communication costs.
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perimental studies. This repository includes a README.md file, explaining how to install and
prepare the code and required packages. Detailed instruction on how to use the partitioning
scripts is provided for various datasets. In addition, we provide several configuration files (un-
der scripts/configs) folder for different hyper-parameters on each individual dataset, and a
general script (scripts/run-config.py) to run and reproduce the results with these configura-
tions. Details of various models and parameters used in our evaluation studies can also be found in
Appendix A.
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A ADDITIONAL EXPERIMENTAL SETUP AND STUDIES

We provide detailed experimental setup and additional evaluations in this section. The link to the
GitHub repository is available at https://github.com/MortezaRamezani/llcg/.

A.1 HARDWARE SPECIFICATION AND ENVIRONMENT

For all our experiments we use a single server equipped with 4 NVIDIA QUADRO RTX 8000
GPUs with driver version 460.80, two Intel Xeon 6230 CPU and 768GB of main memory
using Ubuntu 18.04 running kernel 5.4.0. For fair comparison between all methods, we developed
a unified framework for performing the experiments, using Pytorch 1.7 compiled for CUDA
11.2. We also used Pytorch Geometric 1.7.0 and Pytorch Sparse 0.6.8 for various GNN and sparse
operations. Please refer to README.md for detailed instruction on how to install and run the code,
and also dataset specific configurations.

Table 2: Summary of datasets statistics. ‡ indicates multi-labels dataset.

Dataset Nodes Edges Feature Classes Train / Validation / Test Base Arch.
Flickr Zeng et al. (2020) 89, 250 899, 756 500 7 50% / 25% / 25% BSBSBL
OGB-Proteins Hu et al. (2020) 132, 534 39, 561, 252 8 112‡ 65% / 16% / 19% SSS
OGB-Arxiv Hu et al. (2020) 169, 343 1, 166, 243 12 40 54% / 17% / 28% GBGBG
Reddit Hamilton et al. (2017) 232, 965 11, 606, 919 602 41 66% / 10% / 24% SBSBS
Yelp Zeng et al. (2020) 716, 847 13, 954, 819 300 100‡ 75% / 15% / 10% BSBSBL
OGB Products Hu et al. (2020) 2, 449, 029 61, 859, 140 100 47 8% / 2% / 90% GGG

A.2 DATASET AND MODELS DETAILS

In all experiments, we used ADAM optimizer, and the learning rate, alongside the local ma-
chine mini-batch size (BL) and server mini-batch size (BS) are included in config files under
scripts/configs folder. We used three datasets Flickr, Reddit, Yelp from Zeng et al.
(2020) and OGB-Proteins, OGB-Arxiv, OGB-Products from Hu et al. (2020). For each
dataset, we choose the aggregation method that has been shown to achieve the highest accuracy,
and report the results in Table 1. In addition, we also evaluate two frequently used architectures,
GAT and APPNP to show the flexibility of our proposed method to other models. Note that some of
OGB datasets can use more complicated models Sun & Wu (2021; 2020), however for the sake of
simplicity, we only used popular GNN operators which show competitive results in most cases. Next
we formally introduce various layers and operators used in our experiments, followed by the base
architecture for each dataset in Table 2.

• GCN (G): Originally introduced by Kipf et. al Kipf & Welling (2017), the representation
for node vi is calculated using:

h
(`)
i = σ

( ∑

j∈N (vi)

αi,jh
(`−1)
j W(`)

)
, (6)

where αi,j = 1√
deg(vi) deg (vj)

for symmetric normalized Laplacian and αi,j = 1
deg(vi)

for

row normalized Laplacian.

• SAGE (S): First introduce in Hamilton et al. (2017), SAGE learn different weights for the
node and its neighbors and the representation is calculated by:

h
(`)
i = σ

(
h
(`−1)
i W

(`)
1 +

1

|N (vi)|
∑

j∈N (vi)

h
(`−1)
j W

(`)
2

)
(7)

Note that different operators such as concatenation can be used instead of addition in the
above formula. However in our experiments we used addition for all SAGE layers.

• Linear (L): Applies a linear transformation to the node features. In other words, the graph
structure is completely ignored in this layer and the representation is computed as follows.

h
(`)
i = h

(`−1)
i W(`) (8)
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• BatchNorm (B): Applies batch normalization according to Ioffe & Szegedy (2015) using
the following where γ and β are learnable parameters and ε is added for numerical stability.

h
(`)
i =

h
(`−1)
i − E(h

(`−1)
i )√

Var(h
(`−1)
i ) + ε

∗ γ + β (9)

• GAT: The Graph Attention layer proposed by (Velickovic et al., 2018) as follows.
h
(`)
i = σ

( ∑

j∈N (vi)

αi,jh
(`−1)
j W(`)

)
(10)

where αi,j is the attention between node i and j and calculated by:

αi,j =
exp(LeakyRelu(a[h

(`−1)
i W(`)||h(`−1)

j W(`)]))
∑
k∈N (vi)

exp(LeakyRelu(a[h
(`−1)
i W(`)||h(`−1)

k W(`)]))
(11)

where a is the learnable weight vector and || indicates concatenation.

• APPNP: This network is proposed by (Klicpera et al., 2019), which is a combination of
graph-agnostic prediction and label propagation:

h
(`)
i = βh

(0)
i + (1− β)

∑

j∈N (vi)

αi,jh
(`−1)
j (12)

where αi,j is the same as defined in GCN, β is the teleport probability and h(0) is the output
of the first linear layer.

Effect of sampling at correction. Recall that LLCG requires full-neighbors for the server correc-
tion step for the convergence analysis, however, we find that server correction with neighbor sampling
also works well in practice. As shown in Figure 7 and Figure 8, although server correction with
neighbor sampling can introduce some randomness at the beginning of the training phase, the final
accuracy of training is very close to the server correction with full-neighbors.
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Figure 7: Impact of sampling in correc-
tion steps on the Reddit dataset.
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Figure 8: Impact of sampling in correc-
tion steps on the Arxiv dataset.

A.3 MINIBATCH SELECTION FOR CORRECTION STEP

Recall that in a server correction step, the mini-batch is selected by sampling from the entire graph,
uniformly at random to estimate an unbiased stochastic gradient of the global loss function. However,
one might suggest to include more cut-edges, which are missing from the local machines, in the
correction minibatch instead of uniform random sampling, to improve the performance of the global
model. To this end, we conduct an experiments on two datasets (Reddit and Arxiv), where we
compare the random minibatch (default setting in LLCG ) and minibatch with higher number of
cut-edges, by selecting the nodes on the ends of cut-edges and building the minibatch from there.
As shown in Figure 9, including more cut-edges nodes in the mini-batch does not make significant
improvement when comparing to selecting mini-batchs using uniform sampling. This potentially
happens due to the fact that sampling more cut-edges make the gradient of server correction step
biased, while we need an unbiased gradient of full graph for correction steps at server.
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Figure 9: Comparing the validation F1-score of uniform sampling and sampling more cut-edges (i.e.,
max. cut edges mini-batch) on the Reddit and Arxiv dataset.

A.4 EFFECTIVENESS OF CORRECTION

To illustrate the effectiveness of correction steps and relate it to the benefits of global graph structure,
we conduct the same experiments on Yelp and OGB-Products with 700K and 2.4M nodes,
respectively and report the results in Figure 10.

Yelp dataset. In the case of Yelp in Figure 10 (a), as we can see the PSGD-PA and GGS are
performing quite similarly. To further investigate this, we compared the validation accuracy of Yelp
using GCN against MLP (i.e., without utilizing the graph structure in training), where the GCN layers
replaced by Linear layer (i.e LLL instead of GGG architecture) and plot the validation accuracy per
iterations in Figure 10 (b). As it can be deduced from this figure, for this dataset MLP is performing
as good as GCN, which means this dataset does not depend on the global structure of the graph,
further explaining why there is no performance gap between PSGD-PA and GGS. In other words, no
server correction is necessary and we can use S = 0 in this case for LLCG.

OGB-Products. Similarly, in the case of OGB-Products in Figure 10 (c), we cannot see any
noticeable accuracy drop due to distributed training. However, unlike Yelp, this is mainly due to
very small κ which is caused by two main factors: (1) very small ratio of training nodes for this
dataset, only 8% of the nodes are used for training, and (2) very small number of cut-edges (less
than 7%) after applying METIS on this dataset. It is also worth mentioning that due to the shallow
structure of the model required for this dataset, we barely need multi-hop neighbors and consequently
we cannot see any noticeable performance drop.
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Figure 10: Comparing (a) PSGD-PA vs GGS and (b) MLP vs GNN on the Yelp dataset. (c)
Comparing PSGD-PA and GGS for OGB-Products. We exclude the error bar from the figure for
better visibility.

A.5 EFFECTIVENESS IN LARGE-SCALE SETTINGS

In this section, we further investigate the effect of large number of local machines and large graphs on
the performance of proposed algorithm, under the simulated environment with up to 16 local machines
on OGB-Products and OGB-MAG240M Hu et al. (2021) datasets for node classification. Besides,
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we also compare against subgraph approximation distributed GNN training algorithm Angerd et al.
(2020) using 10% extra storage overhead and fully synchronous distributed GNN training.3

Node classification tasks. For the OGB-Products dataset, we train a 3-layer GraphSAGE model
with learning rate 0.003 with 50 rounds of communications , which has the same hyper-parameter
configuration and model architecture as OGB-Products’s leaderboard implementation . For the
OGB-MAG240M dataset, we train a 2-layer skip-connected GraphSAGE model with learning rate
0.001 with 400 rounds of communications, which has the same hyper-parameter selection and model
architecture as OGB-MAG240M’s leaderboard implementation. As shown in Figure 11, we can
observe that

• PSGD-PA suffers from performance degeneration and has a large gap to the full sync training
accuracy. Subgraph approximation might alleviate the issue to some extent, but requires
significant storage overhead. Our proposal LLCG can bridge the gap between PSGD-PA
and full sync training.

• The pure computation time4 is negligible when ignoring the communication time but just
consider the computation time. Besides, the server correction step does not introduce
significant computation overhead.

It is worth mentioning that we do not observe the performance gap between PSGD-PA and fully
sync distributed training in Figure 10 (c) because of different number of layers (2-layers) and limited
number of local machine (8 local machines) are used in the previous experiments. However, as the
number of layers and number of local machines increase, the effect of ignoring cut-edges and data
heterogeneity is becoming more serious, which is an interesting observation and worth exploring as a
potential future direction.

B PROOF OF THEOREM 1

In this section, we first introduce the useful lemmas in Section B.1, then process our proof of theorem
in Section B.2. In particular, we show that solely averaging the local machine models and ignoring
the global graph structure will suffer from an irreducible residual error.

B.1 USEFUL LEMMAS

The following lemma gives the upper bound for the norm of the stochastic gradient on each local
machine as the norm of the expectation of local gradient and the stochastic gradient variance scaled
by the number of local machines P .

Lemma 1 Let ∇̃Llocal
p (θp; ξp) be stochastic gradients such that

E
[∥∥∥∇̃Llocal

p (θp; ξp)− E[∇̃Llocal
p (θp; ξp)]

∥∥∥
2
]
≤ σ2

var, (13)

Then, we have

E
[∥∥∥ 1

P

P∑

p=1

∇̃Llocal
p (θp; ξp)

∥∥∥
2]
≤ σ2

var

P
+ E

[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θp, ξ
t
p)
] ∥∥∥

2]
(14)

The following lemma provides an upper bound on the difference of each local gradient ∇Llocal
p (θp)

compared to 1
P

∑P
q=1∇Llocal

q (θq), which is a function of:

• The deviation of each local model to the virtual averaged model, i.e., 1
P

∑P
i=1 ‖θp − θ̄‖2.

• The difference of gradient computed with and without having access to the full graph
information, i.e., κ2.

3Suppose there are Np nodes on the p-th local machine, then subgraph of size 10%×Np is sampled and
stored on the pth local machine. Notice that 10% storage overhead is the maximum overhead recommended
by Angerd et al. (2020), which is expected to bring the best accuracy performance.

4We record the time using Python’s time.time() function.
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Figure 11: Comparing PSGD-PA, periodic model averaging with subgraph approximation, full
sync distributed GNN training, and LLCG on OGB-Products and OGB-MAG240M datasets on a
simulated environment with 16 local machines.
Lemma 2 For any P machines θp, p ∈ {1, . . . , P}, if we define θ̄ = 1

P

∑P
i=1 θp and let κ > 0

such that ‖∇Llocal
p (θ)−∇L(θ)‖2 ≤ κ2, we have

1

P

P∑

p=1

∥∥∥∇Llocal
p (θp)−

1

P

P∑

q=1

∇Llocal
q (θq)

∥∥∥
2

≤ 8L2

P

P∑

i=1

‖θp − θ̄‖2 + 8κ2. (15)

The following lemma provides an upper bound on the deviation of each local model to the virtual
averaged model, which plays an important role in the previous lemma.

Lemma 3 For all P machines with parameters θp, p ∈ {1, . . . , P}, if we define θ̄ = 1
P

∑P
i=1 θp

and let κ > 0 such that ‖Llocal
p (θ)−∇L(θ)‖2 ≤ κ2, we have

T−1∑

t=0

1

P

P∑

p=1

E[‖θ̄t − θtp‖2] ≤ 4η2Kσ2
var

1− 16L2η2K2
T +

4η2K2σ2
bias + 16η2K2κ2

1− 16L2η2K2
T. (16)

B.2 MAIN PROOF OF THEOREM 1

Equipped with the above lemmas, we are now ready to present the proof of Theorem 1. From the
smoothness assumption, we have

E[L(θ̄t+1)] ≤ E[L(θ̄t)] + E[〈∇L(θ̄t), θ̄t+1 − θ̄t〉] +
L

2
E[‖θ̄t+1 − θ̄t‖2]. (17)

Recall that θ̄t is defined as θ̄t = 1
P

∑P
i=1 θ

t
p for any t. Then, according to the update rule

θ̄t+1 = θ̄t − η

P

P∑

p=1

∇̃Llocal
p (θtp; ξ

t
p), (18)
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we have

E[〈∇L(θ̄t), θ̄t+1 − θ̄t〉] = −ηE
[〈
∇L(θ̄t),

1

P

P∑

p=1

∇̃Llocal
p (θtp; ξ

t
p)
〉]

= −η
〈
∇L(θ̄t),

1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp; ξ
t
p)
] 〉
.

(19)

We can upper bound the right hand side of Eq. 19 by

− η
〈
∇L(θ̄t),

1

P

P∑

p=1

E[∇̃Llocal
p (θtp; ξ

t
p)]
〉

=
(a)
−η

2

(
‖∇L(θ̄t)‖2 +

∥∥∥ 1

P

P∑

p=1

E[∇̃Llocal
p (θtp; ξ

t
p)]
∥∥∥
2

−
∥∥∥∇L(θ̄t)− 1

P

P∑

p=1

E[∇̃Llocal
p (θtp; ξ

t
p)]
∥∥∥
2)

≤
(b)
−η

2

(
‖∇L(θ̄t)‖2 +

∥∥∥ 1

P

P∑

p=1

E[∇̃Llocal
p (θtp; ξ

t
p)]
∥∥∥
2

− 2κ2 − 4σ2
bias −

4L2

P

P∑

p=1

‖θ̄t − θtp‖2
)
,

(20)
where (a) is due to 2〈x,y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 and (b) is due to

∥∥∥∇L(θ̄t)− 1

P

P∑

p=1

E[∇̃Llocal
p (θtp; ξ

t
p)]
∥∥∥
2

=

∥∥∥∥∥
1

P

P∑

p=1

(
∇L(θ̄t)−∇Llocal

p (θ̄t) +∇Llocal
p (θ̄t)− E[∇̃Llocal

p (θtp; ξ
t
p)]
)∥∥∥∥∥

2

≤ 2

P

P∑

p=1

‖∇L(θ̄t)−∇Llocal
p (θ̄t)‖2 +

4

P

P∑

p=1

‖∇Llocal
p (θ̄t)−∇Llocal

p (θtp)‖2

+
4

P

P∑

p=1

∥∥∥E[∇̃Llocal
p (θ̄t; ξtp)]−∇Llocal

p (θtp)
∥∥∥
2

≤
(c)

2κ2 + 4σ2
bias +

4L2

P

P∑

p=1

‖θ̄t − θtp‖2,

(21)

where (c) follows from the smoothness assumption and the definition of κ2, σ2
bias in Theorem 1.

Combining Eq. 19 and Eq. 20 gives us
E[〈∇L(θ̄t), θ̄t+1 − θ̄t〉]

≤ −η
2
E[‖∇L(θ̄t)‖2]− η

2
E
[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp, ξ
t
p)
] ∥∥∥

2]

+ η(κ2 + 2σ2
bias) +

2ηL2

P

P∑

p=1

E[‖θ̄t − θtp‖2].

(22)

According to the update rule

θ̄t+1 = θ̄t − η

P

P∑

p=1

∇̃Llocal
p (θtp; ξ

t
p), (23)

we have

E[‖θ̄t+1 − θ̄t‖2] = η2E
[∥∥∥ 1

P

P∑

p=1

∇̃Llocal
p (θtp; ξ

t
p)
∥∥∥
2]
. (24)
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Substituting Eq. 22 and Eq. 24 to Eq. 17, we have

E[L(θ̄t+1)] ≤ E[L(θ̄t)]− η

2
E[‖∇L(θ̄t)‖2]− η

2
E
[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp, ξ
t
p)
] ∥∥∥

2]

+ η(κ2 + 2σ2
bias) +

2ηL2

P

P∑

p=1

E[‖θ̄t − θtp‖2]

+
η2L

2
E
[∥∥∥ 1

P

P∑

p=1

∇̃Llocal
p (θtp; ξ

t
p)
∥∥∥
2]
.

(25)

Dividing both sides by η
2 and rearranging the terms yields

E[‖∇L(θ̄t)‖2] ≤ 2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
− E

[∥∥∥ 1

P

P∑

p=1

E
[
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p (θtp, ξ
t
p)
] ∥∥∥
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P
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2]

≤
(a)

2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
− E

[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp, ξ
p
t )
] ∥∥∥

2]

+ 2(κ2 + 2σ2
bias) +

4L2

P

P∑

p=1

E[‖θ̄t − θtp‖2]

+ ηL
(
E
[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp, ξ
t
p)
] ∥∥∥

2]
+
σ2

var

P
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E[‖θ̄t − θtp‖2] +
ηLσ2

var

P
,

(26)
where (a) is due to Lemma 1.
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Summing over t ∈ {0, . . . , T − 1} and dividing both side by T , we get
1

T
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t=0

E[‖∇L(θ̄t)‖2]
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ηL− 1

T

T−1∑

t=0

E
[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θtp, ξ
t
p)
] ∥∥∥

2]
+
ηLσ2

var

P

+ 2(κ2 + 2σ2
bias) + L2 16η2Kσ2

var

(1− 16η2L2K2)
+ L2 16η2K2σ2

bias + 64η2K2κ2

(1− 16η2L2K2)

≤
(b)

2

ηT

(
L(θ̄0)− L(θ?)

)
+ 2(κ2 + 2σ2

bias) +
ηLσ2

var

P

+ L2 16η2Kσ2
var

(1− 16η2L2K2)
+ L2 16η2K2σ2

bias + 64η2K2κ2

(1− 16η2L2K2)

≤
(c)

2

ηT

(
L(θ̄0)− L(θ?)

)
+ 2(κ2 + 2σ2

bias) +
ηLσ2

var

P

+ 32L2η2Kσ2
var + 128L2η2K2κ2 + 32L2η2K2σ2

bias,

(27)

where (a) is due to Lemma 3, (b) is due to 0 < η < 1
L , and (c) is due to K ≤

√
2

8Lη is selected to
satisfy 1− 16η2L2K2 ≥ 1

2 .

If we choose η =
√
P√
T

and K ≤
√
2T 1/4

8LP 3/4 = O(T
1/4

P 3/4 ), then for any T ≥ L2P we have

1

T

T−1∑

t=0

E[‖∇L(θ̄t)‖2] = O
(

1√
PT

)
+O(κ2 + σ2

bias), (28)

with R = O(P 3/4T 3/4) rounds of communication.

B.3 DISCUSSION ON THE IRREDUCIBLE ERROR

To better understand why the error in the upper bound might be irreducible (i.e., the second term in
RHS of Theorem 1 is independent of T), let’s first recall the key sources that cause gradient diversity∥∥∥∇L(θ̄t)− 1

P

∑P
p=1 E[∇̃Llocal

p (θtp; ξ
t
p)]
∥∥∥
2

(in Eq. 21), in our setting:

• The κ2 term, which is the upper bound of 1
P

∑P
p=1 ‖∇L(θ̄t)−∇Llocal

p (θ̄t)‖2 and is caused
by ignoring the cut-edges for local gradient computation;

• The σ2
bias term, which is the upper bound of 1

P

∑P
p=1

∥∥∥E[∇̃Llocal
p (θ̄t; ξtp)]−∇Llocal

p (θtp)
∥∥∥
2

and is caused by using neighbor sampling;

• The model divergence term 1
P

∑P
p=1 ‖θ̄t − θtp‖2 which is caused by the difference between

the model parameters and the virtual average model due to periodic averaging. Notice
that the model divergence term also exists in distributed learning regardless of whether the
dataset is graph or not and caused by infrequent synchronization.

Now, let’s have a closer look at the model divergence term. As shown in Lemma 3 the model
divergence term 1

P

∑P
p=1 ‖θ̄t − θtp‖2 is further caused by three factors:

• The σ2
var term (in Eq. 64), which is the upper bound of mini-batch sampling variance

1
P

∑P
p=1 E

[∥∥∥
∑t−1
τ=t0

(
E[∇̃Llocal

p (θτp ; ξτp )]−∇Llocal
p (θτp )

)∥∥∥
2]
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∥∥∥∇L(θ̄
t
) − 1

P

P∑

p=1

E[∇̃Llocal
p (θt

p; ξ
t
p)]

∥∥∥
2

Gradient diversity

κ2 :
1

P

P∑

p=1

‖∇L(θ̄
t
) − ∇Llocal

p (θ̄
t
)‖2 σ2

bias :
1

P

P∑

p=1

∥∥∥E[∇̃Llocal
p (θ̄

t
; ξt

p)] − ∇Llocal
p (θt

p)
∥∥∥

2 1

P

P∑

p=1

‖θ̄
t − θt

p‖2

σ2
var :

1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
E[∇̃Llocal

p (θτ
p; ξ

τ
p )] − ∇Llocal

p (θτ
p)

) ∥∥∥
2]

κ2 :
1

P

P∑

p=1

‖∇L(θ̄
t
) − ∇Llocal

p (θ̄
t
)‖2 σ2

bias :
1

P

P∑

p=1

∥∥∥E[∇̃Llocal
p (θ̄

t
; ξt

p)] − ∇Llocal
p (θt

p)
∥∥∥

2

Ignoring cut-edges

Ignoring cut-edges

Neighbor sampling

Neighbor sampling

Periodic averaging (Model divergence)

Mini-batch sampling

* We can control the model divergence by carefully choosing learning rate and the number of local step

O
(

σ2
var + σ2

bias + κ2

√
PT

)
= O

(
1√
PT

)
O(σ2

bias + κ2)+

Figure 12: An overview on the existence of irreducible error from the theoretical point of view. We
use A→ B to denote A is causing B.

• The κ2 term, which is the upper bound of 1
P

∑P
p=1 ‖∇L(θ̄t)−∇Llocal

p (θ̄t)‖2 and is caused
by ignoring the cut-edges for local gradient computation;

• The σ2
bias term, which is the upper bound of 1

P

∑P
p=1

∥∥∥E[∇̃Llocal
p (θ̄t; ξtp)]−∇Llocal

p (θtp)
∥∥∥
2

and is caused by using neighbor sampling.

Fortunately, the model divergence term can be controlled by the number of local gradient update
steps and learning rate, which is reducing with respect to the number of total training steps T and
the number of local machine P , and it leads to the first term in our upper bound in Theorem 1, i.e.,
O(

σ2
var+σ

2
bias+κ

2

√
PT

) = O( 1√
PT

). However, unfortunately, κ2 and σ2
bias in gradient diversity are isolated

from the model diversity part, therefore are irreducible and results in O(σ2
bias + κ2) in the second

term in our upper bound in Theorem 1. Please refer to Figure 12 for an illustration.

Intuitively, these theoretical results make sense. During training, we are minimizing the loss without
cut-edges 1

P

∑P
p=1 Llocal(θ), which is a different objective to the loss defined on the full-graph by

taking the cut-edges into consideration L(θ). Therefore, solely by adding the number of training
iterations, we cannot guarantee a small gradient of L(θ) by minimizing 1

P

∑P
p=1 Llocal(θ).
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B.4 PROOF OF LEMMA 1

By the definition of Llocal
p (θp; ξp), we have

E
[∥∥∥ 1

P

P∑

p=1

∇̃Llocal
p (θp; ξp)

∥∥∥
2]

= E

[∥∥∥ 1

P

P∑

p=1

(
∇̃Llocal

p (θp; ξp)− E
[
∇̃Llocal

p (θp, ξ
t
p)
]) ∥∥∥

2
]

+ E
[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θp, ξ
t
p)
] ∥∥∥

2]

≤
(a)

1

P 2

P∑

p=1

E
[∥∥∥∇̃Llocal

p (θp; ξp)− E
[
∇̃Llocal

p (θp; ξp)
] ∥∥∥

2
]

+ E



∥∥∥∥∥

1

P

P∑

p=1

E
[
∇̃Llocal

p (θp, ξ
t
p)
]∥∥∥∥∥

2



≤
(b)

σ2
var

P
+ E

[∥∥∥ 1

P

P∑

p=1

E
[
∇̃Llocal

p (θp, ξ
t
p)
] ∥∥∥

2]

(29)
where (a) is due to fact that each ∇̃Llocal

p (θp; ξp)−E[∇̃Llocal
p (θp; ξp)] is independent random vectors

with zero mean and (b) is from Assumption 1.

B.5 PROOF OF LEMMA 2

By the definition of local gradient∇Llocal
p (θ), we have

1

P

P∑

p=1

∥∥∥∇Llocal
p (θp)−

1

P

P∑

q=1

∇Llocal
q (θq)

∥∥∥
2

=
1

P

P∑

p=1

∥∥∥∇Llocal
p (θp)−∇Llocal

p (θ̄) +∇Llocal
p (θ̄)−∇L(θ̄)

+∇L(θ̄)− 1

P

P∑

q=1

∇L(θq) +
1

P

P∑

q=1

∇L(θq)−
1

P

P∑

q=1

∇Llocal
q (θq)

∥∥∥
2

≤
(a)

1

P

P∑

p=1

4‖∇Llocal
p (θp)−∇Llocal

p (θ̄)‖2 +
1

P

P∑

p=1

4‖∇Llocal
p (θ̄)−∇L(θ̄)‖2

+
1

P

P∑

p=1

4
∥∥∥∇L(θ̄)− 1

P

P∑

q=1

∇L(θq)
∥∥∥
2

+
1

P

P∑

p=1

4
∥∥∥ 1

P

P∑

q=1

∇L(θq)−
1

P

P∑

q=1

∇Llocal
q (θq)

∥∥∥
2

≤
(b)

8L

P

P∑

p=1

‖θp − θ̄‖2 + 8κ2,

(30)
where (a) is due to ‖∑n

i=1 xi‖2 ≤
∑n
i=1 n‖xi‖ and (b) is due to the definition of κ.

B.6 PROOF OF LEMMA 3

When (t mod K) = 0 we have θ̄t = θtp. When (t mod K) 6= 0 and t ≥ 1, let t0 < t be the largest
iteration index that t0 mod K = 0. For any τ ∈ {t0 + 1, . . . , t}, we have

θτp − θτ−1p = −η∇̃Llocal
p (θτ−1p ; ξτ−1p ). (31)
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Summing over τ ∈ {t0 + 1, . . . , t}, we have

θtp = θt0p − η
t−1∑

τ=t0

∇̃Llocal
p (θτp ; ξτp )

=
(a)
θ̄t0 − η

t−1∑

τ=t0

∇̃Llocal
p (θτp ; ξτp ),

(32)

where (a) is due to θ̄t = θtp when (t mod K) = 0.

Similarly, we have

θ̄t = θ̄t0 − η
t−1∑

τ=t0

1

P

P∑

p=1

∇̃Llocal
p (θτp ; ξτp ). (33)

Combining Eq. 32 and Eq. 33, we have
1

P

P∑

p=1

E[‖θ̄t − θtp‖2]

=
η2

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇̃Llocal

p (θτp ; ξτp )− 1

P

P∑

q=1

∇̃Llocal
q (θτq ; ξτq )

)∥∥∥
2]

≤
(a)

2η2
1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

((
∇̃Llocal

p (θτp ; ξτp )−∇Llocal
p (θτp )

)
− 1

P

P∑

q=1

(
∇̃Llocal

q (θτq ; ξτq )−∇Llocal
q (θτq )

))∥∥∥
2]

︸ ︷︷ ︸
(A)

+ 2η2
1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

)∥∥∥
2]

︸ ︷︷ ︸
(B)

,

(34)
where (a) is due to addition and subtraction of ∇̃Llocal

p (θτp ; ξτp ) and∇Llocal
p (θτp ) and using ‖x+y‖2 ≤

‖x‖2 + ‖y‖2.

We can upper bound (A) in Eq. 63 by

(A) ≤
(a)

1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇̃Llocal

p (θτp ; ξτp )−∇Llocal
p (θτp )

)∥∥∥
2]

≤ 2

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇̃Llocal

p (θτp ; ξτp )− E[∇̃Llocal
p (θτp ; ξτp )]

)∥∥∥
2]

+
2

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
E[∇̃Llocal

p (θτp ; ξτp )]−∇Llocal
p (θτp )

)∥∥∥
2]

≤ 2Kσ2
var + 2K2σ2

bias,

(35)

where (a) is due to
1

n

n∑

i=1

∥∥∥xi −
1

n

n∑

j=1

xj

∥∥∥
2

=
1

n

n∑

i=1

‖xi‖2 −
∥∥∥ 1

n

n∑

i=1

xi

∥∥∥
2

≤ 1

n

n∑

i=1

‖xi‖2. (36)
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We can further bound (B) in Eq. 63 by

(B) ≤ 1

P

P∑

p=1

(t− t0)

t−1∑

τ=t0

E
[∥∥∥∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

∥∥∥
2]

≤ K
t−1∑

τ=t0

1

P

P∑

p=1

E
[∥∥∥∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

∥∥∥
2]

≤
(a)

K

t−1∑

τ=t0

(8L2

P

P∑

i=1

‖θτp − θ̄τ‖2 + 8κ2
)

≤ 8L2K

P

t−1∑

τ=t0

P∑

i=1

‖θτp − θ̄τ‖2 + 8K2κ2,

(37)

where (a) is due to Lemma 2 and the definition of κ.

By plugging Eq. 64 and Eq. 66 into Eq. 63, we have
1

P

P∑

p=1

E[‖θ̄t−θtp‖2] ≤ 4η2Kσ2
var +4η2K2σ2

bias +16η2L2K

t−1∑

τ=t0

1

P

P∑

i=1

‖θτp − θ̄τ‖2 +16η2K2κ2.

(38)

By summing over t ∈ {0, . . . , T}, we have
T−1∑

t=0

1

P

P∑

p=1

E[‖θ̄t − θtp‖2]

︸ ︷︷ ︸
(A)

≤ 4η2Kσ2
varT + 4η2K2σ2

biasT

+ 16η2L2K2
T−1∑

t=0

1

P

P∑

i=1

‖θtp − θ̄t‖2

︸ ︷︷ ︸
(A)

+16η2K2κ2T.

(39)

Collecting common terms and dividing both sides by (1− 16η2L2K2) gives

(A) ≤ 4η2Kσ2T

(1− 16η2L2K2)
+

4η2K2σ2
biasT + 16η2K2κ2T

(1− 16η2L2K2)
. (40)
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C PROOF OF THEOREM 2

In the following, we first introduce the useful lemmas in Section C.1, then process our proof of the
theorem in Section C.2. In particular, we show that this residual error (which is caused by ignoring
the cut-edges) can be eliminated by running server correction steps after the parameter averaging on
the server.

C.1 USEFUL LEMMA

The following lemma provides an upper bound on the deviation of each local model to virtual averaged
model, which is important to upper bound on the difference of each local gradient ∇Llocal

p (θp)

compared to 1
P

∑P
p=1∇Lp(θ).

Lemma 4 For all P machines with θp, p ∈ {1, . . . , P}, if we define θ̄ = 1
P

∑P
p=1 θp and let κ > 0

such that ‖Llocal
p (θ)−∇L(θ)‖2 ≤ κ2, we have
∑

t∈Tlocal(r)

1

P

P∑

p=1

E[‖θ̄t − θtp‖2] ≤ 4η2(σ2
bias + σ2

var)K
2ρ2r + 16η2κ2K2ρ2r

1− 16η2L2K2ρ2r
. (41)

C.2 MAIN PROOF OF THEOREM 2

Equipped with the above lemma and results from Appendix B.1 , we are now ready to present the
proof of Theorem 2.

Let Tlocal(r) and Tserver(r) as the iteration indices that a local machine and server run on, which is
defined as

Tlocal(r) =



k +



r−1∑

j=1

Kρj


+ S(r − 1) : k = 1, . . . ,Kρr





Tserver(r) =



s+




r∑

j=1

Kρj


+ S(r − 1) : s = 1, . . . , S



 ,

(42)

and let define Tlocal = Tlocal(1) ∪ . . . ∪ Tlocal(R) and Tglobal = Tglobal(1) ∪ . . . ∪ Tglobal(R).

By the smoothness assumption, we have

E[L(θ̄t+1)] ≤ E[L(θ̄t)] + E[〈∇L(θ̄t), θ̄t+1 − θ̄t〉] +
L

2
E[‖θ̄t+1 − θ̄t‖2]. (43)

Let first consider t ∈ Tserver(r), with the following update
θ̄t+1 = θ̄t − γ∇̃L(θ̄t; ξt)

= θ̄t − γ

P

P∑

p=1

∇̃Lfull
p (θ̄t; ξtp).

(44)

Therefore, we have

E[〈∇L(θ̄t), θ̄t+1 − θ̄t〉] = −γE
[〈
∇L(θ̄t),

1

P

P∑

p=1

∇̃Lfull
p (θ̄t; ξtp)

〉]

=
(a)
−γE[‖∇L(θ̄t)‖2],

(45)

where the equality is due to 1
P

∑P
p=1 E[∇̃Lfull

p (θ̄t; ξtp)] = ∇L(θ̄t) since all neighbors are used for
the server correction steps.
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Besides, by taking the norm on the both side of Eq. 44, we have the following equality

E[‖θ̄t+1 − θ̄t‖2] = γ2E
[∥∥∥ 1

P

P∑

p=1

∇̃Lfull
p (θ̄t; ξtp)

∥∥∥
2]

≤
(a)

γ2E
[∥∥∥ 1

P

P∑

p=1

∇Lfull
p (θ̄t)

∥∥∥
2]

+ γ2
σ2

global

P

= γ2E[‖∇L(θ̄t)‖2] + γ2
σ2

global

P
.

(46)

where inequality (b) holds due to Lemma 1. Notice that the result in Lemma 1 holds for both the
“local” and the “global” setting since 1

P

∑P
p=1 E[∇̃Lfull

p (θ̄t; ξtp)] = ∇L(θ̄t).

Substituting Eq. 45, 46 into Eq. 43, we know that for t ∈ Tserver(r), we have

E[L(θ̄t+1)] ≤ E[L(θ̄t)] +
(γ2L

2
− γ
)
E[‖∇L(θ̄t)‖2] +

γ2L

2

σ2
global

P

= E[L(θ̄t)] +
γ

2

(
γL− 1

)
E[‖∇L(θ̄t)‖2] +

γ2L

2

σ2
global

P
− γ

2
E[‖∇L(θ̄t)‖2].

(47)

Dividing both sides by γ
2 and rearranging terms yields

E[‖∇L(θ̄t)‖2] ≤ 2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+ (γL− 1)E[‖∇L(θ̄t)‖2] + γL

σ2
global

P
. (48)

Then, let us consider the local update steps where t ∈ Tlocal(r). According to Eq. 25 in proof of
Theorem 1, we have

E[‖∇L(θ̄t)‖2] ≤ 2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+ (ηL− 1)E

[∥∥∥ 1

P

P∑

p=1

∇Llocal
p (θtp)

∥∥∥
2]

+ 2(κ2 + 2σ2
bias) +

4L2

P

P∑

p=1

E[‖θ̄t − θtp‖2] +
ηLσ2

var

P
.

(49)

Let T =
(∑R

r=1Kρ
r
)

+ SR and summing over t ∈ {1, . . . , T}, combining Eq. 48 and Eq. 49 we
have

T∑

t=1

E[‖∇L(θ̄t)‖2]

=

R∑

r=1

∑

t∈Tlocal(r)

E[‖∇L(θ̄t)‖2] +

R∑

r=1

∑

t∈Tglobal(r)

E[‖∇L(θ̄t)‖2]

≤
R∑

r=1

∑

t∈Tglobal(r)

[ 2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+ (γL− 1)E[‖∇L(θ̄t)‖2] + γL

σ2
global

P

]

+

R∑

r=1

∑

t∈Tlocal(r)

[2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+ (ηL− 1)E

[∥∥∥ 1

P

P∑

p=1

∇Llocal
p (θtp)

∥∥∥
2]

+ 2(κ2 + σ2
bias) +

4L2

P

P∑

p=1

E[‖θ̄t − θtp‖2] +
ηLσ2

var

P

]
.

(50)
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Rearrange the above equation, we have
T∑

t=1

E[‖∇L(θ̄t)‖2]

≤
R∑

r=1


 ∑

t∈Tglobal(r)

2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+

∑

t∈Tlocal(r)

2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)



+

R∑

r=1


 ∑

t∈Tglobal(r)

(γL− 1)E[‖∇L(θ̄t)‖2] +
∑

t∈Tlocal(r)

(ηL− 1)E
[∥∥∥ 1

P

P∑

p=1

∇Llocal
p (θtp)

∥∥∥
2




+

R∑

r=1


 ∑

t∈Tglobal(r)

γL
σ2

global

P
+

∑

t∈Tlocal(r)

ηLσ2
var

P


+

(
R∑

r=1

Kρr

)
(κ2 + 2σ2

var)

+

R∑

r=1

∑

t∈Tlocal(r)

(
4L2

P

P∑

p=1

E[‖θ̄t − θtp‖2]

)
.

(51)

Let define

Grglobal = min
t∈Tglobal(r)

E[‖∇L(θ̄t)‖2], Grlocal = min
t∈Tlocal(r)

E
[∥∥∥ 1

P

P∑

p=1

∇Llocal
p (θtp)

∥∥∥
2

. (52)

Our goal is to select the size of Tlocal(r) and Tglobal(r) such that the following inequality holds

(Kρr) (κ2 + 2σ2
bias) ≤ (1− γL)

∑

t∈Tglobal(r)

E[‖∇L(θ̄t)‖2] + (1− ηL)
∑

t∈Tlocal(r)

E
[∥∥∥ 1

P

P∑

p=1

∇Llocal
p (θtp)

∥∥∥
2

≤ (1− γL)SGrglobal + (1− ηL)KρrGrlocal
(53)

After rearranging it, we will have

S ≥ Kρr

Grglobal(1− γL)

(
κ2 + 2σ2

bias − (1− ηL)Grlocal

)
. (54)

Suppose Eq. 54 holds, we have
T∑

t=1

E[‖∇L(θ̄t)‖2]

≤
R∑

r=1


 ∑

t∈Tglobal(r)

2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+

∑

t∈Tlocal(r)

2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)



+

R∑

r=1


 ∑

t∈Tglobal(r)

γL
σ2

global

P
+

∑

t∈Tlocal(r)

ηLσ2
var

P


+

R∑

r=1

∑

t∈Tlocal(r)

(
4L2

P

P∑

p=1

E[‖θ̄t − θtp‖2]

)

≤
(a)

R∑

r=1


 ∑

t∈Tglobal(r)

2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+

∑

t∈Tlocal(r)

2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)



+

R∑

r=1


 ∑

t∈Tglobal(r)

γL
σ2

global

P
+

∑

t∈Tlocal(r)

ηLσ2
var

P




+ 4L2
R∑

r=1

(
4η2(σ2

bias + σ2
var)K

2ρ2r

1− 16η2L2K2ρ2r
+

16η2κ2K2ρ2r

1− 16η2L2K2ρ2r

)
,

(55)
where (a) is due to Lemma 4.
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By selecting Kρr such that 1− 16η2L2K2ρ2r ≥ 1
2 , we have Kρr ≤

√
2

8Lη and

1

T

T∑

t=1

E[‖∇L(θ̄t)‖2]

=
1

T

R∑

r=1


 ∑

t∈Tglobal(r)

2

γ

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+

∑

t∈Tglobal(r)

γL
σ2

global

P




+
1

T

R∑

r=1


 ∑

t∈Tlocal(r)

2

η

(
E[L(θ̄t)]− E[L(θ̄t+1)]

)
+

∑

t∈Tlocal(r)

ηLσ2
var

P




+
4η2L2

(
8(σ2

var + σ2
bias) + 32κ2

)

T

R∑

r=1

K2ρ2r.

(56)

Notice that the condition Kρr ≤
√
2

8Lη implies
R∑

r=1

K2ρ2r = K2 1− ρ2r
1− ρ2 ≤

R

32L2η2
. (57)

To this end, by selecting η = γ =
√
P√
T

,
∑R
r=1K

2ρ2r ≤ RT 1/2

32L2P 3/2 , and σ2 = max{σ2
var, σ

2
global}, we

have
1

T

T∑

t=1

E[‖∇L(θ̄t)‖2] ≤ 2√
PT

(
L(θ̄0)−L(θ̄?)

)
+
Lσ2

√
PT

+
4L2

√
PT

R∑

r=1

(8(σ2
bias+σ

2
var)+32κ2), (58)

and

S ≥
(

κ2 + 2σ2
bias

1− L(
√
P/T )

−Grlocal

)
Kρr

Grglobal
. (59)

C.3 PROOF OF LEMMA 4

Recall that when t ∈ Tglobal(r) we have θ̄t = θtp. For any t ∈ Tlocal(r), let t0 + 1 denote as the first
indices of Tlocal(r) and |Tlocal(r)| = Kρr. Then, for any τ ∈ {t0 + 1, . . . , t}, we have

θτp − θτ−1p = −η∇̃Llocal
p (θτ−1p ; ξτ−1p ) (60)

Summing over τ ∈ {t0 + 1, . . . , t}, we have

θtp = θt0p − η
t−1∑

τ=t0

∇̃Llocal
p (θτp ; ξτp )

=
(a)
θ̄t0 − η

t−1∑

τ=t0

∇̃Llocal
p (θτp ; ξτp ),

(61)

where (a) is due to θ̄t = θtp when t ∈ Tglobal(r).

Similarly, we have

θ̄t = θ̄t0 − η
t−1∑

τ=t0

1

P

P∑

p=1

∇̃Llocal
p (θτp ; ξτp ). (62)
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By combining Eq. 61 and Eq. 62, we have
1

P

P∑

p=1

E[‖θ̄t − θtp‖2]

=
η2

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇̃Llocal

p (θτp ; ξτp )− 1

P

P∑

q=1

∇̃Llocal
q (θτq ; ξτq )

)∥∥∥
2]

≤
(a)

2η2
1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

((
∇̃Llocal

p (θτp ; ξτp )−∇Llocal
p (θτp )

)
− 1

P

P∑

q=1

(
∇̃Llocal

q (θτq ; ξτq )−∇Llocal
q (θτq )

))∥∥∥
2]

︸ ︷︷ ︸
(A)

+ 2η2
1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

)∥∥∥
2]

︸ ︷︷ ︸
(B)

,

(63)
where (a) follows by adding and subtracting ∇̃Llocal

p (θτp ; ξτp ),∇Llocal
p (θτp ) and using ‖x + y‖2 ≤

‖x‖2 + ‖y‖2.

We can upper bound (A) in Eq. 63 by

(A) ≤
(a)

1

P

P∑

p=1

E
[∥∥∥

t−1∑

τ=t0

(
∇̃Llocal

p (θτp ; ξτp )−∇Llocal
p (θτp )

)∥∥∥
2]

≤ 2

P

P∑

p=1

t−1∑

τ=t0

E
[∥∥∥∇̃Llocal

p (θτp ; ξτp )− E[∇̃Llocal
p (θτp ; ξτp )]

∥∥∥
2]

+
2

P

P∑

p=1

t−1∑

τ=t0

E
[∥∥∥E[∇̃Llocal

p (θτp ; ξτp )]−∇Llocal
p (θτp )

∥∥∥
2]

≤ 2Kρr(σ2
var + σ2

bias),

(64)

where (a) is due to
1

n

n∑

i=1

∥∥∥xi −
1

n

n∑

j=1

xj

∥∥∥
2

=
1

n

n∑

i=1

‖xi‖2 −
∥∥∥ 1

n

n∑

i=1

xi

∥∥∥
2

≤ 1

n

n∑

i=1

‖xi‖2. (65)

We can further bound (B) in Eq. 63 by

(B) ≤ 1

P

P∑

p=1

(t− t0)
t−1∑

τ=t0

E
[∥∥∥∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

∥∥∥
2]

≤ Kρr
t−1∑

τ=t0

1

P

P∑

p=1

E
[∥∥∥∇Llocal

p (θτp )− 1

P

P∑

q=1

∇Llocal
q (θτq )

∥∥∥
2]

≤
(a)

Kρr
t−1∑

τ=t0

(8L2

P

P∑

p=1

‖θτp − θ̄τ‖2 + 8κ2
)

≤ 8L2Kρr

P

t−1∑

τ=t0

P∑

p=1

‖θτp − θ̄τ‖2 + 8K2ρ2rκ2,

(66)

where (a) is due to Lemma 2 and the definition of κ.

By plugging Eq. 64 and Eq. 66 into Eq. 63, we have
1

P

P∑

p=1

E[‖θ̄t−θtp‖2] ≤ 4η2Kρr(σ2
var+σ

2
bias)+16η2L2Kρr

t−1∑

τ=t0

1

P

P∑

p=1

‖θτp−θ̄τ‖2+16η2K2ρ2rκ2.

(67)
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Let us define Tlocal = Tlocal(1) ∪ . . . ∪ Tlocal(R). By summing over t ∈ Tlocal, we have
R∑

r=1

∑

t∈Tlocal(r)

1

P

P∑

p=1

E[‖θ̄t − θtp‖2]

︸ ︷︷ ︸
(A)

≤
R∑

r=1

(
4η2(σ2

bias + σ2
var)K

2ρ2r + 16η2κ2K2ρ2r
)

+

R∑

r=1

16η2L2K2ρ2r
∑

t∈Tlocal(r)

1

P

P∑

p=1

‖θtp − θ̄t‖2

︸ ︷︷ ︸
(A)

.

(68)

Rearranging the terms gives
R∑

r=1

(1−16η2L2K2ρ2r)
∑

t∈Tlocal(r)

1

P

P∑

p=1

E[‖θ̄t − θtp‖2]

︸ ︷︷ ︸
(A)

≤
R∑

r=1

(
4η2((σ2

bias + σ2
var))K

2ρ2r + 16η2κ2K2ρ2r
)
.

(69)

Therefore, we conclude that
∑

t∈Tlocal(r)

1

P

P∑

p=1

E[‖θ̄t − θtp‖2] ≤ 4η2((σ2
bias + σ2

var))K
2ρ2r + 16η2κ2K2ρ2r

1− 16η2L2K2ρ2r
. (70)

which completes the proof.
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