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1 Additional Results1

To better understand the performance of our framework visually, we prepare test time rollouts of our2

framework as well as those of various baselines in the supplementary video. The video is published3

anonymously and can be accessed in https://sites.google.com/view/3d-intphys4

1.1 Ablation Study5

We find that training the model with Chamfer distance in dense scenes with granular materials will6

often lead to predictions with unevenly distributed points where some points stick too close to each7

other. To alleviate the issue, we introduce the spacing loss to penalize the distance between these8

points. We set the threshold of penalty dmin to be 0.08 and the loss weight σ to be 10. We find that9

spacing loss can help improve the performance of the dynamics learner especially under extrapolate10

settings, as shown in Figure 1. We provide qualitative results in the supplementary video.11
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Figure 1: Ablation Study on the Spacing Loss. Training dynamics models in the GranularPush
scenario with spacing loss results in better rolling prediction. The performance gap is even more
substantial in the extrapolate setting.

2 Implementation Details12

2.1 Dataset Generation13

Our datasets are generated by the NVIDIA Flex simulator. Each of the three scenarios (Pour, Shake14

and Push) has 500 videos of trajectories taken from 6 views, with each trajectory consisting of 30015
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X-Range Y-Range Z-Range

FluidPour [-29.11, -12.66] [42.00, 60.00] [-7.78, 7.78]
FluidCubeShake [-3.25, 42.25] [19.25, 19.25] [-24.50, 24.00]

Table 1: Robot Action Space(centimeters): we show the range the robot arms can move in the
FluidPour and FluidCubeShake environments.

Figure 2: Illustration of the Environment Settings. In the FluidPour scenario, a robot arm holds
a container and tries to pour some fluid into another container. In the FluidShake scenario, a robot
moves a container with some fluid and cubes. We show the parameters for the container shape
referred in Table 2.

frames. We manually select the 6 views with reasonable coverage of the tabletop space to minimize16

the occlusion. The 500 trials are generated from five different sets of environmental parameters,17

detailed in Table 2. We take one set of parameters that are outside the training distribution as the18

extrapolate dataset for evaluating model generalization. For the rest of the four settings, we randomly19

split them into train and test sets with a ratio of 0.8.20

Next, we provide more details for each scenario:21

• In the FluidPour environment, we randomly initialize the position of the upper container22

and then generate random back-and-forth actions by tilting the container. The action space23

is then the position and tilting angle of the upper container.24

• In FluidCubeShake, we also randomly initialize the position of the container and the cubes25

inside the container. We then generate random but smooth action sequences moving the26

container in the 2D plane. The action space is then the x-y location of the container.27

• In GranularPush, we randomly initialize the position of the granular pile. Then, for each28

push, we randomly generate the starting and ending positions of the pusher and move the29

pusher along the straight line with an angle perpendicular to the pushing direction. The30

action space is a four-number tuple stating the starting and ending position on the 2D plane.31

The following table shows the moving range of the robot arms in the FluidPour and FluidCubeShake32

environments after normalizing the robot into a size that is the same as in the real world (unit:33

centimeters). For GranularPush, the pusher is moving over the entire table; we ignore the specific34

number in this environment as we do not have robot arms as a reference.35

Additional dataset samples. We show samples from the FluidPour, FluidCubeShake and Granular-36

Push dataset in Figure 3, 4 and 5, respectively. Note that all trajectories for the extrapolate settings37

are used only for testing and will not show up during the training process. We include more samples38

from the dataset in the video format in the supplementary video.39
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SceneName Params Env1 Env2 Env3 Env4 Extrapolate

FluidPour

X2 0.53 0.53 0.81 0.81 0.81
Y2 0.53 0.81 0.53 0.81 0.81
Z2 1.24 1.24 1.24 1.24 1.24
X1 1.35 1.35 1.35 1.35 1.35
Y1 1.35 1.35 1.35 1.35 1.35
Z1 0.74 0.74 0.74 0.74 0.74

AmountofWater 5125 5125 6125 5375 7625

FluidCubeShake

X1 0.88 0.88 1.32 1.32 1.32
Y1 0.88 1.32 0.88 1.32 1.32

CubeNumber 1 1 2 2 3
Water 2173 3322 3322 4858 4983

GranularPush GranularNumber 2197 4032 5832 9261 12167

Table 2: Scene Parameters for Generating the Interpolate and Extrapolate Datasets. We
generate the datasets by varying the shape of container, amount of water, number of cubes, and
quantity of the granular material. Zi, Xi, Yi are the height, width, and depth for a container i. Please
refer to Figure 2 for more details.
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Figure 3: Samples from FluidPour Dataset. We show sequences of frames over time with an
interval of 20 frames. The sequences above the dashed line are for interpolate data, and the bottom
images illustrate the extrapolate data.

2.2 Model Architecture40

Image-conditional NeRF. We follow the architectural design by [68]. For the feature encoder, we41

employ a ResNet-34 backbone to extract features. We use the output layers prior to the first four42

pooling layers, upsampling them using bilinear interpolation to the same size, and then concatenating43

these four feature maps. We initialize the weight of the feature extractor of the scene using ImageNet44

pre-trained weight. For the NeRF function f , We use fully-connected ResNet architecture with 545

ResNet blocks with a width of 512.46

Dynamics predictor. For the edge and vertice encoders, Qe and Qv , we use 3-layer fully-connected47

networks activated by the ReLU function with 150 hidden units. For the propagators, Pe and Pv , we48

use a 1-layer fully-connected network followed by ReLU activation. The output dimension of the49

linear layer is 150.50
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Figure 4: Samples from FluidCubeShake Dataset. We show sequences of frames over time with
an interval of 20 frames. The sequences above the dashed line are for interpolate data, and the
bottom images illustrate the extrapolate data.
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Figure 5: Samples from GranularPush Dataset. We show sequences of frames over time with an
interval of 20 frames. The sequences above the dashed line are for interpolate data, and the bottom
images illustrate the extrapolate data.

Sampling 3D points from the trained visual perception module. We sample points on a 40×40×4051

grid from an area of 55cm × 55cm × 55cm and 63cm × 63cm × 63cm at the center of the table52

for FluidPour and FluidCubeShake respectively, and on a 70 × 70 × 70 grid from an area of53

6cm × 6cm× 6cm for GranularPush. We evaluate and include points with a density (measured by54

the occupancy in the predicted neural radiance fields) larger than 0.99. To reduce the total number55

of points, we subsample the inferred points with FPS with a ratio of 5% for FluidPour and 10% for56

FluidCubeShake and GranularPush.57
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Graph building. We set the neighbour distance threshold δ to be 0.2, 0.15, 0.15 for FluidPour,58

FluidCubeShake and GranularPush respectively. We select the threshold so that each point will59

have on average 20 30 neighbors. Since, in FluidPour, we sample the points with lower density60

2000points/m2, we use a larger threshold for this scenario. For FluidShape and GranularPush, since61

the density is around 3000 points/m2, we cut down the number by 25%.62

We found that if the threshold is too small, the performance will degrade significantly since each63

particle will only receive messages from a few neighbors (and miss out on the larger context). On the64

other hand, setting the threshold too large will cause the training time to increase since the graph will65

have more edges. We found that setting the threshold around the right scale generally leads to more66

effective training of a reasonable dynamics network.67

2.3 Training Details68

The models are implemented in PyTorch. We train the perception module using Adam optimizer69

with a learning rate of 1e−4, and we reduce the learning rate by 80% when the performance on the70

validation set has stopped improving for 3 epochs. To compute the rendering loss when training the71

perception module, we sample 64 points through each ray in the scene and set the ray-batch size of72

the NeRF query function f to be 1024 × 32. Training the perception module on a single scenario73

takes around 5 hours on one RTX-3090.74

We train the dynamics simulator using Adam optimizer with a learning rate of 1e−4, and we reduce75

the learning rate by 80% when the performance on the validation set has stopped improving for 376

epochs. The batch size is set to 4. We train the model for 20, 30, and 40 epochs for FluidPour,77

FluidCubeShake, and GranularPush, respectively. It takes around 10 ∼ 15 hours to train the dynamics78

model in one environment on one single RTX-3090.79

2.4 Graph-Based Dynamics Model without Particle-level Correspondence80

The velocity of an object provides critical information on how the object will move in the future, yet,81

we do not have access to such information when tracking the object is impossible. As described in82

Section 3.2, the attributes avi of a vertex vi in the built graph consists of (1) velocity of this point in83

the past frames and (2) attributes of the point (rigid, fluid, granular). To get the velocity of a vertex v,84

we should have the history position of this vertex. However, since the point clouds are inferred from85

each frame independently, we do not know how each point moves over time since we do not have86

point correspondence between frames.87

To address the problem, we leverage the fact that some objects in the scene are easier to track, and88

we try to use the motion of these trackable objects to infer motion for the untrackable units. We89

assume that we know the dense-labeled states of some known fully-actuated shapes like desks and90

cups connected to the robot arms. Here we will list one specific scenario where a cup of water is91

poured into another cup. In this case, we have two different types of points: points for fluid and points92

for cups, we name the states of them in time step t as V t
P = {vtP,i} and V t

S = {vtS,i} respectively.93

For the particle encoder Qv, if the particle belongs to the cups, then the input of particle encoder94

contains ns history states before t0 : {V (t0−ns):t0
S }. If the particle belongs to the water, then we have95

no history states, so the input of Qv is all-zero.96

By adding the relative position between receiver and sender points, we can pass the momentum of VP97

to VS . Compared with human intuition, we can get an intuitive prediction of the movement of water98

by simply knowing the past movement of the cup without knowing the past movement of water.99

Following [47], we use the velocity of points and their relative position as inputs to the dynamics100

module instead of using the absolute positions of the points. This ensures the model is translation-101

invariant so the learned dynamics model can be shared across different spatial locations.102

2.5 Inference Speed of Our Model103

The prediction speed of the dynamics module depends on the number of input particles, and it takes104

around 0.1s for graphs with around 300 nodes in FluidShake and FluidPour, and around 0.2s for105

scenes with 700+ nodes in GranularPush.106
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For our visual module, the main time consumption comes from NeRF sampling, it takes 0.2s to107

sample from a grid space introduced in the experiment section of our paper, this was run in blocks,108

with block-size=1000, made up 4G of a V100 GPU. And it can be even faster with larger blocks. The109

sub-sampling process (FPS, segmentation) is fast since they are all written in parallel versions, which110

takes less than 5ms.111

3 Potential Society Impact112

Our work shows the possibility of learning dynamics models from raw sensory inputs, opening up113

opportunities to automate the design of differentiable physics engines through data-driven learning114

algorithms. The resulting system can potentially benefit many downstream tasks, including general115

scene understanding, robotics manipulation, the construction of 3D generative models, and inverse116

tasks like planning/control and inverse design. Furthermore, predictions from our model are highly117

interpretable, which makes it straightforward to explain model behaviors and re-purpose the outputs118

for other downstream applications.119

Though data-driven approaches are potentially more scalable with enough data, concerns still exist120

that it might be hard to ensure the robustness of the model under sensor noise and adversarial121

attacks. It also becomes less clear how to fully mitigate data biases. Therefore, bringing in advanced122

techniques from ML robustness will be one critical future avenue to pursue.123

4 Some Discussions124

Q: What is the novelty of the proposed framework?125

The proposed work aims to tackle the challenging problems of learning visual dynamics from raw126

images, which neither pixel-NeRF nor graph-based dynamics models alone can solve.127

Simply combining the two methods, unfortunately, does not provide a valid solution to the problem128

since existing point-based dynamics models need to learn from strong supervision provided by 3D129

ground truth point trajectories, which are hard to obtain in most real setups. For example, in our water130

experiments, it is impossible for any existing tracking method to successfully track each water particle.131

To tackle the problem, we propose several new techniques to facilitate dynamics learning without132

dense correspondence, including momentum passing from containers to fluids and new training loss133

(e.g., Chamfer distance loss and spacing loss). They allow more robust learning of dynamics models134

on raw point clouds sampled from the learned occupancy field (instead of the original simulator).135

Q: Is the color segmentation of the fluid objects a reasonable assumption?136

It should be noted that the color-based segmentation will not degrade the challenging problem of137

learning 3D Intuitive Physics, since the task focuses more on learning complex visual dynamics from138

images.139

We want to emphasize that the work focuses more on learning complex visual dynamics from images,140

as opposed to solving object segmentation in general. Learning fluids dynamics from videos is a141

challenging task, and there are only a few existing works. NeRF-dy is the closest to us, yet the model’s142

generalization ability is limited. We have shown in the proposed work that we can significantly143

improve the generalization ability by operating with a hybrid of implicit and explicit, as opposed to144

pure implicit, 3D representations. We agree object segmentation is a critical visual understanding145

problem, and solving it is an important next step to getting a more general visual dynamics learning146

framework.147

With recent advancements such as SAM [29] and SEER [71], which focus on segmentation in real-148

world scenarios, the possibility of video segmentation without the need for annotations has emerged149

(as is shown in Figure 6). This development paves the way for leveraging existing large-scale models150

to enhance the segmentation pipeline, offering great promise for future applications.151

Q: Since the fluid has zero velocitys, how to predict the intuitive dynamics?152
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Figure 6: SAM Working on FluidCube Shake: Recent large segmentation models can well generate
masks for different objects in the scene.

The intuition is that we can infer the water movement from the container’s movement. We also153

assume that the initial velocity of water is nearly zero, which is also used in [50], so the momentum154

can be gradually passed from the container to the water.155

We propose this assumption so that the intuitive physics model can be learned from (1) particles156

sampled from the neural radiance field, which is not stable (2) point clouds without one-to-one157

correspondence. The results show that we can learn reasonable dynamics (water poured out from a158

cup, water falling in the container, cubes moving in water, and granular materials pushed away by a159

pusher). It also shows the potential of distribution-based loss in learning visual dynamics.160
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