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ABSTRACT

Effectively balancing switching costs and regret remains a fundamental challenge in bandit
learning, especially when the arms exhibit similar expected rewards. Traditional upper
confidence bound (UCB) -based algorithms struggle with this trade-off by frequently
switching during exploration, incurring high cumulative switching costs. Recent approaches
attempt to reduce switching by introducing structured exploration or phase-based selection,
yet they often do so at the expense of increased regret due to excessive exploitation of
suboptimal arms. In this paper, we propose a new unified framework for bandit problems
with switching costs, containing several classical algorithms, applicable to both Multi-
Armed Bandits (MAB) and Combinatorial Multi-Armed Bandits (CMAB). Our approach is
built on three key components: initial concentrated exploration, near-optimal exploitation,
and predictive selection, which together achieve a principled balance between switching
cost and regret. Based on this framework, we introduce the Minimal Switching Cost and
Minimal Marginal Regret (MSMR) family of algorithms. Theoretically, we show that
MSMR algorithms achieve a regret upper bound of O(log n) over horizon n, incur only
O((log n)1−ε) switching cost, and its marginal loss has an upper bound of O(λ

√
log n)

by setting ε = 1/2, where λ and ε ∈ (0, 1) are hyper-parameters. Experiments show that
MSMR algorithms reduce switching costs to 1.0% (MAB) and 1.3% (CMAB) of those
incurred by standard baselines, while maintaining comparable regret, demonstrating their
practical effectiveness.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem is a classical framework for sequential decision-making,
where a learning agent repeatedly chooses from a set of arms with unknown reward distributions to minimize
cumulative regret (16). Over the years, this framework has been extended to accommodate more complex
scenarios. A notable generalization is the combinatorial multi-armed bandit (CMAB) problem, where the
agent selects a subset of base arms—known as a super arm—in each round, and receives feedback from all
the selected base arms. This formulation captures a wide range of real-world applications, including online
advertising, network optimization, and healthcare systems (6; 25; 21; 19; 9).

To minimize regret, traditional bandit algorithms aim to balance exploration and exploitation. Since Thomp-
son’s early work on bandits for clinical trials (24), a rich body of theoretical and algorithmic developments
has followed. Lai and Robbins (15) established the first lower bounds for regret, showing that it must grow
at least logarithmically in the number of rounds. Auer et al. (3) proposed the UCB algorithm, achieving
logarithmic regret. In the combinatorial setting, Chen et al. (6) introduced the CUCB algorithm, which was
later extended to probabilistically triggered arms (8), both achieving O(log n) regret bounds.

However, in many practical applications, regret is not the only performance measure, as switching between
arms across rounds may incur explicit or implicit costs. For example, in co-branding recommendation systems,
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Table 1: Comparison of Regret, Switching Cost, and Marginal Loss Upper Bound.
Setting MAB Algorithm Regret Switching Cost Marginal Loss

UCB(3) O(logn) O(logn) O(λ log(n))
Phased-UCB(16) O(logn) O(log logn)* O(logn+ λ log log n)

MAB Batched Tsallis-INF(1) O(logn) ———— O(λ1/3n2/3)

Batched Arm Elimination (13) O(n1/B logn)** O(B) O(n1/B logn+ λB)
MSMR-UCB O((logn)ε) O((logn)1−ε) O(λ

√
logn)

CUCB(6) O(logn) O(logn) O(λ logn)
CMAB Phased-CUCB(16) O(logn) O(log logn) O(logn+ λ log log n)

B-FTRL (11) O(n2/3) O(n2/3) O(λn2/3)
MSMR-CUCB O((logn)ε) O((logn)1−ε) O(λ

√
logn)

* Appendix J theoretically analyzes why MSMR performs better than Phased methods.
** B is the number of batches and small B will cause large regret.

repeatedly switching recommended items adds fixed overhead beyond suboptimal choices. Similarly, in
session-based recommendation scenarios (26), frequent product changes can fragment user attention and
reduce click-through rates (CTR), creating additional operational costs. These overheads are commonly
termed switching costs. To address this, several recent works propose switching-aware bandit algorithms.
A common approach uses phased strategies that repeatedly select the same (super) arm within each phase,
limiting the number of switches. This framework has been applied in both MAB settings, such as Batched
Tsallis-INF (16; 14; 22; 1), and CMAB settings, such as B-FTRL (11), to reduce switching frequency.

Despite these advances, existing methods still suffer from two fundamental dilemmas: (1) The dilemma
between regret and switching cost: To reduce switching, current algorithms often tolerate increased regret,
both Batched Tsallis-INF and B-FTRL have polynomial-level regret, which may be unacceptable in regret-
sensitive applications. (2) The dilemma among arms with similar rewards: When many (super) arms
have similar expected rewards, existing methods like B-FTRL tend to oscillate between them, resulting in
excessive switching while elimination-based methods (14) risk converging to suboptimal policy.

Regarding these challenges, we propose a novel framework called Bandit with Minimal Switching Cost and
Minimal Marginal Regret (MSMR), which incorporates three key technical modules: initial concentrated
exploration, near-optimal exploitation, and predictive selection. The initial concentrated exploration phase
occurs at the beginning of the learning process and uses a single phase to gathering sufficient information for
each arm. The near-optimal exploitation technique determines whether the currently selected arm should
be pulled additional times within the current phase. The predictive selection technique anticipates whether
the currently selected arm will need to be explored in the near future, allowing the algorithm to explore
it proactively in advance. We prove the effectiveness of these techniques and theoretically demonstrate
that MSMR achieves a switching cost of only O((log n)ε), while maintaining asymptotically the same
regret as standard bandit algorithms, which is O(log n), where n is the time horizon and 0 < ε < 1 is a
hyper-parameter we can choose flexibly. The main contributions of this paper are as follows:

• We propose a novel unified framework to address the two dilemmas in bandit problems: the trade-off
between regret and switching cost, and the instability caused by arms with similar expected rewards. This
framework, which encompasses a range of classical algorithms, incorporates three core techniques and is
highly flexible, allowing it to adapt to a wide range of bandit settings, including both MAB and CMAB.

• We provide rigorous theoretical guarantees for each core technique in the framework and prove that MSMR
algorithms achieve a significantly improved trade-off between regret and switching cost. Unlike existing
methods that typically reduce switching cost at the expense of marginal regret, through the carefully
designed exploitation function in the near-optimal exploitation module, MSMR asymptotically achieves
the same regret as standard algorithms, while incurring only minimal switching cost.
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• We conduct extensive experiments and ablation studies on MSMR algorithms. The results show that MSMR
achieves only 1.0% and 1.3% of the switching cost incurred by standard methods in MAB and CMAB
settings respectively, while maintaining nearly the same level of regret. These results highlight the superior
performance of our framework and the effectiveness of the key techniques.

2 RELATED WORKS

The Multi-Armed Bandit (MAB) problem serves as a foundational model in sequential decision-making,
balancing exploration and exploitation to minimize regret (16). While MAB focuses on selecting a single
arm, real-world applications like online advertising often require choosing combinations of arms, leading
to the Combinatorial Multi-Armed Bandit (CMAB) framework, which generalizes MAB by allowing the
selection of super arms, i.e., combinations of base arms, at each round (8; 25; 20).

Phased Bandits: Phased bandit algorithms partition the learning process into discrete phases, maintaining a
fixed action within each phase to reduce computational overhead and accelerate exploration. This approach
mitigates the frequent updates required in traditional bandit algorithms, offering efficiency gains. (16) provide
a comprehensive overview of bandit algorithms, including phased strategies. In the batched setting, Perchet et
al. (2016) analyze the trade-offs between batch size and regret, demonstrating that appropriately chosen batch
sizes can yield near-optimal performance. In adversarial contexts, (11) introduce algorithms that adaptively
determine phase lengths to balance exploration and exploitation effectively. Moreover, (4) discusses the
benefits of structured exploration in adversarial environments. These phased approaches are particularly
beneficial in scenarios where switching costs or computational constraints are significant concerns.

Switching Cost:Incorporating switching costs into bandit problems introduces additional complexity, as
learners must balance the trade-off between exploration benefits and the incurred costs of changing actions.
(11) analyze this scenario, establishing a regret lower bound of Θ̃(n) for adversarial bandits with unit
switching costs. (23) further explored the stochastic setting, revealing phase transitions in optimal regret
rates as a function of the switching budget. Then (14; 1) gave the Batched Tsallis methods in MAB
setting and (11) B-FTRL in CMAB settings. Phased strategies naturally align with the goal of minimizing
switching costs by limiting action changes to phase boundaries. (2) extended this concept to settings with
feedback graphs, proposing algorithms that consider both the structure of feedback and switching costs.
These approaches demonstrate that structured exploration can effectively manage switching costs without
significantly compromising regret.

While existing algorithms address either regret minimization or switching cost reduction, achieving an optimal
balance between the two remains challenging. (11) highlights that minimizing switching costs often leads to
increased regret, as infrequent action changes can hinder exploration. (23) demonstrates that strict switching
constraints can cause abrupt changes in optimal strategies, complicating the learning process. Moreover, in
environments with numerous similar arms, algorithms may oscillate between near-optimal actions, incurring
unnecessary switching costs without substantial gains in reward. (2) addresses this by incorporating feedback
graphs, yet challenges persist in balancing exploration and exploitation under switching constraints. The
newest methods given by (14; 1; 11) still cause a large number of regret though reducing switching costs.
These limitations highlight the need for a novel framework that significantly reduces switching costs while
incurring only minimal marginal regret compared to standard methods.

3 PROBLEM SETUP

Regret. We denote [[K]] as the set {1, 2, . . . ,K} for any K ∈ N+, and ζ(·) as the Riemann Zeta Function,
which is ζ(s) =

∑∞
n=1 n

−s. Let [[K]] denotes the set of arms. For each arm i ∈ [[K]], pulling it at round t
yields a reward feedback Xi,t ∈ [0, 1]. The unknown reward vector is represented by µ = (µ1, . . . , µK),
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where µi = E[Xi,t] denotes the expected reward for any arm i. The optimal arm is denoted as the arm i∗
which maximizes the expected reward, i.e., µ∗ = maxj∈[[K]]µj . At each round t, the agent selects an arm it.
The objective of the MAB problem is to identify this optimal arm while minimizing regret in time horizon n,
which is defined as:

Reg(n) = nµ∗ − E[
n∑

t=1

Xit,t]. (1)

Based on the definition above, in the CMAB scenario, the learning agent selects a combination of multiple
base arms from [[K]] at each round, referred to this combination as a super arm S, which has m base arm in it.
Let S as the set of all feasible super arms. At each round t, the agent selects a super arm St ∈ S , and the
outcomes Xi,t for all base arms i in St are revealed. The reward for a selected super arm St at round t, denoted
as R(St), is a non-negative random variable that depends on the specific problem instance, the selected super
arm St, and the rewards of the revealed base arms. In some scenarios, the reward can be simply as the sum
of the rewards of the base arms in St: R(St) =

∑
i∈S Xi,t (18), while in more general cases, the reward

function can be more complex, such as nonlinear functions, non-symmetric functions of rewards from these
base arms, etc. The expected reward of selecting a super arm is defined as rµ(S) = E[R(St)]. The optimal
super arm is denoted as the super arm S∗ that maximizes the expected reward, i.e., rµ(S∗) = maxS∈Srµ(S).
The goal of CMAB is to identify the optimal super arm while minimizing regret. For many reward functions,
computing the exact S∗ is NP-hard, even when µ is known. To address this, CMAB literature (25; 27; 20; 9)
often assumes access to an offline (α, β) -approximation oracle. This oracle, for given parameters α, β ≤ 1,
takes an expectation vector µ as input, and outputs a super arm S ∈ S , such that P [rµ(S) ≥ α · optµ] ≥ β,
where β is the success probability of the oracle, and optµ = rµ(S∗) is the mean reward of the optimal super
arm. The (α, β)-approximation regret of a CMAB algorithm after n rounds of play using such an oracle
under the expectation vector µ is formally defined as:

Regµ,α,β(n) = n · α · β · optµ − E

[
n∑

t=1

rµ(St)

]
. (2)

Following (6; 8; 20), we make two mild assumptions about the expected reward rµ(S):

• Monotonicity. The expected reward of playing any super arm S ∈ S is monotonically non-decreasing with
respect to the expectation vector. Specifically, if for all i ∈ [[K]], µi ≤ µ′

i, then rµ(S) ≤ rµ′(S) for all
S ∈ S.

• Bounded smoothness. There exists a strictly increasing (and thus invertible) function f(·), called the
bounded smoothness function, such that : (1) for any two super arm S and S′, we have 0 ≤ rµ(S) −
rµ(S

′) ≤ f(Γ1) if mini∈S maxj∈S′ |µi − µj | ≤ Γ1 . (2) for any two expectation vectors µ and µ′, we
have |rµ(S)− rµ′(S)| ≤ f(Γ2) if maxi∈S |µi − µ′

i| ≤ Γ2.

Switching Cost. We define the switching cost as the total number of times the agent changes its selected
(super) arm between consecutive rounds. Formally, the switching cost C(n) in MAB and CMAB settings are
given by:

C(n) = E[
n−1∑
t=1

I(it ̸= it+1)], and C(n) = E[
n−1∑
t=1

I(St ̸= St+1)], (3)

where I(·) is the indicating function. This metric quantifies switching costs between selecting different (super)
arms and is critical in applications where frequent changes incur penalties (11; 22).

Marginal Loss. When evaluating the trade-off between regret and switching cost, some studies(1; 22) have
adopted a linear combination of the two as an integrated performance metric. Following a similar approach,
this paper defines the marginal loss as the difference between such a combination and its theoretically optimal
counterpart, formally given as:

RA(λ, n) = (RegA(n)−Regopt(n)) + λ(CA(n)− Copt(n)), (4)
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where Regopt(n) is the lowest regret that can be achieved up to now, Copt(n) is the lowest switching cost that
can be achieved up to now. We choose standard UCB(CUCB) algorithm as Regopt(n) and greedy algorithm
as Copt(n)(see Appendix G for details). In this setting, the metric reflects the capability of balancing regret
and switching cost by comparing the existing measure with its theoretical optimum.

Upper Confidence Bound. In bandit problems, Upper Confidence Bound (UCB)-based approaches are
widely used to balance exploration and exploitation. These methods aim to exploit the best-known (super)
arms while still exploring less-visited ones to avoid convergence to suboptimal solutions (16). Specifically,
they maintain an upper confidence estimate for each (super) arm that combines its empirical mean with an
exploration bonus, and select the (super) arm with the highest estimate at each round. The width of the
confidence interval controls the level of exploration (19). Below, we outline the design of UCB in both the
MAB and CMAB settings.

In the MAB setting, let Ti(t) denote the number of times arm i has been pulled up to round t. The empirical
mean reward of arm i is given by: µ̂i,t = (1/Ti(t))

∑t
s=1 Xi,s · I(js = i). The corresponding upper

confidence estimate is: µ̄i,t = µ̂i,t+ci,Ti(t), where the confidence bonus is defined as ci,Ti(t) =
√
2 ln t/Ti(t).

In the CMAB setting, Ti(t) and µ̂i,t are computed in the same way as in the MAB case. The upper
confidence estimate is also defined as µ̄i,t = µ̂i,t + ci,Ti(t), but with a slightly different confidence interval:
ci,Ti(t) =

√
3 ln t/2Ti(t), since the super arm involves the combination of multiple base arms. For specific

derivations, please refer to (6).

4 ALGORITHMS

Determining “when to switch without sacrificing performance” is a central challenge in bandit learning with
switching costs. To address the trade-off between regret and switching cost, we propose the Bandit with
Minimal Switching Cost and Minimal Marginal Regret (MSMR) framework for various bandit settings.
MSMR begins with an “Initial Concentrated Exploration” phase, where all arms are explored in a single batch
to collect sufficient statistics while avoiding repeated switches. In the subsequent “Near-optimal Exploitation”
phase, switching costs are reduced by favoring arms with higher empirical rewards. Together, these phases
substantially lower switching costs while incurring only minimal marginal regret. To further improve
performance when (super) arms have similar rewards, we introduce a “Predictive Selection” technique that
anticipates near-future selections to prevent unnecessary switches. Due to space constraints, we only present
MSMR-CUCB in the main text and other variant is provided in Appendix C.

Phase 1: We adopt an initial concentrated exploration strategy. In the MAB setting, we continue exploring
an arm i as long as µ̂i,t +

√
2 lnn/Ti(t) ≥ 1. In the CMAB setting, a super arm S is explored while

minj∈S µ̂j,t +
√
3 lnn/2Tj(t) ≥ 1, enabling efficient, compact exploration. Due to feature of UCB-based

algorithms, where the frequency of exploring a suboptimal (super) arm depends on its reward gap from the
optimal, even the worst-performing (super) arm is pulled at least O(log n) times (15). Building on this, we
concentrate these inevitable explorations into a single initial phase. Allocating sufficient exploration at the
start naturally reduces switching costs and gathers information crucial for effective learning in subsequent
phases.

Phase 2: If the selected (super) arm i or S has a relatively large empirical estimate, the agent pulls it
γi(t) or γS(t) = γargminj∈STj(t)(t) times (we express it generally as γ(t) for simplicity; see Section 5 for
detailed expressions), where γ(·) is the exploitation function. For example, γ(t) = 1 in CUCB (6), while
γ(t) = O(t1/2) in B-FTRL. A “relatively large empirical estimate” means it = î∗,t in the MAB setting
and rµ̂(St) ≥ α · rµ̂(Ŝ∗,t) in the CMAB setting, where it = argmaxj∈[[K]]µ̄j,t, î∗,t = argmaxj∈[[K]]µ̂j,t,
St = argmaxS∈Srµ̄(S), and Ŝ∗,t = argmaxS∈Srµ̂(S) in round t. Here, α is the approximation parameter
in the (α, β)-approximation oracle.
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Near-optimal exploitation is a strategy where the agent repeatedly exploits a selected (super) arm with a
relatively large empirical estimate, assuming it is near-optimal. We argue that when the UCB-selected arm
also attains the highest empirical mean, it becomes a more reliable candidate for “near-optimal exploitation,”
justifying more aggressive exploration. If the selected (super) arm is optimal, the agent exploits it without
incurring any regret. If it is suboptimal, its empirical estimate is typically close to the optimal arm’s. As
noted in (15; 16), when expected rewards are similar, the theoretical lower bound on required explorations
increases substantially. To reduce switching costs, these repeated explorations are grouped into a single phase.
Importantly, exploring such arms in advance does not significantly affect overall regret, since these steps are
inevitable under UCB-based algorithms and mainly occur during the under-sampled stage (see Appendix E
for details).

Predictive Selection: In bandit problems, switching costs arise from two sources: (1) switching between
suboptimal (super) arms and the optimal one, and (2) switching among suboptimal (super) arms. Once the
agent selects a suboptimal (super) arm, at least one switching cost with the optimal arm is incurred, which is
inevitable under UCB-based algorithms. Consider the MAB setting: if the optimal arm has the lowest upper
confidence bound, the agent may keep exploring suboptimal arms until the optimal arm attains the highest
bound, resulting in many switches among suboptimal arms. However, if we can predict that the selected
arm it will be explored in the future before the optimal arm reaches the highest bound, we may explore it in
advance even if its current estimate is not the highest. This strategy reduces switching among suboptimal
arms and applies similarly to the CMAB setting, hence the term predictive selection.

In MAB setting, for any arm i, once the agent chooses an arm it1 ̸= î∗,t1 to explore at round t1, the algorithm
will repeatedly select it1 in the subsequent phase regardless of the upper confidence estimation if the following
inequality holds: √

2 ln(t2)/Tit1
(t2) + µ̂it1 ,t2

≥
√

2 ln(t3)/Tî∗,t2
(t2) + µ̂î∗,t2 ,t2

, (5)

where t2 = t1 + γit1 (t1) and t3 = t2 +
∑

j ̸=it1 ,̂i∗,t2
γj(t2).

In CMAB setting , once the agent chooses a super arm St1 ̸= Ŝ∗,t1 to explore at round t1, the algorithm will
repeatedly select St1 in the subsequent phase regardless of the upper confidence estimation if the following
inequality holds:

r(µ̂t2 , ct2 , St1) ≥ r(µ̂t2 , ct3 , Ŝ∗,t2), (6)

where ct = (ci,t)i∈[[K]] , r(µ̂t, ct, ·) ≜ rµ̂t+ct
(·) = rµ̄t

(·), t2 = t1 + γSt1
(t1) and t3 = t2 +∑

j∈{[[K]]\(St1

⋃
Ŝ∗,t2 )}

γj(t2). We use MSMR-P to represents the MSMR Algorithm with Predictive Selec-
tion 4 (See Appendix C for MSMR Algorithm with Predictive Selection).

5 THEORETICAL ANALYSIS

In this section, we present some theoretical analyses of our proposed methods, including the regret bounds
and switching cost of the MSMR algorithms. A comparison between the MSMR algorithms and other existing
methods is shown in Table 1.

Lemma 5.1 Initial concentrated exploration doesn’t increase marginal regret with a probability larger than
1−Kn−4 in MAB and 1−Kn−3 in CMAB.

Lemma 5.1 shows that the MSMR algorithm, when equipped with the initial concentrated exploration
technique, incurs no higher regret than the standard MSMR algorithm without this technique. As demonstrated
in Appendix D, the regret incurred during the initial phase is captured by the under-sampled stage of UCB-
based algorithms. Therefore, the initial concentrated exploration technique effectively reduces switching
costs without introducing marginal regret with a large probability.
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Algorithm 1 MSMR-CUCB Algorithm

Input: Time horizon n, constant M , α, function γ(·)
1: t← 1, µ̂i ← 1 for all i
2: while Exists i makes Ti(t) = 0 do
3: {µ̂j1 , µ̂j2 , . . . , µ̂jK} ← Sort base arm by µ̂i in a decreasing way
4: S ← {j1, j2, . . . , jm}
5: Play S and observe Xi,t, for any i ∈ S, update Ti(t) ← Ti(t) + 1, µ̂i,t ← Ti(t−1)·µ̂i,t−1+Xi,t

Ti(t)
,

µ̄i,t ← µ̂i,t +
√
3 ln t/2Ti(t) , µ̄′

i,t ← µ̂i,t +
√
3 lnn/2Ti(t) until minj∈S µ̄′

j,t ≤ 1 and update t
6: end while
7: while t ≤ n do
8: St ← argmaxS∈Srµ̄(S), Z ← γSt(t)

9: Ŝ∗,t ← argmaxS∈Srµ̂(S),
10: Z ←M · γSt

(t) when rµ̂(St) ≥ α · rµ̂(Ŝ∗,t)
11: Play super arm St min{Z, n− t}times
12: Update t and Ti(t), µ̂i,t, µ̄i,t for all base arms
13: end while

Theorem 5.2 By setting γi(t) = N(Tit(t))
ε, 0 < ε < 1 and N is a constant, with probability lager than

1−Kn−4, the regret upper bound of MSMR-UCB is∑
i ̸=i∗

(
8 lnn

∆i
+MN(8 ln(n))ε∆1−2ε

i + 2MN · ζ(2− ε)∆i

)
, (7)

where ∆i = µ∗ − µi for each arm i.

Before presenting the regret upper bound of MSMR-CUCB, we first define the gap between super arms
in the CMAB setting. Under the (α, β)-approximation oracle, a super arm S is considered sub-optimal if
rµ(S) < α · optµ. Let Si,B denote the set of all sub-optimal super arms that include base arm i. We sort the
elements in Si,B as S1

i,B, S
2
i,B, . . . , S

Ki

i,B in increasing order of their expected rewards, where Ki is the number
of such super arms. The regret gap for the j-th sub-optimal super arm is defined as ∆i,j = α ·optµ−rµ(S

j
i,B).

Theorem 5.3 By setting iS,t = argminj∈STj(t) and γS(t) = N(TiSt,t
(t))ε, with probability lager than

1−Kn−3, the regret upper bound of MSMR-CUCB is∑
i∈[[K]],∆i

min≥0

(
ℓn(∆

i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

ℓn(x) dx

)
+ 2KMNζ(2− ε)∆max

+KMN max
k∈[[Ki]],i∈[[K]]

{(ℓn(∆i,k))ε∆i,k}.
(8)

where ℓn(∆
i,l) = (6 lnn)/(f−1(∆i,l))2, ∆i

min = ∆i,Ki and ∆max = maxi∈[[K]] ∆
i,1,

Theorems 5.2 and 5.3 provide the regret bounds of MSMR algorithms, which dynamically depend on
the hyperparameter ε. This parameter controls the trade-off between switching cost and marginal regret,
affecting the length of the near-optimal exploitation phase. Its value can be chosen initially based on
application requirements and known problem parameters, offering flexibility to adapt the algorithm to
different scenarios. Let Reg1(n) and Reg2(n) denote the regret upper bounds of MSMR in MAB and CMAB
settings, respectively, and Regopt1 (n) and Regopt2 (n) the bounds of classical algorithms established in prior
work (3; 6). Then, the following relationship holds:
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lim
n→∞

Reg1(n)

Regopt1 (n)
= lim

n→∞

Reg2(n)

Regopt2 (n)
= 1. (9)

This indicates that our algorithm is asymptotically consistent with the classical counterparts, incurring only
minimal marginal regret regardless of the value of ε.

Theorem 5.4 Setting γi(t) = N(Tit(t))
ε. If

(
2

ε
1−ε /(N(1− ε))

)
≤ ln(n), the switching cost upper bound

of MSMR-UCB is

4KMN · ζ(2− ε) + 2
∑
i ̸=i∗

(
8 ln(n)

∆2
i

)1−ε
2

ε
1−ε

N(1− ε)
+ 2K.

Theorem 5.5 Setting γS(t) = N(TiSt,t
(t))ε. If

(
2

ε
1−ε /(N(1− ε))

)
≤ ln(n), the switching cost upper

bound of MSMR-CUCB is

4KMN · ζ(2− ε) + 2

K∑
i=1

(
6 ln(n)

(f−1(∆i,Ki))2

)1−ε
2

ε
1−ε

N(1− ε)
+ 2

K∑
i=1

Ki.

Theorems 5.4 and 5.5 present the switching cost of the MSMR algorithms, which depend dynamically on the
choice of the parameter ε, which plays a leading role. The value of ε can be still determined at the beginning
based on specific application requirements and known problem parameters.

Lemma 5.6 If it1 ̸= î∗,t1 is selected at round t1 and Eq.5 is hold at round t2 = t1 + γit1 (t1), at least one
arm i ̸= î∗,t2 will be pulled more than 1 phases before the round t′ where î∗,t2 = it′ .

Lemma 5.7 If St1 ̸= Ŝ∗,t1 is selected at round t1 and Eq.6 is hold at round t2 = t1 + γSt1
(t1), at least one

base arm i /∈ Ŝ∗,t2 will be pulled more than 1 phases before the round t′ where Ŝ∗,t2 = St′ .

Lemma 5.6 and 5.7 shows that the predictive selection technique predicts whether there exists any arm or
base arm will be pulled more than one phases before we exploit the empirical optimal (super) arm. Taking
this into consideration, We can directly explore the current selected (super) arm to reduce potential switching
cost, which also have a large empirical estimation that creates less regret.

Theorem 5.8 With the probability larger than 1−Kn−4 in MAB and 1−Kn−3 in CMAB, the marginal
loss upper bound of MSMR algorithms is O((log n)ε + λ(log n)1−ε).

In most cases, λ is constant, and setting ε = 0.5 yields the theoretical minimum marginal loss O(λ
√
log n).

When λ depends on n, the optimal ε can be derived, e.g., for λ =
√
log n, the optimal choice is ε = 2/3.

From a broader perspective, if the parameter ε ∈ [0, 1], our proposed MSMR framework encompasses two
representative baseline algorithms as special cases. Taking the CMAB setting (Algorithm 1) as an example
(ignoring the initial concentrated exploration phase, i.e., lines 2–4), we observe the following limiting cases:
When ε = 0, M = 1, and N = 1, the algorithm degenerates into standard CUCB, which incurs high
switching cost. When ε = 1, M = 1, N = κ, and γSt

(t) = κt, it reduces to Phased-CUCB, which typically
suffers from higher regret. The MSMR framework achieves a better balance between regret and switching
cost, lying between these extremes.

6 NUMERICAL SIMULATIONS

In this section, we present experiments to assess the performance of our algorithms on both synthetic and
real-world datasets. Each experiment was conducted over 20 independent trials to ensure reliability, with
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n = 100000, N = 1, M = 5 for all bandit settings and α = 0.95 , β = 1 for CMAB. The tests were
performed on a macOS system equipped with an Apple M3 Pro processor and 18 GB of RAM. Here, we
present only the experiments for the CMAB setting. For results on MAB settings, ablation studies, and
real-world datasets, please refer to Appendix I.

6.1 EXPERIMENT SETUP

Data Generation. We conduct experiments on cascading bandits, a specific instance of CMAB, comparing
against algorithms CUCB (6), phased-CUCB(16), B-FTRL(11). The objective is to select m = 5items from a
set of K = 20 to maximize the reward. We give a very similar reward distribution where µi = 0.3+0.002× i.
In each round t, a list St = (at,1, . . . , at,m) ⊆ [[K]] is randomly selected. The outcome Xt,i for each i ∈ St

is generated from a Bernoulli distribution with mean µi. Given the ranked list St, if stopping at the jt-th
item, the observed outcomes are: (Xt,a1

, . . . , Xt,ak
) = (0, . . . , 0, 1, x, . . . , x), where the first jt − 1 items

are 0, the jt-th item is 1, and the rest are unobserved (x). If the list is exhausted, the observed outcomes are:
(Xt,a1 , . . . , Xt,ak

) = (0, 0, . . . , 0). The reward is 1 for stopping and 0 for exhausting the list. The reward
function can be written as r(St;µ) = 1−

∏
i∈St

(1− µi).

6.2 EXPERIMENTAL RESULTS

Regret, Switching Cost and Marginal Loss. In Figure 1(a), we observe that the regret of MSMR and
MSMR-P closely matches that of the standard baseline methods. In contrast, B-FTRL exhibits noticeably
higher regret. Figure 1(b) further shows that standard and phased methods suffer from a substantial number
of switches, often exceeding several thousand. B-FTRL also incurs a significant number of switches. In
comparison, MSMR results in only 432 in the CMAB setting, amounting to merely 2.4% of the switches
incurred by CUCB. Moreover, MSMR-P achieves even greater savings, reducing switching to just 1.3% of
CUCB—representing a nearly 50% reduction in switching cost compared to MSMR. These results highlight
the effectiveness of the predictive selection technique. In terms of marginal loss, figure 1(c) further shows that
the MSMR framework achieves remarkably low loss compared to the best existing algorithm, significantly
outperforming all other methods.

(a) Regret (b) Switching Cost (c) Marginal Loss
Figure 1: Synthetic Experiments on CMAB

7 CONCLUSION

This paper introduces a novel bandit framework that achieves minimal switching cost and minimal marginal
regret, effectively addressing the trade-off between switching costs and regret in bandit algorithms. We
develop general techniques—initial concentrated exploration, near-optimal exploitation, and predictive
selection, which are broadly applicable to MAB and CMAB settings. Through rigorous theoretical analysis,
we establish that these techniques guarantee only O((log n)1−ε) switching cost while incurring negligible
marginal regret, thereby achieving only O(λ(

√
log n) marginal loss. Empirical results further demonstrate

that MSMR algorithms perform only a few hundred switches, merely 1.3% of those made by standard
methods, highlighting the significant advantage of MSMR over existing algorithms. Besides, this paper only
provides some theories for part of the bandit scenarios. We hope to extend this framework to more scenarios
such as linear or constrained bandit in the future.
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A NOTATION

Table 2: Notation.

Alphabet Meanings
ci,Ti(t) confidence interval for arm i in round t
C(n) switching cost
f(·) bounded smoothness function
Ft oracle fails to produce an α approximate answer with respect to input vector µ̄t in round t
i arm in MAB or base arm in CMAB
iS,t arm belong to S with lowest pulled time up to round T
it arm selected in round t
i∗ optimal arm
î∗ arm with largest empirical mean reward
I(·) indication function
K number of arms
Ki number of sub-optimal supers arm containing i
K ′

i number of sub-optimal super arms containing i indeed pulled in transition stage
L(·) M × γ(·)
Li,j length of jth phase for arm i
ℓ(·) function in CUCB(6)
M hyperparameter in MSMR algorithms
n time horizon
N constant in γ(·)
Ni counter for base arm i
Ni,t counter for base arm i after round t
N l

i,t increasing counter for base arm i due to Sli,B after round t

N l,suf
i,t increasing counter for base arm i due to Sli,B after round t in sufficiently sampled stage

N l,und
i,t increasing counter for base arm i due to Sli,B after round t in under-sampled stage
Nt process is nice at round t
optµ expect reward for S∗
rµ(S) expect reward function for S
R(S) reward function for S
RA(λ, n) marginal loss in time horizon n
Reg(n) regret in time horizon n
Regu(n) regret in under-sampled stage in time horizon n
Regt(n) regret in transition stage in time horizon n
Regs(n) regret in sufficiently sampled stage in time horizon n
S super arm
St super arm selected at round t
S∗ optimal super arm
Sji,B sub-optimal super arms containing arm i with jth lowest expected reward
Ŝ∗,t super arm with largest reward under rµ̂(·) at round t
S set of super arms
Si,B set of all sub-optimal super arms containing arm i
t time round
tu,i number of phases for selecting arm i in under-sampled stage
tt,i number of phases for selecting arm i in transition stage
Continued on next page

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Table 2 – continued from previous page
ts,i number of phases for selecting arm i in sufficiently sampled stage
ts number of phases for selecting any sub-optimal super arm in sufficiently sampled stage
Ti(t) number of times arm i has been pulled up to round t
Wi,s sum of Li,1 to Li,s

Xi,t reward feedback for arm i in round t
yi item vector for item i
α parameter in (α, β) -approximation oracle
β parameter in (α, β) -approximation oracle
δi,k regret gap of kth sub-optimal super arm containing i indeed pulled in transition stage
∆i regret gap for arm i

∆i,j regret gap for Sj
i,B

∆i
min sub-optimal super arm with smallest regret gap containing i

∆i
max sub-optimal super arm with largest regret gap containing i

∆max sub-optimal super arm with largest regret gap
ε index in γ(·)
θu user preference vector for user u
γ(·) exploitation function
Λi,t confidence interval for base arm i in round t in CMAB
Λt largest confidence interval among all base arm in round t in CMAB
Λi,l

√
3 ln(n)/2ℓ(∆i,l)

µi expected reward for arm i
µ∗ expected reward for arm i∗
µ̂i,t empirical mean reward for arm i in round t
µ̄i,t upper confidence estimate for arm i in round
µ̄′
i,t µ̂i,t +

√
2 ln(n)/Ti(t) (MAB) or µ̂i,t +

√
3 ln(n)/2Ti(t) (CMAB)

µ expected reward vector
µ̂ empirical mean reward vector
µ̄ upper confidence estimate vector
τi the start round of ith phase in sufficiently sampled stage of CUCB
ζ(·) Riemann Zeta Function
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B PRELIMINARY KNOWLEDGE AND NOTATIONS

We use [[K]] to denote the set {1, 2, . . . ,K} for ∀K ∈ N+.

Fact B.1 (12) (Chernoff-Hoeffding bound). Let X1, · · · , Xn be random variables with common support
[0, 1] and E[Xi] = µ. Let Sn = X1 + · · ·+Xn. Then for all t ≥ 0,

P [Sn ≥ nµ+ t] ≤ e−2t2/n, P [Sn ≤ nµ− t] ≤ e−2t2/n (10)

C SUPPLEMENTARY ALGORITHM

Algorithm 2 MSMR-UCB Algorithm

Input: Time horizon n, constant M , α, function γ(·)
1: t← 1, µ̂i ← 1 for all i
2: for all arm i ∈ [[K]] do
3: Play i and observe Xi,t , update Ti(t) ← Ti(t) + 1, µ̂i,t ← Ti(t−1)·µ̂i,t−1+Xi,t

Ti(t)
, µ̄i,t ← µ̂i,t +√

2 ln t/Ti(t) , µ̄′
i,t ← µ̂i,t +

√
2 lnn/Ti(t) until µ̄′

i,t ≤ 1 and update t
4: end for
5: while t ≤ n do
6: it ← argmaxj∈[[K]]µ̄j

7: Z ← γit(t)

8: î∗,t ← argmaxj∈[[K]]µ̂j

9: Z ←M · γit(t) when î∗,t = it
10: Play arm it min{Z, n− t}times
11: Update t and Ti(t), µ̂i,t, µ̄i,t for all arms
12: end while

D PROOF OF COROLLARY 5.1

D.1 MAB CASE

By Lemma B.1, if Ti(t) > li, we have P (µ̂i,t − µi − ∆i/2 > 0) ≤ exp(−2li(∆i/2)
2) ≤ n−4, and the

following inequality:
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Algorithm 3 MSMR-P-UCB Algorithm

Input: Time horizon n, constant M , α, function γ(·)
1: t← 1, µ̂i ← 1 for all i
2: for all arm i ∈ [[K]] do
3: Play i and observe Xi,t , update Ti(t) ← Ti(t) + 1, µ̂i,t ← Ti(t−1)·µ̂i,t−1+Xi,t

Ti(t)
, µ̄i,t ← µ̂i,t +√

2 ln t/Ti(t) , µ̄′
i,t ← µ̂i,t +

√
2 lnn/Ti(t) until µ̄′

i,t ≤ 1 and update t
4: end for
5: while t ≤ n do
6: it ← argmaxj∈[[K]]µ̄j

7: Z ← γit(t)

8: î∗,t ← argmaxj∈[[K]]µ̂j

9: Z ←M · γit(t) when î∗,t = it
10: Play arm it min{Z, n− t}times
11: Update t and Ti(t), µ̂i,t, µ̄i,t for all arms
12: î∗,t ← argmaxj∈[[K]]µ̂j

13: t3 ← t+
∑

j ̸=it ,̂i∗,t
γj(t)

14: if
√
2 ln(t)/Tit(t) + µ̂it,t ≥

√
2 ln(t3)/Tî∗,t

(t) + µ̂î∗,t,t
then

15: goto Line 10
16: end if
17: end while

P (∃i : Ti(t) ≥ li, µ̄
′
i,t ≥ 1) ≤

⋃
i ̸=i∗

P (Ti(t) ≥ li, µ̂i,t +
√
2 lnn/Ti(t) ≥ 1) (11)

≤
⋃
i ̸=i∗

P (µ̂i,t +
√

2 lnn/li ≥ 1) (12)

=
⋃
i ̸=i∗

P (µ̂i,t +∆i/2 ≥ 1) (13)

=
⋃
i ̸=i∗

P (µ̂i,t − µi −∆i/2 ≥ 1− µ∗) (14)

≤
⋃
i ̸=i∗

P (µ̂i,t − µi −∆i/2 ≥ 0) (15)

≤ Kn−4 (16)

which means with a probability larger than 1 − Kn−4, initial concentrated exploration will occur in the
under-sampled stage, which is calculated in the total regret.

D.2 CMAB CASE

By Lemma B.1, if Ti(t) > ℓn(∆
i,1), we have P (µ̂i,t − µi − f−1(∆i,1)/2 > 0) ≤

exp(−2ℓn(∆i,1)(f−1(∆i,1)/2)2) ≤ n−3, and the following inequality:
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Algorithm 4 MSMR-CUCB Algorithm

Input: Time horizon n, constant M , α, function γ(·)
1: t← 1, µ̂i ← 1 for all i
2: while Exists i makes Ti(t) = 0 do
3: {µ̂j1 , µ̂j2 , . . . , µ̂jK} ← Sort base arm by µ̂i in a decreasing way
4: S ← {j1, j2, . . . , jm}
5: Play S and observe Xi,t, for any i ∈ S, update Ti(t) ← Ti(t) + 1, µ̂i,t ← Ti(t−1)·µ̂i,t−1+Xi,t

Ti(t)
,

µ̄i,t ← µ̂i,t +
√
3 ln t/2Ti(t) , µ̄′

i,t ← µ̂i,t +
√
3 lnn/2Ti(t) until minj∈S µ̄′

j,t ≤ 1 and update t
6: end while
7: while t ≤ n do
8: St ← argmaxS∈Srµ̄(S), Z ← γSt(t)

9: Ŝ∗,t ← argmaxS∈Srµ̂(S), Z ←M · γSt
(t) when rµ̂(St) ≥ α · rµ̂(Ŝ∗,t)

10: Play super arm St min{Z, n− t}times
11: Update t and Ti(t), µ̂i,t, µ̄i,t for all base arms
12: Ŝ∗,t ← argmaxS∈Srµ̂(S)
13: t3 ← t+

∑
j∈{[[K]]\(St

⋃
Ŝ∗,t)} γj(t)

14: if r(µ̂t, ct, St) ≥ r(µ̂t, ct3 , Ŝ∗,t) and t < n then
15: goto Line 12
16: end if
17: end while

P (∃i : Ti(t) ≥ ℓn(∆
i,1), µ̄′

i,t ≥ 1) ≤
⋃

i∈[[K]]

P (Ti(t) ≥ ℓn(∆
i,1), µ̂i,t +

√
3 lnn/2Ti(t) ≥ 1) (17)

≤
⋃

i∈[[K]]

P (µ̂i,t +
√

3 lnn/2ℓn(∆i,1) ≥ 1) (18)

=
⋃

i∈[[K]]

P (µ̂i,t + f−1(∆i,1)/2 ≥ 1) (19)

=
⋃

i∈[[K]]

P (µ̂i,t − µi − f−1(∆i,1)/2 ≥ 1− µi − f−1(∆i,1)) (20)

≤
⋃

i∈[[K]]

P (µ̂i,t − µi − f−1(∆i,1)/2 ≥ 1− µargmaxj∈S∗ |µj−µi|) (21)

≤
⋃

i∈[[K]]

P (µ̂i,t − µi − f−1(∆i,1)/2 ≥ 0) (22)

≤
⋃
i ̸=i∗

P (µ̂i,t − µi −∆i/2 ≥ 0) (23)

≤ Kn−3 (24)

which means with a probability larger than 1 − Kn−3, initial concentrated exploration will occur in the
under-sampled stage, which is calculated in the total regret.
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E PROOF OF REGRET

E.1 PROOF OF THEOREM 5.2

Let [[K]] denotes the set of arms. For each arm i ∈ [[K]], pulling it at round t yields a reward feedback
Xit,t ∈ [0, 1]. The unknown mean vector is represented by µ = (µ1, ..., µK), where µi = E[Xi,t] denotes
the expected reward for any base arm i. Besides, we define ∆i = µ∗ − µi. The arm with the highest expected
reward is called the optimal arm, and its mean reward is denoted by µ∗ = maxi∈[[K]]µi. The objective of the
MAB problem is to identify this optimal arm while minimizing regret, which is defined as:

Reg(n) = nµ∗ − E[
n∑

t=1

Xit,t], (25)

where n is the total time horizon, and Xit,t represents the reward from the chosen arm at round t.

In MAB settings, we set that γi(t) = N(Tit(t))
ε is the number of pulling times for the selected arm it, where

N is a constant, 0 < ε < 1 is a hyperparameter. If the selected arm it = argmaxj∈[[K]]µ̄j,t has the largest
upper confidence estimation, which is î∗ = argmaxj∈[[K]]µ̂j,t and it = î∗, agent assume that arm it has the
relatively large empirical estimation. Under this condition, we execute the near-optimal exploitation and set
M · γi(t) = MN(Tit(t))

ε as the exploitation times, where M is a constant. We decompose the regret of
MSMR-UCB as three stages: (1) under-sampled stages; (2) transition stages; (3) sufficiently sampled stages.

Under-sampled stages. This stage is a fixed regret for a certain arm in expectation. According to (15), we
know that each arm i must have some inevitable exploring regret in UCB-based methods, which is O(log n).
In MSMR-UCB, we set under-sampled regret number of arm i is li = 8 ln(n)/∆2

i and arm i is under-sampled
or sufficiently sampled if Ti(t) ≤ li or Ti(t) ≥ li. By our definition, the regret of under-sampled stage is at
most:

Regu(n) =
∑
i ̸=i∗

li∆i ≤
∑
i ̸=i∗

8 lnn

∆i
. (26)

Transition stages. When transiting from under-sampled stages to the sufficiently sampled cases, we may pull
some arm i more times. By the definition of and near-optimal exploitation, we at most pull arm i at most
Mγi(t) more times. The regret of transition stages is at most:

Regt(n) ≤
∑
i ̸=i∗

Mγi(t)∆i (27)

≤
∑
i ̸=i∗

MN(li)
ε∆i (28)

≤
∑
i ̸=i∗

MN(8 lnn)ε∆1−2ε
i . (29)

Sufficiently sampled stages. We define arm i as sufficiently sampled if Ti(t) ≥ li. At sufficiently sampled
stages, each suboptimal arm has been pulled enough times. In this situation, we have to get much information
for any suboptimal arm i, it has a low probability to choose a suboptimal arm i. Specifically, denoting µ̄i,Ti(t)
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is the upper confidence estimate of arm t in round t, we have the following inequality:

E[Ti(n)] =

n∑
t=l+1

P (µ̄i,Ti(t) = max
j∈[[K]]

µ̄j,Tj(t), Ti(t) ≥ l)(γi(t) + (M − 1)γi(t)P (i = î∗)) (30)

≤
n∑

t=l+1

P (µ̄i,Ti(t) = max
j∈[[K]]

µ̄j,Tj(t), Ti(t) ≥ l) ·Mγi(t) (31)

≤
n∑

t=l+1

P (µ̄∗,T∗(t) ≤ µ̄i,Ti(t), Ti(t) ≥ l) ·Mγi(t) (32)

≤
n∑

t=l+1

P ( min
1<s<t

µ̄∗,T∗(t) ≤ max
l≤si≤t

µ̄i,Ti(t)) ·Mγi(t) (33)

≤
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

P (µ̄∗,s ≤ µ̄i,si) ·Mγi(t) (34)

≤
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

(P (µ̂∗,s ≤ µ∗ − c∗,s) + P (µi + ci,si ≤ µ̂i,si)) ·Mγi(t) (35)

≤
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

2

t4
·Mγi(t) (36)

≤
∞∑
t=1

2

t2
·Mγi(t) (37)

≤
∞∑
t=1

2

t2
MNtε (38)

= 2MN · ζ(2− ε) (39)
(40)

So, the regret of sufficiently sampled stage is:

Regs(n) =
∑
i ̸=i∗

2MN · ζ(2− ε)∆i (41)

In summary, the regret upper bound is:

Reg(n) = Regu(n) +Regt(n) +Regs(n) (42)

≤
∑
i ̸=i∗

(
8 lnn

∆i
+MN(8 ln(n))ε∆1−2ε

i + 2MN · ζ(2− ε)∆i

)
. (43)

E.2 PROOF OF THEOREM 5.3

In CMAB settings, we choose the super arm St who has the largest upper confidence estimation, which is
St = argmaxS∈Srµ̄(S). We set that γS(t) = N(TiSt,t

(t))ε is the number of pulling times for the selected
super arm St, where M is a constant, 0 < ε < 1 is a hyperparameter and iS,t = argminj∈STj(t). Based
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on (α, β)-approximation and defining Ŝ∗ = argmaxS∈Srµ̂(S), if rµ̂(St) ≥ α · rµ̂(Ŝ∗), we think St has
relatively large empirical estimation. Under this condition, we execute the near-optimal exploitation and set
M · γ(t) = MN(TiSt,t

(t))ε as the exploitation times, where N is a constant.

In the (α, β)-approximation oracle setting, a super arm S is considered sub-optimal if rµ(S) < α · optµ.
Let Si,B be the set of all sub-optimal super arms containing base arm i. We sort all sub-optimal super
arms in Si,B as S1

i,B, S
2
i,B, . . . , S

Ki

i,B, in increasing order of their expected rewards, where Ki the number
of sub-optimal super arms containing base arm i. Define the regret gap for the j-th sub-optimal super arm
as: ∆i,j = α · optµ − rµ(S

j
i,B) and denote ∆i

max = ∆i,1, ∆i
min = ∆i,Ki and ∆max = maxi∈[[K]] ∆

i
max.

And for each Sl
i,B, we define sufficient sampling of i with respect to Sl

i,B as i being sampled ℓn(∆
i,l) =

(6 lnn)/(f−1(∆i,l))2times.

For the proof, we maintain counter Ni for each arm i. Let Ni,t be the value of Ni after the t-th round and
Ni,0 = 0. Counters {Ni}Ki=1 are updated in the following way: For a round t > K, let St be the super arm
selected in round t by the MSMR-CUCB. Round t is a bad round if the oracle selects a super arm St ∈ SB,
which is not an α-approximate super arm with respect to the true mean vector µ. If St is chosen and round t
is bad, we increment NiSt,t

by one, i.e., NiSt,t,t
= NiSt,t,t−1 + 1. In other words, we find the arm iSt,t with

the smallest counter in St and increase its counter. If iSt,t is not unique, we pick an arbitrary arm with the
smallest counters in St. By definition, we know NiSt,t,t

≤ Ti(t). Notice that in every bad round, exactly one
counter in {Ni}Ki=1 is increased. Each time Ni gets updated, one of the sub-optimal super arms containing i

is played. We further divide counter Ni into more counters {N l
i}

Ki

l=1, whose value at round n, N l
i,n is defined

as follows:

∀l ∈ [[Ki]], N
l
i,n =

n∑
t=K+1

I{St = Sl
i,B, Ni,t > Ni,t−1} (44)

Notice that every arm in St must have been played at least Ni,t−1 times by round t, since in our updating
rule we choose the smallest counter value among arms in St to update, and i is the chosen one. If Ni,t−1 >
ℓn(∆

i,l), we say that the bad arm Sl
i,B is sufficiently sampled. Otherwise, it is under-sampled. For our proof,

we depart the N l
i,n into two parts: sufficiently sampled parts N l,suf

i,n and under-sampled parts N l,Sund
i,n .

N l,suf
i,n =

n∑
t=K+1

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 > ℓn(∆

i,l)} (45)

N l,und
i,n =

n∑
t=K+1

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 ≤ ℓn(∆

i,l)} (46)

Then we have Ni,n =
∑

l∈[Ki]
(N l,suf

i,n +N l,und
i,n ). Using this notation, the total reward at time horizon n is

at least

n · α · optµ − E

 ∑
i∈[[K]]

 ∑
l∈[[Ki]]

(N l,suf
i,n +N l,und

i,n ) ·∆i,l

 , (47)

where ∆i,1 is for the initialization. By the regret definition of (α, β) -approximation oracle, the regret of
MSMR-CUCB can be written as:

(β − 1) · n · α · optµ + E

 ∑
i∈[[K]]

 ∑
l∈[[Ki]]

(N l,suf
i,n +N l,und

i,n ) ·∆i,l

 . (48)

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

We decompose the regret of MSMR-CUCB as three stages: (1) under-sampled stages; (2) transition stages;
(3) sufficiently sampled stages.

Under-sampled stages. In MSMR-CUCB, we set under-sampled regret number of super arm Sl
i,B is ℓn(∆i,l)

and Sl
i,B is under-sampled if Ni,t−1 ≤ ℓn(∆

i,l). For a specific arm i, its counter Ni will increase from 1

to ℓn(∆
i,Ki). To simplify the notation, let ℓn(∆i,0) = 0. (Note that Ni,K = 1 for all i.) Before diving

into the details, we briefly explain the essential idea behind Eq. (58). The range of the counter Ni is
divided into discrete segments, i.e., (ℓn(∆i,j−1), ℓn(∆

i,j)] for j ∈ [[Ki]]. Suppose that round t is bad and
Ni,t−1 ∈ (ℓn(∆

i,j−1), ℓn(∆
i,j)] for some j. Note that we are only interested in cases where St is under-

sampled. Specifically, this means St = Sl
B for some l > j. (Otherwise, if St is sufficiently sampled, it is

based on the counter value Ni,t−1, and no regret is incurred.)

Consequently, for counter Ni,t in the range (ℓn(∆
i,j−1), ℓn(∆

i,j)], the bad super arm will suffer a regret
of ∆i,j each time Ni is incremented, as indicated by Eq. (52). Therefore, the total regret incurred for these
under-sampled arms within this interval is at most (ℓn(∆i,j) − ℓn(∆

i,j−1)) ·∆i,j (refer to Eq. (56)). We
formalize this argument as follows. For any arm i ∈ {i ∈ [[K]] | ∆i

min > 0}, we have:

Regu(n) =
∑

l∈[[Ki]]

N l,und
i,n ·∆i,l (49)

=
∑

t=K+1

∑
l∈[[Ki]]

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 ≤ ℓn(∆

i,l)} ·∆i,l (50)

=

n∑
t=K+1

∑
l∈[[Ki]]

l∑
j=1

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (ℓn(∆

i,j−1), ℓn(∆
i,j)]} ·∆i,l (51)

≤
n∑

t=K+1

∑
l∈[[Ki]]

l∑
j=1

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (ℓn(∆

i,j−1), ℓn(∆
i,j)]} ·∆i,j (52)

≤
n∑

t=K+1

∑
l∈[[Ki]]

∑
j∈[[Ki]]

I{St = Sl
i,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (ℓn(∆

i,j−1), ℓn(∆
i,j)]} ·∆i,j

(53)

=

n∑
t=K+1

∑
j∈[[Ki]]

I{St ∈ Si,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (ℓn(∆
i,j−1), ℓn(∆

i,j)]} ·∆i,j (54)

=
∑

j∈[[Ki]]

n∑
t=K+1

I{St ∈ Si,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (ℓn(∆
i,j−1), ℓn(∆

i,j)]} ·∆i,j (55)

≤
∑

j∈[[Ki]]

(ℓn(∆
i,j)− ℓn(∆

i,j−1)) ·∆i,j (56)

= ℓn(∆
i,Ki)∆i,Ki +

Ki−1∑
j=1

ℓn(∆
i,j) · (∆i,j −∆i,j+1) (57)

≤ ℓn(∆
i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

ℓn(x)dx. (58)
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Naturally, if we follow the design of MSMR-UCB, each super arm S is pulled an additional N(TS(t))
ε times

in Algorithm 1, where TS(t) denotes the number of times S has been selected up to round t. Maintaining TS(t)
for all possible super arms would require tracking up to 2K different values, which leads to a combinatorial
explosion in both computation and storage. To address this issue, we revise the definition of a sufficiently
sampled super arm to facilitate the analysis of regret during different sampling stages. Specifically, we say
that a sub-optimal super arm Sli,B is sufficiently sampled if Ti,t−1 > ℓn(∆

i,l). This new definition, which
depends only on the sampling counts of individual base arms, is adopted throughout the subsequent analysis.
As a result, the algorithm only needs to maintain Ti(t) for each base arm i, thereby avoiding the combinatorial
overhead. We now discuss the implications of this modified definition. Under the original definition, the
sufficiently sampled component N l,suf

i,n and the under-sampled component N l,und
i,n were disjoint. In contrast,

with the new definition, these two components may partially overlap. However, this overlap does not affect
the correctness of the regret decomposition: all sources of regret are still accounted for. Furthermore, the
regret incurred in the overlapping region is negligible, as the primary contribution to the total regret originates
from the under-sampled phase.

Transition stages. When entering the sufficiently sampled phase, a super arm S may be pulled additional
times. Under the revised definition of a sufficiently sampled arm, we consider two possible criteria to
determine the round marking the transition stage for a base arm i:

• The round t such that Ni,t > ℓn(∆
i,l) and Ni,t−1 ≤ ℓn(∆

i,l), indicating that the arm has just exited
the under-sampled phase.

• The round t such that Ti(t) > ℓn(∆
i,l) and Ti(t− 1) ≤ ℓn(∆

i,l), indicating that the arm has just
entered the sufficiently sampled phase.

We adopt the second criterion to define the transition stage. Given a fixed sub-optimal super arm Sl
i,B

and its corresponding base arm i, ℓn(∆i,l) is fixed. Thus, each such super arm may only be “overpulled”
once during the transition stage involving arm i. Prior to this transition, at least one base arm j ∈ S must
satisfy Tj(t) < ℓn(∆

i,l). Since Ti(t) monotonically increases over time, this guarantees progress toward the
transition.

For a given base arm i, we define δi,k as the regret gap of the k-th sub-optimal super arm (among those that
are actually pulled during the learning process), where k ∈ [[K ′

i]] and K ′
i is a constant no greater than Ki,

representing the number of such super arms that undergo transition stages involving arm i.

When the k-th sub-optimal super arm is pulled, it may incur up to L(ℓn(δi,k)) ≜ MN(ℓn(δi,k))
ε additional

pulls (referred to as “overpulls”) during its transition stage. Each overpull contributes at most δi,k regret.
However, the next regret gap δi,k+1 has already been accounted for in the under-sampled phase of the
(k + 1)-th sub-optimal super arm. Therefore, the additional regret contribution from the transition stage is
bounded by (δi,k − δi,k+1)L(ℓn(δi,k)).

The total regret incurred during the transition stage involving base arm i is thus given by:
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δi,K′
i
L(ℓn(δi,K′

i
)) +

K′
i−1∑

k=1

(δi,k − δi,k+1)L(ℓn(δi,k)) (59)

=δi,1L(ℓn(δi,1)) +

K′
i∑

k=2

δi,k

[
L(ℓn(δi,k))− L(ℓn(δi,k−1))

]
(60)

≤δi,1L(ℓn(δi,1)) (61)

≤ max
k∈[[Ki]]

L(ℓn(∆
i,k))∆i,k (62)

= max
k∈[[Ki]]

MN(ℓn(∆i,k))
ε∆i,k. (63)

Then the regret upper bound for transition stage is:

Regt(n) =
∑

i∈[[K]]

max
k∈[[Ki]]

{MN(ℓn(∆i,k))
ε∆i,k} (64)

= KMN max
k∈[[Ki]],i∈[[K]]

{(ℓn(∆i,k))ε∆i,k} (65)

(66)

To finish our proof, we first give some definitions and lemmas. The learning process is nice at time horizon t
if:

∀i ∈ [[K]], | µ̂i,Ti(t−1) − µi |<

√
3 ln t

2Ti(t− 1)
. (67)

Lemma E.1 The probability that the process is nice at round t is at least 1− 2Kt−2.

By Chernoff-Hoeffding bound in Fact B.1, for all i ∈ [[K]], we have:

P

[
| µ̂i,Ti(t−1) − µi |≥

√
3 ln t

2Ti(t− 1)

]
(68)

=

t−1∑
s=1

Pr

[{
| µ̂i,s − µi |≥

√
3 ln t

2s
, Ti(t− 1) = s

}]
(69)

=

t−1∑
s=1

Pr

[{
| µ̂i,s − µi |≥

√
3 ln t

2s

}]
(70)

= ≤ t · 2e−3 ln t =
2

t2
. (71)
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Lemma E.2 For any time horizon n > t > K

E

 ∑
i∈[[K]],l∈[[Ki]]

I{St = Sl
i,B , Ni,t > Ni,t−1, Ti(t− 1) > ℓn(∆

i,l)}

 (72)

=
∑

i∈[[K]],l∈[[Ki]]

Pr{St = Sl
i,B , Ni,t > Ni,t−1,∀s ∈ Sl

i,B , Ts(t− 1) > ℓn(∆
i,l)} (73)

≤(1− β) + 2Kt−2. (74)

Define Λi,t =
√

3 ln t
2Ti(t−1) (a random variable since Ti(t− 1) is a random variable) and Λt = max{Λi,t | i ∈

St}. Define Λi,l =
√

3 ln t
2ℓn(∆i,l)

(not a random variable).

LetNt indicate the event that the process is nice at round t. Let Ft be the event that the oracle fails to produce
an α-approximate answer with respect to input vector µ̄t in round t. We have Pr[Ft] = E[I{Ft}] ≤ 1− β.

Notice that µ̄i,t = µ̂i,t +
√

3 ln t
2Ti(t−1) . We have the following properties.

Nt ⇒ ∀i ∈ [[K]], µ̄i,t − µi > 0 (75)
Nt ⇒ ∀i ∈ St, µ̄i,t − µi < 2Λt, (76)

∀i ∈ [[K]],∀l ∈ [[Ki]], {St = Sl
i,B ,Ni,t > Ni,t−1,∀s ∈ St, Ts(t− 1) > ℓn(∆

i,l)} ⇒ Λi,l > Λt. (77)

For any particular i ∈ [[K]] and l ∈ [[Ki]], if {Nt,¬Ft, St = Sl
i,B , Ni,t > Ni,t−1,∀s ∈ St, Ts(t − 1) >

ℓn(∆
i,l)} holds at round t, we have the following properties:

rµ(St) + f(2Λi,l) > rµ(St) + f(2Λt) strict monotonicity of f(·) and Eq. 77
≥ rµ̄t

(St) bounded smoothness property and Eq.76
≥ α · optµ̄t

¬Ft ⇒ St is an α approximation w.r.t µ̄t

≥ α · rµ̄t
(S∗) definition of optµ̄t

≥ α · rµ(S∗) = α · optµ. monotonicity of rµ(S) and Eq.75

So we have
rµ(S

l
i,B) + f(2Λi,l) > α · optµ. (78)

Since ℓn(∆
i,l) = 6 lnn

(f−1(∆i,l))2
, we have 2Λi,l = f−1(∆i,l) ·

√
ln t
lnn which implies f(2Λi,l) ≤ ∆i,l by the

monotonicity of f(·) and t ≤ n. Therefore, Eq.(23) contradicts the definition of ∆i,l in Eq.(14). In other
words,
∀i ∈ [[K]],∀l ∈ [[Ki]],Pr{{Nt,¬Ft, St = Sl

i,B , Ni,t > Ni,t−1,∀s ∈ St, Ts(t− 1) > ℓn(∆
i,l)} = 0 (79)

⇒ Pr{Nt,¬Ft,∃i ∈ [[K]],∃l ∈ [[Ki]], St = Sl
i,B , Ni,t > Ni,t−1,∀s ∈ St, Ts(t− 1) > ℓn(∆

i,l)} = 0

(80)

⇒ Pr{∃i ∈ [[K]],∃l ∈ [[Ki]], St = Sl
i,B , Ni,t > Ni,t−1,∀s ∈ St, Ts(t− 1) > ℓn(∆

i,l)} (81)

≤ Pr[Ft ∨ ¬Nt] ≤ (1− β) + 2Kt−2 (82)

⇒
∑

i∈[[K]],l∈[[Ki]]

Pr{St = Sl
i,B , Ni,t > Ni,t−1,∀s ∈ St, Ts(t− 1) > ℓn(∆

i,l)} ≤ (1− β) + 2Kt−2.

(83)
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The second inequality in Eq.82 uses the facts that Pr{Ft} = (1− β) and Pr{¬Nt} ≤ 2Kt−2 (Lemma E.1).
The left side of Eq.83 equals the left side of Eq.82, because the events {St = Sl

i,B , Ni,t > Ni,t−1,∀s ∈
St, Ts(t − 1) > ℓt(∆

i,l)} for all i ∈ [[K]] and l ∈ [[Ki]] are mutually exclusive, which in turn is because
in each round when St is sub-optimal, only one arm i ∈ St gets to increment its counter Ni and thus
Ni,t > Ni,t−1, and within arm i, only one index l satisfies St = Sl

i,B .

Sufficiently sampled stage. In this stage, if we choose a sub-optimal super arms to pull and pull it more
times from τi to τi+1, it in fact occupies all the exploring chances from τi to τi+1, so the regret upper bound
of this stage is:

E

[ ∑
t=τ1,τ2,...

P

( ∑
i∈[[K]],l∈[[Ki]]

I{St = Sli,B, Ni,t > Ni,t−1, Ti(t− 1), ℓn(∆
i,l)}

)
× (84)

(γSt
(t) + (M − 1)γSt

(t)I(C))

]
∆max (85)

where τi+1 = τi + γSt
(t) + (M − 1)γSt

(t)I(C) and I(C) = 1 means we exploit this sub-optimal super arm
more times via near-optimal exploitation. τi+1− τi is the round span of ‘overpull’ this sub-optimal super arm.

Then we can derive the regret of sufficiently sampled cases:

Regs(n) (86)

≤E

[ ∑
t=τ1,τ2,...

((1− β) + 2Kt−2)(γSt(t) + (M − 1)γSt(t)I(C))

]
∆max (87)

=E

[ ∑
t=τ1,τ2,...

(1− β)(γSt(t) + (M − 1)γSt(t)I(C))

]
∆max+ (88)

E

[ ∑
t=τ1,τ2,...

2Kt−2(γSt
(t) + (M − 1)γSt

(t)I(C))

]
∆max (89)

≤E

[ ∑
t=τ1,τ2,...

(1− β)(γSt
(t) + (M − 1)γSt

(t)I(C))

]
∆max+ (90)

E

[ ∑
t=τ1,τ2,...

2Kt−2(MγSt
(t))

]
∆max (91)

≤(1− β)n∆max +
∑
t≥K

2KMt−2γSt(t)∆max (92)

≤(1− β)n∆max + 2KMNζ(2− ε)∆max (93)
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Finally, we can calculate the regret upper bound:

Reg(n) ≤ n · α · β · optµ −

(
α · n · optµ −Regu(n)−Regt(n)−Regs(n)

)
(94)

= (β − 1) · n · α · optµ +Regu(n) +Regt(n) +Regs(n) (95)

≤
∑

i∈[[K]],∆i
min≥0

(
ℓn(∆

i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

ℓn(x)dx

)
+ 2KMNζ(2− ε)∆max+ (96)

KMN max
k∈[[Ki]],i∈[[K]]

{(ℓn(∆i,k))ε∆i,k}. (97)

F PROOF OF SWITCHING COST

We first give the following two lemmas.

Lemma F.1 Let {an}n≥0 be a sequence defined recursively by
an = an−1 +Naεn−1, for n ≥ 1,

with a0 > 0, N > 0, and 0 < ε < 1. Then there exists a constant C > 0 such that

an ≥ Cn
1

1−ε , ∀n ≥ n0,

for some integer n0 ≥ 1.

Let γ = 1
1−ε and define bn = Cnγ . We will show by induction that an ≥ bn for sufficiently large n.

Assume an ≥ bn for some n ≥ n0, then
an+1 = an +Naεn ≥ bn +Nbεn = Cnγ +NCεnεγ .

Note that

bn+1 = C(n+ 1)γ = Cnγ

(
1 +

1

n

)γ

.

By the mean value theorem, for some ξ ∈ (n, n+ 1),

(n+ 1)γ − nγ = γξγ−1 ≤ γ(n+ 1)γ−1.

Thus,
bn+1 − bn ≤ Cγ(n+ 1)γ−1.

So, to ensure an+1 ≥ bn+1, it suffices that
NCεnεγ ≥ Cγ(n+ 1)γ−1.

Since εγ = γ − 1, this reduces to:

NCε−1 ≥ γ

(
1 +

1

n

)γ−1

.

Observe that
(
1 + 1

n

)γ−1 ≤ 2γ−1 for all n ≥ 1, so a sufficient condition is:

NCε−1 ≥ γ · 2γ−1.

This holds if we set

C =

(
γ · 2γ−1

N

) 1
ε−1

=

(
2

ε
1−ε

N(1− ε)

) 1
ε−1

,

which is positive since ε− 1 < 0 and the base is positive. By choosing n0 large enough so that an0 ≥ bn0 ,
the induction is complete.
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Lemma F.2 By defining t′ as the start round of different phases, we have the following conclusion:

C(n) ≤ 2E[
∑
t′

I(it′ ̸= i∗)]. (98)

The above conclusion can be deduced as follows:

C(n) = E[
n−1∑
t=1

I(it ̸= it+1)] (99)

= E[
∑
t′ ̸=1

I(it′−1 ̸= it′)] (100)

≤ E[
∑
t′ ̸=1

1− I(it′−1 = it′)] (101)

= E[
∑
t′ ̸=1

1−
K∑
j=1

I(it′−1 = it′ = j)] (102)

≤ E[
∑
t′ ̸=1

1− I(it′−1 = it′ = i∗)] (103)

≤ E[
∑
t′ ̸=1

I(it′−1 ̸= i∗) + I(it′ ̸= i∗)] (104)

≤ 2E[
∑
t′

I(it′ ̸= i∗)]. (105)

During most of the time, UCB-based methods pull the best arm i∗. So we make some relaxation to the
switching cost C(n) to simplify our proof.

Lemma F.3 Initial concentrated exploration pull each (base) arm at least ln(n) times.

If Ti(t) ≤ ln(n), both
√
2 ln(n)/Ti(t) and

√
3 ln(n)/2Ti(t) are larger than 1, which contradicts with

µ̄′
i,t ≤ 1.

F.1 PROOF OF THEOREM 5.4

For MSMR-UCB, when arm i is selected for the j-th time, we define the length of the corresponding phase as
Li,j . Similar to the regret analysis, we decompose the total switching cost into three components. Specifically,
let tu,i, tt,i, and ts,i denote the number of phases in which the sub-optimal arm i is selected during the
under-sampled stage, the transition stage, and the sufficiently sampled stage, respectively. The total switching
cost is then bounded as:

C(n) ≤ 2
∑
i ̸=i∗

(tu,i + tt,i + ts,i). (106)

In the under-sampled stage, define Wi,s =
∑s

j=1 Li,j as the cumulative length of the first s phases for arm i.
According to the definition of near-optimal exploitation, we have:

Wi,s ≥Wi,s−1 +N(Wi,s−1)
ε. (107)

Let li denote the total number of pulls of arm i during the under-sampled stage. By construction, tu,i satisfies:

Wi,tu,i+1 > li > Wi,tu,i . (108)
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Applying Lemma F.3, if (
2

ε
1−ε

N(1− ε)

) 1
ε−1

< ln(n), (109)

we obtain:

Li,1 ≥

(
2

ε
1−ε

N(1− ε)

) 1
ε−1

. (110)

Using Lemma F.1, we derive:
Wi,tu,i

≥ li (111)

⇐

(
2

ε
1−ε

N(1− ε)

) 1
ε−1

t
1

1−ε

u,i ≥
8 ln(n)

∆2
i

(112)

⇐ tu,i ≥
(
8 ln(n)

∆2
i

)1−ε

· 2
ε

1−ε

N(1− ε)
. (113)

This contradicts li < Wi,tu,i
, so we conclude that:

tu,i ≤
(
8 ln(n)

∆2
i

)1−ε

· 2
ε

1−ε

N(1− ε)
. (114)

In the transition stage, by definition, tt,i ≤ 1 for any arm i.

In the sufficiently sampled stage, the number of phases ts,i for each arm i is upper bounded by 2MN ·ζ(2−ε),
which is a constant.

Combining all three stages, the total switching cost for MSMR-UCB satisfies:

C(n) ≤ 2

K∑
i=1

(tu,i + tt,i + ts,i) (115)

≤ 2K + 4KMN · ζ(2− ε) + 2
∑
i̸=i∗

(
8 ln(n)

∆2
i

)1−ε

· 2
ε

1−ε

N(1− ε)
. (116)

F.2 PROOF OF THEOREM 5.5

For MSMR-CUCB, when a super arm S is selected and base arm i = iS,t ≜ argminj∈S Tj(t) is chosen
for the j-th time, we define the length of the corresponding phase as Li,j . As in the regret analysis, we
decompose the switching cost into three parts. Let tu,i and tt,i denote the number of phases in which a super
arm containing base arm i is selected during the under-sampled and transition stages, respectively. Let ts
denote the number of phases in which any sub-optimal super arm is selected in the sufficiently sampled stage.
The total switching cost is then bounded by:

C(n) ≤ 2

(
ts +

K∑
i=1

(tu,i + tt,i)

)
. (117)

In the under-sampled stage, define Wi,s =
∑s

j=1 Li,j as the cumulative length of the first s phases for base
arm i. By the definition of near-optimal exploitation, we have:

Wi,s ≥Wi,s−1 +N(Wi,s−1)
ε. (118)
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Let li denote the total number of pulls of base arm i in the under-sampled stage. Then the total number of
under-sampled phases tu,i satisfies:

Wi,tu,i+1 > li > Wi,tu,i
. (119)

Applying Lemma F.3, if (
2

ε
1−ε

N(1− ε)

) 1
ε−1

< ln(n), (120)

then we obtain:

Li,1 ≥

(
2

ε
1−ε

N(1− ε)

) 1
ε−1

. (121)

Using Lemma F.1, we derive:

Wi,tu,i ≥ ℓn(∆
i,Ki) (122)

⇐

(
2

ε
1−ε

N(1− ε)

) 1
ε−1

t
1

1−ε

u,i ≥
6 ln(n)

(f−1(∆i,Ki))2
(123)

⇐ tu,i ≥
(

6 ln(n)

(f−1(∆i,Ki))2

)1−ε

· 2
ε

1−ε

N(1− ε)
. (124)

This contradicts li < Wi,tu,i
, so we conclude that:

tu,i ≤
(

6 ln(n)

(f−1(∆i,Ki))2

)1−ε

· 2
ε

1−ε

N(1− ε)
. (125)

In the transition stage, by definition, tt,i ≤ Ki for each base arm i.

In the sufficiently sampled stage, the number of phases ts involving any sub-optimal super arm is at most
2KMN · ζ(2− ε), which is a small constant.

Therefore, the total switching cost of MSMR-CUCB is bounded by:

C(n) = 2

(
ts +

K∑
i=1

(tu,i + tt,i)

)
(126)

≤ 4KMN · ζ(2− ε) + 2

K∑
i=1

(
6 ln(n)

(f−1(∆i,Ki))2

)1−ε

· 2
ε

1−ε

N(1− ε)
+ 2

K∑
i=1

Ki. (127)

G PROOF OF MARGINAL LOSS

In MAB setting, According to (3), the regret upper bound of UCB is

Regopt(n) =
∑
i ̸=i∗

(
8 lnn

∆i
+ (1 +

π2

3
)∆i

)
. (128)

In CMAB setting, according to (7), the regret upper bound of CUCB is∑
i∈[[K]],∆i

min≥0

(
ℓn(∆

i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

ℓn(x) dx

)
+ (1 +

π2

3
) ·m ·∆max. (129)
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In the greedy algorithm, it directly pulls each base(super) arm fixed times and then chooses the one with
the largest empirical reward. In MAB setting, we have K base arms, so Copt(n) = K. In CMAB setting,
the super arms may just contain 1 base arm, so the greedy algorithm at least to pull K super arms to get
the evaluation of all base arms, resulting in Copt(n) = K. According to theorem 5.2 5.4 5.3 5.5 and the
definition of marginal loss 4, we can get that:

RMSMR(λ, n) = O((log n)ε + λ(log n)1−ε) (130)

For any other bandit algorithm X mentioned in table 1, it is easy to find that RegX(n) − Regopt(n) =
O(RegX(n)), so the marginal loss of algorithm X is O(RegX(n) + λCX(n)). In most cases, λ is constant,
and setting ε = 0.5 yields the theoretical minimum marginal loss O(λ

√
log n)

H PROOF ABOUT PREDICTIVE SELECTION

In MAB settings, for any arm i, once the agent chooses an arm it1 ̸= î∗,t1 to explore at round t1, the algorithm
will repeatedly select it1 in the subsequent phase regardless of the upper confidence estimation if the following
inequality holds:

H.1 PROOF OF LEMMA 5.6

In round t1, we choose arm it1 for exploration. After this phase, we define round t2 = t1 + γit1 (t1) and a
subsequent round t3 = t2 +

∑
j ̸=it1 ,̂i∗,t2

γj(t2).

If neither î∗,t2 nor it1 is selected in any round t ∈ [t2, t3], and Eq. 5 holds, we obtain the following sequence
of inequalities:

µ̄î∗,t2 ,t
=

√
2 ln(t)

Tî∗,t2
(t)

+ µ̂î∗,t2 ,t
(131)

=

√
2 ln(t)

Tî∗,t2
(t2)

+ µ̂î∗,t2 ,t2
(132)

≤
√

2 ln(t3)

Tî∗,t2
(t2)

+ µ̂î∗,t2 ,t2
(133)

≤

√
2 ln(t2)

Tit1
(t2)

+ µ̂it1 ,t2
(134)

≤ µ̄it1 ,t
, (135)

which implies that the upper confidence bound of arm it1 is always greater than or equal to that of î∗,t2
throughout the interval [t2, t3]. Consequently, if î∗,t2 is selected at any round t ∈ [t2, t3], then arm it1 must
have already been selected at least once prior to t.

We now consider three exhaustive cases:

Case 1: Arm î∗,t2 is selected in some round t ∈ [t2, t3]. From Eq. 135, we conclude that arm it1 must
have been selected at least twice before arm î∗,t2 is selected. Therefore, Lemma 5.6 holds in this case.

Case 2.1: Arm î∗,t2 is not selected in [t2, t3], but arm it1 is. In this case, arm it1 is selected at least twice
before round t3, while arm î∗,t2 is never selected. Thus, Lemma 5.6 also holds here.
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Case 2.2: Neither arm î∗,t2 nor arm it1 is selected in [t2, t3]. We further divide this into two subcases:

Subcase 1: If there exists an arm i′ /∈ {̂i∗,t2 , it1} that is selected twice in the interval [t2, t3], then this arm is
selected at least twice before round t3, and Lemma 5.6 is satisfied.

Subcase 2: If no such arm i′ /∈ {̂i∗,t2 , it1} is selected more than once in [t2, t3], then every arm in this set is
selected at most once. However, since

t3 = t2 +
∑

j /∈{it1 ,̂i∗,t2}

γj(t2),

it follows that each arm j /∈ {it1 , î∗,t2} is selected exactly once between t2 and t3. By Eq. 135, arm it1 still
maintains a higher UCB than î∗,t2 at round t3, and hence the algorithm must select an arm i′ ̸= î∗,t2 . Since
every such arm has already been selected once from t1 to t3, this implies that one of them is selected twice.
Thus, Lemma 5.6 is proved in this case as well.

H.2 PROOF OF LEMMA 5.7

In round t1, we choose a super arm St1 for exploration. After this phase, we set t2 = t1+ γSt1
(t1) and define

a future round t3 = t2 +
∑

j∈[[K]]\(St1∪Ŝ∗,t2 )
γj(t2).

We decompose the base arm set [[K]] into four disjoint subsets:

U1 = St1 ∩ Ŝ∗,t2 ,

U2 = St1 \ U1,

U3 = Ŝ∗,t2 \ U1,

U4 = [[K]] \ (St1 ∪ Ŝ∗,t2).

By the monotonicity assumption, if Eq. (6) holds, then there exists k1 ∈ U2 and k2 ∈ U3 such that

µ̂k1,t2 +

√
3 ln(t2)

2Tk1(t2)
≥ µ̂k2,t2 +

√
3 ln(t3)

2Tk1(t2)
.

Otherwise, for any k1 ∈ U2, k2 ∈ U3, we have

µ̂k1,t2 +

√
3 ln(t2)

2Tk1
(t2)

< µ̂k2,t2 +

√
3 ln(t3)

2Tk1
(t2)

,

and for any k3 ∈ U1,

µ̂k3,t2 +

√
3 ln(t2)

2Tk3(t2)
< µ̂k3,t2 +

√
3 ln(t3)

2Tk3(t2)
.

Now consider the ordered arrangements of base arms in St1 and Ŝ∗,t1 :

A = {U1,1, . . . , U1,|U1|, U2,1, . . . , U2,|U2|},
B = {U1,1, . . . , U1,|U1|, U3,1, . . . , U3,|U3|},

where | · | denotes the cardinality of the set and Ux,j denotes the j-th smallest element of Ux. Then for any
j ∈ {1, 2, . . . ,m}, we have µ̄Aj ,t2 < µ̄Bj ,t3 , which implies by the monotonicity assumption that

r(µ̂t2 , ct2 , St1) < r(µ̂t2 , ct3 , Ŝ∗,t2),
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contradicting Eq. (6).

If none of the base arms in U2 ∪ {k2} are selected during t ∈ [t2, t3] and Eq. (6) holds, we derive the
following:

µ̄k2,t = µ̂k2,t +

√
3 ln(t)

2Tk2
(t)

= µ̂k2,t2 +

√
3 ln(t)

2Tk2
(t2)

≤ µ̂k2,t2 +

√
3 ln(t3)

2Tk2(t2)

≤ µ̂k1,t2 +

√
3 ln(t2)

2Tk1
(t2)

≤ µ̄k1,t. (136)

This indicates that for any super arm S containing base arm k2, there exists an alternative super arm
S′ = S \ {k2} ∪ {k1} such that

rµ̄t
(S) ≤ rµ̄t

(S′).

Since k2 ∈ Ŝ∗,t2 , this implies that there exists another super arm better than Ŝ∗,t2 in round t ∈ [t2, t3] if no
arm from U2 ∪ {k2} is selected.

Case 1: A super arm S containing base arm k2 is selected during t ∈ [t2, t3].
By Eq. (136), it must be that a super arm containing k1 has been selected before S is selected. Since
k1 /∈ Ŝ∗,t2 , it is pulled at least twice before t, completing the proof of Lemma 5.7.

Case 2.1: No super arm containing k2 is selected during [t2, t3], but a super arm containing i ∈ U2 is selected.
Then i is pulled twice before t3, and Ŝ∗,t2 is never selected before t3, completing the proof of Lemma 5.7.

Case 2.2: No super arm containing any element of {k2} ∪ U2 is selected during [t2, t3].
Let S1, . . . , SK−|St1

∪Ŝ∗,t2 |
be the next super arms selected during [t2, t3], and define the recursive update:

xj = γSj

(
t2 +

j−1∑
k=1

xk

)
, t′3 = t2 +

K−|St1
∪Ŝ∗,t2 |∑

j=1

xj .

Each Sj ⊆ U3 ∪ U4 \ {k2}, so each contains at least one element of U4.

Subcase 1: If any base arm i ∈ U4 is selected twice in [t2, t3], the proof is complete.

Subcase 2: If no base arm i ∈ U4 is selected more than once, then for each j,

xj = γSj (t2 +

j−1∑
k=1

xk) ≤ γ{k2}∪Sj\Ŝ∗,t2
(t2).

Therefore, t3 ≥ t′3. Since every i ∈ U4 is selected once during [t2, t3] and

{k1} ∪ Ŝ∗,t2 \ {k2}
has a higher estimated reward than Ŝ∗,t2 in round t3, the algorithm selects another super arm. As all base
arms not in U3 \ {k2} are selected once starting from t1, there exists at least one base arm i′ /∈ Ŝ∗,t2 that is
pulled twice before t3, completing the proof of Lemma 5.7.
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I MORE EXPERIMENTS

Here we present the complete set of experiments.

I.1 EXPERIMENT SETUP

Each experiment was conducted over 20 independent trials to ensure reliability, with n = 100000, N = 1,
M = 5 for all bandit settings and α = 0.95 , β = 1 for CMAB. The tests were performed on a macOS
system equipped with an Apple M3 Pro processor and 18 GB of RAM.

Baselines. The algorithms used for comparison include UCB (3), phase-UCB(16), Batched Tsallis-INF(1),
Batched Arm Elimination (13)in MAB settings and CUCB (6), phased-CUCB(16), B-FTRL(11) in CMAB
setting.

Regret, Switching Cost and Marginal Loss. We set ε = 0.5 in MSMR and MSMR-P. We set γ(t) = 0.01t
and γ(t) = 0.001t for Phase-UCB and Phase-CUCB. For B-FTRL, we set a = 0.5 and b = 1. For marginal
loss, we set RA(λ, n) = max(RegA(n)−Regopt(n), 0) + λmax(CA(n)− Copt(n), 0)and set λ = 0.1.

Data Generation. For simulation, in MAB settings, we set K = 10 and give a similar reward distribution
which µi = 0.3 + 0.002× i. In each round t, an arm it is selected and the agent observes the outcome Xit,t.
We conduct experiments on cascading bandits of the CMAB as an instance, where the objective is to select
m = 5 items from a set of K = 20 to maximize the reward. We still give a very similar reward distribution
which is µi = 0.3 + 0.002 × i. In each round t, a list St = (at,1, . . . , at,m) ⊆ [[K]] is randomly selected.
The outcome Xt,i for each i ∈ St is generated from a Bernoulli distribution with mean µi. Given the ranked
list St, if stopping at the jt-th item, the observed outcomes are: (Xt,a1

, . . . , Xt,ak
) = (0, . . . , 0, 1, x, . . . , x),

where the first jt−1 items are 0, the jt-th item is 1, and the rest are unobserved (x). If the list is exhausted, the
observed outcomes are: (Xt,a1 , . . . , Xt,ak

) = (0, 0, . . . , 0). The reward is 1 for stopping and 0 for exhausting
the list. The reward function can be written as r(St;µ) = 1−

∏
i∈St

(1− µi).

For the real-world setting, we conduct experiments using the real-world Last.fm dataset (5), sourced from the
Last.fm online music platform1. This dataset comprises 186,479 tag assignments, connecting 1,892 users
to 17,632 artists. To model user preferences, following the existing works (10; 17), we derive feedback
from ratings: if an item’s rating exceeds 3, we assign a feedback value of 1; otherwise, it is 0. This binary
feedback approach simplifies the representation of user preferences by distinguishing positive interactions
from negative or neutral ones. Based on this feedback, we calculate the expected reward µ for each item in
the Last.fm dataset. In MAB settings, we set K = 10 and randomly choose 10 similar distributions which
µi ∈ [0.3, 0.32] is randomly sampled. In CMAB settings, We conduct experiments on cascading bandits as
an instance, where the objective is to select m = 5 items from a set of K = 20 to maximize the reward. We
still give 20 similar reward distributions which µi ∈ [0.3, 0.34] is randomly sampled.

I.2 EXPERIMENTAL RESULTS

Synthetic Data. In Figures 2(a) and 3(a), we observe that the regret of MSMR and MSMR-P closely matches
that of the standard baseline methods. In contrast, Batched Tsallis-INF and B-FTRL exhibit noticeably higher
regret. Figures 2(b) and 3(b) further show that standard and phased methods suffer from a substantial number
of switches, often exceeding several thousand. Batched Tsallis-INF and B-FTRL also incur a significant
number of switches. In comparison, MSMR results in only 289 switches in the MAB setting and 432 in the
CMAB setting, amounting to merely 2.1% of the switches incurred by UCB and 2.4% of those by CUCB.
Moreover, MSMR-P achieves even greater savings, reducing switching to just 1.0% of UCB and 1.3% of
CUCB—representing a nearly 50% reduction in switching cost compared to MSMR. These results highlight

1https://www.last.fm
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the effectiveness of the predictive selection technique. In terms of marginal loss, figures 2(c) and 3(c) further
shows that the MSMR framework achieves remarkably low loss compared to the best existing algorithm,
significantly outperforming all other methods.

(a) Regret (b) Switching Cost (c) Marginal Loss

Figure 2: Synthetic Experiments on MAB

(a) Regret (b) Switching Cost (c) Marginal Loss

Figure 3: Synthetic Experiments on CMAB

Real-world Data. On real-world datasets, we find trends consistent with the simulation results. As shown
in Figures 4(a) and 5(a), MSMR and MSMR-P achieve regret comparable to standard baselines, while
Batched Tsallis-INF and B-FTRL incur noticeably higher regret. Figures 4(b) and 5(b) demonstrate that
MSMR substantially reduces switching, with MSMR-P achieving the lowest cost overall. Finally, Figures 4(c)
and 5(c) confirm that the MSMR framework maintains consistently low marginal loss, outperforming all
existing methods.

(a) Regret (b) Switching Cost (c) Marginal Loss

Figure 4: Real-world Experiments on MAB

(a) Regret (b) Switching Cost (c) Marginal Loss

Figure 5: Real-world Experiments on CMAB
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I.3 ABLATION STUDIES

In this section, we investigate the impact of various settings on the MSMR algorithm, including different arm
gaps and different values of ε.

Different Arm Settings. For arm sets with larger reward gaps, identifying the optimal arm becomes relatively
easier, leading to greater gains. Our primary interest, however, lies in scenarios with small gaps, where we
aim to examine whether the algorithm can still secure competitive rewards while incurring only minimal
switching cost. Accordingly, we design experiments with varying arm gaps for comparison. For MAB
setting, we set K = 10, µi = 0.3 + 0.002(i − 1) in hard mode and K = 5, µi = 0.3 + 0.01(i − 1) in
easy mode. For CMAB setting, we set K = 20,m = 5, µi = 0.3 + 0.002(i − 1) in hard mode and
K = 10,m = 3, µi = 0.3 + 0.01(i− 1) in easy mode. The vertical axis ratio represents the percentage of
regret and switching cost in the hard mode compared to the easy mode.

We observe that across different arm settings, the percentage change in regret from Easy to Hard mode remains
consistent across algorithms. However, in terms of switching cost, Figure 6(a) shows that in the MAB setting,
MSMR-UCB maintains stable performance, while MSMR-P-UCB experiences a much smaller increase than
other algorithms, highlighting its advantage in handling arms with similar rewards. The performance of
MSMR is further explained by the fact that, in this experiment, it switches only about 100 times, nearly
reaching the theoretical lower bound. In the CMAB setting, as shown in Figure 6(b), regret across algorithms
also remains relatively stable. Yet under the Hard mode, the increase in switching frequency for MSMR-based
algorithms is minimal, with MSMR-P remaining almost unchanged.

(a) MAB Case (b) CMAB Case

Figure 6: Different Arm Settings

Different ε. To further study the impact of the function γ(t) on switching cost, we conduct a series of
experiments by varying the parameter ε. We set ε = 0.2 + 0.05× (j + 1) for j = 1, 2, . . . , 10. As shown in
Figures 7(a) and 7(b), both MSMR and MSMR-P experience reduced switching cost as ε increases. When
ε ≥ 0.3, the switching cost remains consistently low for both algorithms. Notably, across all tested values of
ε, MSMR-P consistently outperforms MSMR in terms of switching cost due to the design of the predictive
selection technique, especially when ε is small .

J PHASED METHODS VS MSMR

In fact, the switching cost upper bound of Phased-UCB and Phased-CUCB is O(log log n). We take the
MAB setting as an example to illustrate why the O(

√
log n) bound of our MSMR framework is preferable to
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(a) MAB Case (b) CMAB Case

Figure 7: Different ε

O(log log n). The regret upper bound of Phased-UCB is O((1 + κ) log n), and to control regret one typically
selects a small κ. In our experiments, we set κ = 0.01.

Since Phased-UCB is a specific instance of the MSMR framework, we can similarly derive the upper bound
on its switching cost. which is

CPhased(n) =
2

κ

∑
i ̸=i∗

(ln(
1

κ
) + max(2 ln(κ) + ln

(
8 ln(n)

∆2
i

)
, 0) + 8K (137)

According to 5.4,the switching cost upper bound of MSMR-UCB is:

CMSMR−UCB(n) = 4KMN · ζ(2− ε) + 2
∑
i ̸=i∗

(
8 ln(n)

∆2
i

)1−ε
2

ε
1−ε

N(1− ε)
+ 2K. (138)

Let CPhased(n) = CMSMR−UCB(n), we can evaluate n by the following expression:

n = exp(
∆2

min

8
exp(−B′

C ′ −
1

1− ε
W−1(−

D′(1− ε)

C ′ exp(
B′(1− ε)

C ′ )))), (139)

where W−1(·) is the lower branch of Lambert W Function,

B′ = (K − 1)(
ln(κ)

κ
− 2MNζ(2− ε) + 3)− 2

κ

K−1∑
i=1

ln(
∆i

∆min
), (140)

C ′ =
K − 1

κ
, D′ =

2
ε

1−ε

N(1− ε)

K−1∑
i=1

(
∆min

∆i
)2−2ε, ∆min = min

i ̸=i∗
∆i (141)

It is worth noting that n is a very large and complex expression. For example, in the main text experiment
with K = 10, κ = 0.01, ∆min = 0.002, ε = 0.5, µi = 0.3 + 0.002i, M = 5, and N = 1, even such a small
∆min produces an extremely large n, with n ≥ 10500. Accordingly, MSMR maintains a theoretical advantage
over Phased-UCB as long as n ≤ 10500 in our experiment, which already covers any conceivable practical
application. Therefore, in realistic scenarios, MSMR can be regarded as superior to Phased-UCB, not only in
terms of regret but also in terms of switching cost.

It is worth noting that n is a very large and complex expression. For example, in the main text experiment
with K = 10, κ = 0.01, ∆min = 0.002, ε = 0.5, µi = 0.3 + 0.002i, M = 5, and N = 1, even such a small
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∆min yields an extremely large n, with n ≥ 10500. Hence, MSMR maintains a theoretical advantage over
Phased-UCB whenever n ≤ 10500 in our experiment, which covers all practical applications. Therefore, in
realistic settings, MSMR can be regarded as superior to Phased-UCB, both in terms of regret and switching
cost.
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