Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TOPOAUDIO PERFORMANCE

Table |l| reports classification accuracy and representational smoothness for both baseline and topo-
graphic variants of Transformer-B/32 and ResNet-50 backbones. Across datasets (ESC50, NSynth,
and Speech Commands), accuracy remains nearly unchanged when introducing topographic con-
straints (7), with performance differences typically within < 1% of baseline. In contrast, smooth-
ness values increase substantially, confirming that topographic regularization induces more spatially
coherent representations. These results demonstrate that TopoAudio models preserve strong classifi-
cation performance while simultaneously improving internal topographic structure, supporting their
utility as both effective and interpretable auditory models.

Table 1: Topographic auditory models maintain high classification performance across
evaluations. Accuracy is reported for ESC50, NSynth, and Speech Command datasets using
Transformer-B/32 and ResNet-50 backbones. While baseline models achieve slightly higher accu-
racy, introducing topographic constraints (7) substantially increases representational smoothness
with only modest changes in classification performance. Topographic Avg. indicates the mean
performance across all non-baseline 7 values.

Topography (7) Accuracy Smoothness
ESC50 NSynth SpeechCmd
Transformer-B/32
Baseline 82.10 98.25 92.94 0.31
5 81.94 98.13 92.63 0.46
25 82.01 98.13 92.80 0.50
50 81.66 97.99 92.42 0.57
100 81.88 9791 92.38 0.56
Topographic Avg.  81.87 98.04 92.56 0.52
ResNet-50
Baseline 81.69 98.29 86.68 0.34
5 81.46 98.50 86.88 1.10
25 80.62 98.39 87.89 0.87
50 80.84 98.36 87.57 1.04
100 80.32 98.72 86.85 1.09
200 80.70 08.48 87.47 0.93
Topographic Avg.  80.79 98.49 87.33 1.01

A.2 SPATIAL LOSS

To investigate how topographic constraints shape auditory representations, we adapted the TopoLoss
framework (Deb et al.| [2025)) to the auditory domain. As before, we define a 2D cortical sheet”
from convolutional layers in the auditory model on which to enforce topography. Each convolutional
kernel in the model is mapped onto this sheet. For a convolutional layer with cjypy input channels
and coupue OUtput channels, and a kernel size of k x k, the weight tensor W € IR Coupu X Cinpur X kX E- g
reshaped into a cortical representation C' € R"***? where h x w = Coutput> And d = Cipput - K - k.
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To encourage smoothness in the cortical sheet C"***4, we apply a blurring operation that removes
high-frequency variations. We compute a blurred version C” of the cortical sheet using a downsam-
pling factor ¢, = ¢,, = 3 followed by upsampling:

Blur(X,(z)h,d)w):fup (fdown (th,w> ’h’w> (4)
(bh ¢w

The TopoLoss is then defined as the negative mean cosine similarity between the original and blurred
cortical maps:
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This encourages neurons with similar functions to be spatially clustered, enhancing topographic
organization. Finally, we integrate the TopoLoss with the primary task 10sS Liraining as:

Lol = £training +7- Etopo 6)

where 7 is a scaling coefficient controlling the influence of topographic regularization. Higher values
of T encourage stronger topographic organization.

A.3 FMRI DATASETS
A.3.1 NH2015

The fMRI data used in this study are a subset of those originally reported in (Norman-Haignere
et al.,[2015)), with procedures summarized below.

Participants and Experimental Design. Eight right-handed, native English-speaking participants
(4 female; mean age 22 years, range 19-25) with normal hearing and no formal musical training
participated in the study. Each participant completed three fMRI sessions ("2 hours each). Five
additional participants were excluded due to either incomplete scanning sessions or excessive head
motion and task non-compliance. All participants gave informed consent under protocols approved
by the MIT Committee on the Use of Humans as Experimental Subjects (protocol 2105000382).

Stimuli. A total of 165 two-second natural sounds were selected to span a wide range of real-world
auditory categories. Each sound was validated using a 10-way forced-choice classification task on
Amazon Mechanical Turk and included only if recognized with at least 80% accuracy. Stimulus
names and categories are available in the supplementary materials of (Tuckute et al., [2023), and the
full stimulus set can be downloaded from: http://mcdermottlab.mit.edu/downloads.
htmll

fMRI Procedure. Stimuli were presented in a blocked design, with each block consisting of five
repetitions of the same 2-second sound, interleaved with 200 ms of silence to minimize scanner
noise. Each block lasted 17 s (TR = 3.4 s), and silence blocks of equal duration were interspersed
to estimate baseline responses. To ensure attentiveness, participants performed an intensity discrim-
ination task in each block, identifying the quietest sound (7 dB lower than the others) via button
press.

Data Acquisition. Data were acquired on a 3T Siemens Trio scanner with a 32-channel head coil
at the Athinoula A. Martinos Imaging Center (MIT). Each run consisted of 15 slices oriented parallel
to the superior temporal plane (TR = 3.4 s, TE = 30 ms, flip angle = 90°). The in-plane resolution
was 2.1 mm x 2.1 mm, with 4 mm thick slices and a 10% gap (voxel size: 2.1 x 2.1 x 4.4 mm).
The first 5 volumes of each run were discarded.
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Preprocessing. Preprocessing was conducted using FSL, FreeSurfer, and custom MATLAB
scripts. Functional data were motion- and slice-time corrected, linearly detrended, skull-stripped,
and aligned to each participant’s anatomical scan using FLIRT and BBRegister. Volumes were pro-
jected to the reconstructed cortical surface using FreeSurfer and smoothed with a 3-mm FWHM
2D Gaussian kernel. Percent signal change was computed relative to silence blocks, and responses
were downsampled to a 2-mm isotropic grid on the FreeSurfer surface. All participants’ data were
registered to the f saverage template.

Voxel Selection. Voxel selection followed the criteria in (Tuckute et al.,|2023)). We retained voxels
within a superior temporal and posterior parietal mask if they met two conditions: (1) significant
sound vs. silence response (p < 0.001, uncorrected), and (2) reliable responses to sounds across
scan sessions, quantified as:

. [vi2 — proj,, viz|l2 . . _ [ V3-Vi2
r=1-— ,  with proj, viz = 5 | V3
[Vizll2 [vsll3

Here, v15 is the voxel’s response vector (averaged over the first two sessions) to all 165 sounds,
and vj is the same voxel’s response from the third session. This measure captures the fraction of
variance in vio explained by vs. Voxels with » > 0.3 were retained. Across participants, this
yielded 7,694 voxels (mean per participant: 961.75; range: 637-1,221).

A.3.2 B2021

The B2021 fMRI dataset used in this study was originally collected and analyzed by (Boebinger
et all 2021) and reanalyzed in (Tuckute et al.l 2023). We summarize the methodological details
below.

Participants and Experimental Design. Twenty right-handed participants (14 female; mean age:
25 years, range: 18-34) each completed three fMRI sessions ("2 hours per session). Half of the
participants (n = 10) were highly trained musicians, with an average of 16.3 years (SD = 2.5)
of formal training that began before age 7 and continued through the time of scanning. The other
half (n = 10) were non-musicians with fewer than 2 years of musical training, none of which
occurred before age 7 or within 5 years of scanning. All participants provided informed consent,
and the study was approved by the MIT Committee on the Use of Humans as Experimental Subjects
(protocol number 2105000382).

Stimuli. The stimulus set consisted of 192 natural sounds, including 165 from (Norman-Haignere
et al.,|2015)) and 27 additional music and drumming clips representing diverse musical cultures. To
ensure comparability with NH2015, all analyses in this study were restricted to the shared subset of
165 sounds.

fMRI Procedure. The scanning procedure closely followed that of (Norman-Haignere et al.,
20135)), with some modifications. Each stimulus block consisted of three repetitions of a 2-second
sound, lasting 10.2 seconds total (TR = 3.4 s, 3 repetitions). Each participant completed 48 runs
across the 3 sessions (16 runs per session), with each run containing 24 stimulus blocks and 5 ran-
domly interleaved silent blocks. This design enabled each sound block to be repeated 6 times across
the experiment. Participants performed an intensity discrimination task, pressing a button upon
detecting the quietest of the three repetitions in a block (12 dB lower).

Data Acquisition. MRI data were collected using a 3T Siemens Prisma scanner with a 32-channel
head coil at the Athinoula A. Martinos Imaging Center at MIT. Functional volumes (48 slices per
volume) covered the superior temporal and parietal lobes, matching the anatomical mask used in
(Norman-Haignere et al., 2015). Imaging parameters were: TR = 3.4 s (TA =1 s), TE = 33 ms,
flip angle = 90°, in-plane resolution = 2.1 mm, slice thickness = 3 mm (10% gap), and voxel size =
2.1 x 2.1 x 3.3 mm. A multiband SMS factor of 4 was used to accelerate acquisition. Structural T1
images (1 mm isotropic) were also collected.
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Preprocessing. Preprocessing matched the pipeline used in (Norman-Haignere et al., 2015), but
with a general linear model used to estimate voxel responses due to the shorter stimulus blocks
and increased overlap in BOLD responses. For each stimulus block, beta weights were computed
using a boxcar function convolved with a canonical hemodynamic response function, along with 6
motion regressors and a linear trend term. Resulting beta weights were downsampled to a 2-mm
isotropic grid on the FreeSurfer cortical surface. Each participant’s cortical surface was registered
to the fsaverage template.

Voxel Selection. Voxels were selected using the same reliability-based procedure described in
(Tuckute et al.| [2023)). Reliability was computed from vectors of beta weights for the 165 shared
stimuli, estimated separately from two halves of the data (v; = runs 1-24, v9 = runs 25-48):

r—1— HV12 - projv3V12||§ where proj, vig = <V3 -V12> vs
[vizll3 ’ v [vsl[3

Voxels with 7 > 0.3 and significant sound-evoked responses (p < 0.001, uncorrected) were retained.
This procedure yielded a total of 26,792 reliable voxels across 20 participants (mean: 1,340 per
participant; range: 1,020-1,828).

A.4 VOXELWISE RESPONSE MODELING

This procedure was repeated 10 times (once per train-test split), and the median corrected vari-
ance explained was reported for each voxel-layer pair. We evaluated all layers from each candidate
model on both datasets, yielding voxelwise explained variance values for 7,694 voxels (NH2015)
and 26,792 voxels (B2021).

Regularized linear regression and cross-validation. To model the relationship between model
unit activations and measured brain responses, we used voxelwise linear encoding models. For
each voxel, we predicted its time-averaged response to natural sounds as a linear combination of
time-averaged activations from a specific model layer. We randomly split the 165 sounds into 10
unique train-test partitions of 83 training and 82 test sounds. For each split, we fit a regularized
linear regression (ridge regression) model using the 83 training sounds and evaluated prediction
performance on the held-out 82 sounds.

Regression formulation. Lety € R”™ be the voxel’s mean response to n = 83 sounds, and let
X € R™*? be the matrix of d regressors (i.e., time-averaged activations from a model layer). The
ridge solution is:

w=(X"X+n\)"'XTy

where A is the regularization parameter and w is the vector of regression weights. Both y and
the columns of X were demeaned (but not normalized) prior to regression. This allowed units with
greater magnitude variance to contribute more to the prediction under a non-isotropic Gaussian prior.
To avoid data leakage, all transformations were learned on the training set and applied to the test set.

We used leave-one-out cross-validation within the 83 training sounds to select A\. For each of 100
logarithmically spaced values (from 107°° to 10*?), we computed the mean squared error of the
predicted response for each left-out training sound. The A minimizing this error was used to retrain
the model on all 83 training sounds. The final model was then used to predict responses to the
82 held-out test sounds, and performance was quantified using the Pearson correlation between
predicted and actual voxel responses. Negative correlations or correlations with zero variance were
set to zero.

Correcting for reliability of predicted voxel responses. Because both training and test responses
are affected by measurement noise, we corrected for the reliability of both the predicted and mea-
sured voxel responses. This correction was essential to fairly compare model performance across
voxels and model layers. We defined the corrected variance explained using the attenuation-
corrected squared correlation:
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o« T(Vi23,V123)?
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where V123 is the voxel response to the 82 test sounds, V123 is the predicted response, and r?, r% are
the reliabilities of the measured and predicted responses, respectively. Reliability was estimated via
median Spearman—Brown corrected correlations across scan pairs. For stability, we excluded voxels
for which r], or 7}, was less than k = 0.182 and k = 0.183, respectively (corresponding to p < 0.05
thresholds for 83- and 82-dimensional Gaussian variables).
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