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Abstract
We study the generalization error of statistical learning algorithms in a non i.i.d. setting, where the
training data is sampled from a stationary mixing process. We develop an analytic framework for
this scenario based on a reduction to online learning with delayed feedback. In particular, we show
that the existence of an online learning algorithm with bounded regret (against a fixed statistical
learning algorithm in a specially constructed game of online learning with delayed feedback) implies
low generalization error of said statistical learning method even if the data sequence is sampled from
a mixing time series. The rates demonstrate a trade-off between the amount of delay in the online
learning game and the degree of dependence between consecutive data points, with near-optimal
rates recovered in a number of well-studied settings when the delay is tuned appropriately as a
function of the mixing time of the process.

1. Introduction

In machine learning, generalization means the ability of a model to infer patterns from a dataset of
training examples and apply them to analyze previously unseen data (Shalev-Shwartz and Ben-David,
2014). The gap in accuracy between the model’s predictions on new data and those on the training
set is usually referred to as generalization error. Providing upper bounds on this quantity is a central
goal in statistical learning theory. Classically, bounds based on notions of complexity of the model’s
hypothesis space (e.g., its VC dimension or Rademacher complexity) were used to provide uniform
worst-case guarantees (see Bousquet et al., 2004; Vapnik, 2013; Shalev-Shwartz and Ben-David,
2014). However, these results are often too loose to be applied to over-parameterised models such as
deep neural networks (Zhang et al., 2021). As a consequence, several approaches have been proposed
to obtain algorithm-dependent generalization bounds, which can adapt to the problem and be much
tighter in practice than their uniform counterparts. Often, the underlying idea is that if the algorithm’s
output does not have a too strong dependence on the specific input dataset used for the training, then
the model should not be prone to overfitting, and thus generalize well. Examples of results that build
onto these ideas are stability bounds, information-theoretic bounds, and PAC-Bayesian bounds (see,
e.g., Bousquet and Elisseeff, 2002; Russo and Zou, 2020; Hellström et al., 2023; Alquier, 2024).

Most results in the literature focus on the i.i.d. setting, where the training dataset is made of
independent draws from some underlying data distribution. However, for several applications, this
assumption is far from realistic. For instance, it excludes the case where observations received by
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the learner have some inherent temporal dependence, as it is the case for stock prices, daily energy
consumption, or sensor data from physical environments (Ariyo et al., 2014; Takeda et al., 2016). This
calls for the development of theory for addressing non-i.i.d. data. A common approach in the extant
literature is to consider a class of non-i.i.d. data-generating processes usually referred to as stationary
β-mixing or φ-mixing processes. This assumption, together with a “blocking” trick introduced by
Yu (1994), has led to a few results in the literature: Meir (2000), Mohri and Rostamizadeh (2008),
Shalizi and Kontorovich (2013), and Wolfer and Kontorovich (2019) provided uniform worst-case
generalization bounds, Steinwart and Christmann (2009) and Agarwal and Duchi (2012) discussed
excess risk bounds (comparing the algorithm’s output with the best possible hypothesis), while Mohri
and Rostamizadeh (2010) gave bounds based on a stability analysis (in the sense of Bousquet and
Elisseeff, 2002).

In the present paper, we propose a new framework for proving generalization bounds for the
non-i.i.d. setting, which take a form that is similar in spirit to PAC-Bayesian bounds (Guedj, 2019;
Alquier, 2024): high-probability upper bounds on the expected generalization error of randomized
learning algorithms. We achieve this by combining the blocking argument by Yu (1994) to manage
the concentration of sums of correlated random variables, with the recent online-to-PAC conversion
technique recently proposed by Lugosi and Neu (2023). Using their framework we show a new way to
obtain generalization bounds for stationary dependent processes that satisfy a certain “short-memory”
property, intuitively meaning that data points that are closer in time are more heavily dependent on
each other. Our assumption slightly relaxes the commonly considered β-mixing condition in that we
only need it to hold for a specific class of bounded loss functions (as opposed to requiring stronger
conditions phrased in terms of total variation distance). Among other results, this allows us to prove
PAC-Bayesian generalization bounds for mixing processes. This complements previous work on
such bounds that have largely considered mild relaxations of the i.i.d. condition such as assuming
that the data has a martingale structure (e.g., Seldin et al., 2012; Chugg et al., 2023; Haddouche
and Guedj, 2023). A notable exception is the work of Ralaivola et al. (2010), who considered data
sets whose dependence structure is described via graphs, and proved generalization bounds that
scale with various graph properties describing the overall strength of dependencies. One of the
applications of their results is a generalization bound for β-mixing processes, comparable in nature
to some of our results. We return to discussing the similarities and differences in Section 6. Further
relevant works are those of Alquier and Wintenberger (2012), Alquier et al. (2013), and Eringis et al.
(2022, 2024), who provided generalization bounds for a sequential prediction setting where both the
data-generating process and the hypothesis class used for prediction are stable dynamical systems.
Their results are proved under some very specific conditions on these systems, and their guarantees
involve unspecified problem-dependent constants that may be large. In contrast, our bounds hold
under general, simple-to-verify conditions and feature explicit constants.

The rest of the paper is organized as follows. In Section 2 we properly define the generalization
error of a statistical learning algorithm for both i.i.d. and non-i.i.d. cases, and state our main
assumption on the data dependence. Our main contribution lies in Section 3, where after recalling
the results of Lugosi and Neu (2023) for the i.i.d. setting we show how to adapt their technique to
stationary mixing processes. In Section 4 we provide some concrete results of the bounds we can
obtain through the resulting online-to-PAC conversion methodology. Finally in Section 5 we extend
our results to the setting where the hypothesis class itself may consist of dynamical systems.

Notation. For a distribution over hypotheses P ∈ ∆W and bounded function f : W → R we
write ⟨P, f⟩ to refer to the expectation of EW∼P [f(W )]. We denote DKL(P∥Q) = EX∼P

[
ln
(
dP
dQ(X)

)]
2
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to refer to the Kullback–Leibler divergence. We use ∥·∥ to denote a norm on the Banach space Q of
the finite signed measures, and ∥·∥∗ the corresponding dual norm on the dual space Q∗ of measurable
functions f on W such that ∥f∥∗ = supQ∈Q:∥Q∥≤1⟨Q, f⟩.

2. Preliminaries

The classical statistical learning framework usually considers a dataset Sn = (Z1, ..., Zn), made of
n i.i.d. elements drawn from a distribution µ over a measurable instance space Z . Often, one can
think of each Zi as a feature-label pair (Xi, Yi). Furthermore, we are given a measurable class W of
hypotheses and a loss function ℓ : W×Z → R+, with ℓ(w, z) measuring the quality of the hypothesis
w ∈ W on the data instance z ∈ Z . For any given hypothesis w ∈ W , two key objects of interest
are the training error L̂(w, Sn) = 1

n

∑n
i=1 ℓ(w,Zi) and the test error L(w) = EZ′∼µ[ℓ(w,Z

′)],
where the random element Z ′ has the same distribution as Zi and is independent of Sn. A learning
algorithm A : Zn → W maps the training sample to an hypothesis in W . More generally, we will
focus on randomized learning algorithms, returning a probability distribution PWn|Sn

∈ ∆W over W ,
conditionally on Sn (deterministic algorithms can be recovered as special cases, whose the outputs
are Dirac distributions). The ultimate goal of the learner is to minimize the test error. Yet, this
quantity cannot be computed without knowledge of the data generating distribution µ. In practice, one
typically relies on the training error in order to gauge the quality of the algorithm. For an algorithm A :
Sn 7→ PWn|Sn

, we define the generalization error as the expected gap between training and test error:

Gen(A, Sn) = E
[
L(Wn)− L̂(Wn, Sn)

∣∣∣Sn

]
.

The expectation in the above expression integrates over the randomness in the output of the algorithm
Wn ∼ PWn|Sn

, conditionally on the sample Sn. We stress that the test error is generally not equal to
the mean of the training error, due to the dependence of Wn on the training data, which is precisely
the challenge that necessitates studying conditions under which the generalization error is small.

We extend the previous setting by considering the case where the data have an intrinsic temporally
ordered structure, and come in the form of a stationary process (Zt)t∈N∗ ∼ ν. Formally, we assume
that the joint marginal distribution of any block (Zt, Zt−1, . . . , Zt−i) is the same as the distribution
of (Zt+j , Zt+j−1, . . . , Zt+j−i) for any t, i and j, but the data points are not necessarily independent
of each other. In particular, the marginal distribution of Zt is constant and is denoted by µ. In
such a setting, it is natural to continue to use the definition of the test loss and generalization error
given above, although with the understanding that µ now refers to the marginal distribution of an
independent copy of Z1, a sample point from a stationary non-i.i.d. process. We remark here that other
notions of the test loss may also be considered, and the framework that we propose can be extended
to most natural definitions with little work (but potentially large notational overhead). In Section 5,
we provide such an extension for a more general setting where the hypotheses themselves are allowed
to have memory and the process may not be as strongly stationary as our assumption above requires.

To obtain generalization results we need some control on how strong the dependencies between
different datapoints are allowed to be. We hence consider the following assumption.

Assumption 1 There exists a non-increasing sequence (ϕd)d∈N∗ of non-negative real numbers such
that, for all w ∈ W and all t ∈ N∗:

E
[
L(w)− ℓ(w,Zt)

∣∣∣Ft−d

]
≤ ϕd ,

3
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where L(w) = EZ′∼µ[ℓ(w,Z
′)], with Z ′ being independent on the process (Zt)t∈N∗ and having as

distribution the stationary marginal µ of the Zt.

The intuition behind this assumption is that the loss associated with the observations Zt becomes
almost independent of the past after d steps, enabling us to treat each sequence of the form
(Zt, Zt+d, . . . , Zt+(n−t)d) as an approximately i.i.d. sequence. Note that this assumption differs
from the usual β-mixing assumption that requires the distribution of Zt|Ft−d to be close (in total
variation) to the marginal distribution µ for all t. Our assumption is somewhat weaker in the sense
that it only requires the expected losses under these distributions to be close, and only a one-sided
inequality is required. It is easy to verify that our assumption is satisfied if the process is β-mixing in
the usual sense and the losses are bounded in [0, 1].

It is worth noticing that while our assumption can look like a small “cosmetic” improvement
over the standard β-mixing, it can actually be much weaker. For a concrete example, consider let
ℓ(w,Zt) = ℓ(w,Z ′

t) + εt, where the Z ′
t are part of an i.i.d. sequence, and εt is sampled from a

bounded β-mixing process, with α a small constant. Now, for any w, ℓ(w,Zt) is clearly a β-mixing
process (inheriting the properties of εt), independently of the choice of α. In contrast, the mixing rate
as defined in our assumption improves linearly with α, and vanishes as this parameter approaches
zero. As a matter of fact, β-mixing conditions are very strict in that they require mixing in terms
of the entire distribution of the loss, and ignores the “scale” at which non-stationarity impacts the
outcomes.

3. Proving generalization bounds via online learning

This section introduces our main contribution: a framework for proving generalization bounds for
statistical learning on non-i.i.d. data via a reduction to online learning. The framework of online
learning focuses on algorithms that aim to improve performance (measured in terms of a given
cost function) incrementally as new information becomes available, often without any underlying
assumption on how data are generated. The online learner’s performance is typically measured in
terms of its regret, defined as the the difference between the cumulative cost of the online learner and
that of a fixed comparator. We refer to the monographs Cesa-Bianchi and Lugosi (2006) and Orabona
(2019) for comprehensive overviews on online learning and regret analysis. Recently, Lugosi and
Neu (2023) established a connection between upper bounds on the regret and generalization bounds,
showing that the existence of a strategy with a bounded regret in a specially designed online game
translates into a generalization bound, via a technique dubbed online-to-PAC conversion. Their focus
is on the i.i.d. setting, where the training dataset is made of independent draws. Here, we show that
this framework can naturally be extended beyond the i.i.d. assumption.

In what follows, we briefly review the setup of Lugosi and Neu (2023) in Section 3.1 and then
describe our new extension of their model to the non-i.i.d. case in Section 3.2. In particular, we prove
a high-probability bound for the generalization error of any statistical learning algorithm learnt with
a stationary mixing process verifying Assumption 1.

3.1. Online-to-PAC conversions for i.i.d. data

The main idea of Lugosi and Neu (2023) is to introduce an online learning generalization game,
where the following steps are repeated for a sequence of rounds t = 1, 2, . . . , n:

• the online learner picks a distribution Pt ∈ ∆W ;

4
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• the adversary selects the cost function ct : w 7→ ℓ(w,Zt)− L(w);
• the online learner incurs the cost ⟨Pt, ct⟩ = EW∼Pt [ct(W )];

• Zt is revealed to the learner.

The learner can adopt any strategy to pick Pt, but they can only rely on past knowledge to make
their prediction. Explicitly, if Ft denotes the sigma-algebra generated by Z1, ..., Zt, then Pt has to
be Ft−1-measurable. We also emphasize that in this setup the online learner is allowed to know the
loss function ℓ and the distribution µ of the data points Zt, and therefore by revealing the value of Zt,
the online learner may compute the entire cost function ct.

We define the regret of the online learner against the possibly data-dependent comparator
P ∗ ∈ ∆W as Regret(P ∗) =

∑n
t=1⟨Pt − P ∗, ct⟩. Now, denote as PWn|Sn

the distribution pro-
duced by the supervised learning algorithm. With this notation, the generalization error can
be written as Gen(A, Sn) = − 1

n

∑n
t=1⟨PWn|Sn

, ct⟩. By adding and subtracting the quantity
Mn = − 1

n

∑n
t=1⟨Pt, ct⟩ (corresponding to the total cost incurred by the online learner) we get

the following decomposition.

Theorem 1 (Theorem 1 in Lugosi and Neu, 2023; see appendix A.1) With the notation introduced
above,

Gen(A, Sn) =
Regretn(PWn|Sn

)

n
+Mn . (1)

The first of these terms correspond to the regret of the online learner against a fixed comparator
strategy that picks PWn|Sn

at each step. The second term is a martingale and can be bounded in high
probability with standard concentration tools. Indeed, since Pt is chosen before Zt is revealed, one
can easily check that E[⟨Pt, ct⟩|Ft−1] = 0. Thus, to prove a bound on the generalization error of the
statistical learning algorithm, it is enough to find an online learning algorithm with bounded regret
against PWn|Sn

in the generalization game.
As a concrete application of the above, the following generalization bound is obtained when

picking the classic exponential weighted average (EWA) algorithm (Vovk, 1990; Littlestone and
Warmuth, 1994; Freund and Schapire, 1997) as our online-learning strategy, and plugging its regret
bound into Equation (1).

Theorem 2 (Corollary 6 in Lugosi and Neu, 2023) Suppose that ℓ(w, z) ∈ [0, 1] for all w, z.
Then, for any P1 ∈ ∆W and η > 0, with probability at least 1− δ on the draw of Sn, uniformly on
every learning algorithm A : Sn 7→ PWn|Sn

, we have

Gen(A, Sn) ≤
DKL(PWn|Sn

||P1)

ηn
+

η

2
+

√
2 log

(
1
δ

)
n

.

Proof We can bound each term of (1) separately. A data-dependent bound for the regret term is ob-
tained via a direct application of the regret analysis of EWA which brings the term

DKL(PWn|Sn ||P1)

ηn +

η
2 (see Appendix B.1). The term

√
2 log( 1

δ )
n results from bounding the martingale Mn via an applica-

tion of Hoeffding–Azuma inequality.

Note that the first term in the bound is data-dependent due to the presence of PWn|Sn
, and thus

optimizing it requires a data-dependent choice of η, which is not allowed by Theorem 2. However,

5
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via a union bound argument it is possible to get a bound of the form

Gen(A, Sn) = O

(√
DKL(PWn|Sn

||P1)

n
+

√
1

n
log

(
log n

δ

))
,

For the details, we refer to the proof of Corollary 5 of Lugosi and Neu (2023), which recovers a
classical PAC-Bayes bound of McAllester (1998).

3.2. Online-to-PAC conversions for non-i.i.d. data

We will now drop the i.i.d. condition, and instead consider non-i.i.d. data sequences satisfying
Assumption 1. For this setting we define the following variant of the generalization game.

Definition 3 (Generalization game with delay) The generalization game with delay d ∈ N∗ is an
online learning game where the following steps are repeated for a sequence of rounds t = 1, ..., n:

• the online learner picks a distribution Pt ∈ ∆W ;

• the adversary selects the cost function ct : w 7→ ℓ(w,Zt)− L(w);
• the online learner incurs the cost ⟨Pt, ct⟩ = EW∼Pt [ct(W )];

• if t ≥ d, Zt−d+1 is revealed to the learner.

As before, the last step effectively reveals the entire cost function ct−d+1 to the online learner. The
main difference between our version of the generalization game and the standard one of Lugosi and
Neu (2023) is the introduction of a delay on the online learning algorithm’s decisions. Specifically,
we will force the online learner to only take information into account up to time t− d when picking
their action Pt. Clearly, setting d = 1 recovers the original version of the generalization game.

It is easy to see that the regret decomposition of Theorem 1 still remains valid in the current setting.
The purpose of introducing the delay is to be able to make sure that the term Mn = − 1

n

∑n
t=1 ⟨Pt, ct⟩

is small. The lemma below states that the increments of Mn behave similarly to a martingale-
difference sequence, thanks to the introduction of the delay.

Lemma 4 Fix d ∈ [[1, n]]. Under Assumption 1, defining Pt and ct as in 3, for all t ∈ [[1, n]]

E[⟨−Pt, ct⟩|Ft−d] ≤ ϕd .

Proof Since Pt is Ft−d-measurable we have E[⟨−Pt, ct⟩|Ft−d] = ⟨Pt,E[−ct|Ft−d]⟩ ≤ ϕd, where
the last step uses Assumption 1.

Thus, by following the decomposition of Theorem 1, we are left with the problem of bounding the
regret of the delayed online learning algorithm against PWn|Sn

, denoted as Regretd,n(PWn|Sn
) =∑n

t=1

〈
Pt − PWn|Sn

, ct
〉
. The following proposition states a simple and clean bound that one can

immediately derive from these insights.

Proposition 5 (Bound in expectation) Consider (Zt)t∈N∗ satisfying Assumption 1 and suppose
there exists a d-delayed online learning algorithm with regret bounded by Regretd,n(P

∗) against
any comparator P ∗. Then, the expected generalization of A is bounded as

E [Gen(A, Sn)] ≤
E
[
Regretd,n(PWn|Sn

)
]

n
+ ϕd .

6
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Proof By Theorem 1, it holds that E[Gen(A, Sn)] =
E[Regretd,n(PWn|Sn )]

n +E[Mn], where the regret
is for a strategy Pt in the delayed generalization game. Hence, by Lemma 4

E[Mn] = E

[
− 1

n

n∑
t=1

⟨Pt, ct⟩

]
=

1

n

n∑
t=1

E[⟨−Pt, ct⟩] =
1

n

n∑
t=1

E [E[⟨−Pt, ct⟩|Ft−d]] ≤ ϕd ,

which proves the claim.

The above result holds in expectation over the training sample. We now provide a high-probability
guarantee on the generalization error.

Theorem 6 (Bound in probability) Assume that (Zt)t∈N∗ satisfies Assumption 1 and consider a
d-delayed online learning algorithm with regret bounded by Regretd,n(P

∗) against any comparator
P ∗. Then, for any δ > 0, it holds with probability 1− δ on the draw of Sn, uniformly for all A,

Gen(A, Sn) ≤
Regretd,n(PWn|Sn

)

n
+ ϕd +

√
2d log

(
1
δ

)
n

.

The proof of this claim follows directly from combining the decomposition of Theorem 1 with a
standard concentration result for mixing processes that we state below.

Lemma 7 Fix d ∈ [[1, n]] and consider (Zt)t∈N∗ satisfying Assumption 1. Consider the generaliza-
tion game of Definition 3. Then, for any δ > 0, the following bound is satisfied with probability at
least 1− δ:

Mn ≤ ϕd +

√
2d log

(
1
δ

)
n

.

The proof is based on a classic “blocking” technique due to Yu (1994). For the sake of completeness,
we provide a proof in Appendix A.2.

4. New generalization bounds for non-i.i.d. data

The dependence on the delay d for the bounds that we presented in the previous section is non-trivial.
Indeed, if on the one hand increasing the delay will reduce the magnitude of ϕd, on the other hand
the regret of the online learner will grow with d. There is hence a trade-off between these two terms
appearing in our bounds. In what follows, we derive some concrete generalization bounds from
Theorem 6, under a number of different choices of the online learning algorithm. For concreteness,
we will consider two types of mixing assumptions, but stress that the approach can be applied to any
process that satisfies Assumption 1.

4.1. Regret bounds for delayed online learning

From Theorem 6, we can obtain a generalization bound using our framework if we have a regret
bound for a delayed online algorithm. This is a well-known problem in the area of online learning
(see, e.g., Weinberger and Ordentlich, 2002; Joulani et al., 2013). In the following, we will leverage
the following simple trick that allows us to extend the regret bounds of any online learning algorithm
to its delayed counterpart, provided that the regret bound respects some specific assumptions.

7
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Lemma 8 (Weinberger and Ordentlich, 2002) Consider any online algorithm whose regret satis-
fies Regretn(P

∗) ≤ R(n) for any comparator P ∗, where R is a non-decreasing real-valued function
such that y 7→ yR(x/y) is concave in y for any fixed x. Then, for any d ≥ 1 there exists an online
learning algorithm with delay d such that, for any P ∗,

Regretd,n(P
∗) ≤ dR (n/d) .

The proof idea is closely related to the blocking trick of Yu (1994), with an algorithmic construction
that runs one instance of the base method for each index i = 1, 2, . . . , d, with the i-th instance being
responsible for the regret in rounds i, i+ d, i+ 2d, . . . (more details are provided in Appendix B.3).
For most of the regret bounds that we consider, the function R takes the form R(n) = O(

√
n), so

that the first term in the generalization bound is typically of order
√

d/n. Since this term matches
the bound on Mn in Lemma 7, in this case the final generalization bound behaves effectively as if
the sample size was n/d instead of n.

We remark that that the regret guarantees of Weinberger and Ordentlich (2002) are minimax
optimal (Joulani et al., 2013)1 , and although more efficient methods exist for online learning with
delays, the online-to-PAC reduction does not require the strategy to be executed in practice, making
the computational efficiency of the online method irrelevant to our analysis.

4.2. Geometric and algebraic mixing

The following definition gives two concrete examples of mixing processes that satisfy Assumption 1
with different choices of ϕd, and are commonly considered in the related literature (see, e.g., Mohri
and Rostamizadeh, 2010, Levin and Peres, 2017).

Definition 9 We say that a stationary process (Zt)t∈N∗ satisfying Assumption 1 is geometrically
mixing if ϕd = Ce−

d
τ , for some positive τ and C, and algebraically mixing if ϕd = Cd−r, for some

positive r and C.

Instantiating the bound of Theorem 6 to these two cases yields the following two corollaries.

Corollary 10 Assume (Zt)t∈N∗ is a geometrically mixing process with constants τ, C > 0. Consider
a d-delayed online learning algorithm with regret bounded by Regretd,n(P

∗) for all comparators P ∗.
Then, setting d = ⌈τ log n⌉, for any δ > 0, with probability at least 1− δ we have that, uniformly
for any algorithm A,

Gen(A, Sn) ≤
Regretd,n(PWn|Sn

)

n
+

C

n
+

√
2 (τ log n+ 1) log

(
1
δ

)
n

.

Up to a term linear in τ and some logarithmic factors, the above states that under the geometric
mixing the same rates are achievable as in the i.i.d. setting. Roughly speaking, this amounts to saying
that the effective sample size is a factor τ smaller than the original number of samples n, as long as
generalization is concerned.

1. The guarantees of Lemma 8 are minimax optimal in the sense that the best that one can hope for without further
assumptions on the loss is a regret of O(

√
dT ). Although it is true that better regret bounds can be achieved under

more specific assumptions about the losses (see Table 1 in Joulani et al., 2013), this is precisely the type of assumption
that we wanted to avoid in our work.

8
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Corollary 11 Assume (Zt)t∈N∗ is an algebraic mixing process with constants r, C > 0. Consider a
d-delayed online learning algorithm with regret bounded by Regretd,n(P

∗) against any comparator

P ∗. Then, setting d =
(
C2n

)1/(1+2r), for any δ > 0, with probability at least 1 − δ we have that,
uniformly for any algorithm A,

Gen(A, Sn) ≤
Regretd,n(PWn|Sn

)

n
+ C

(
1 +

√
log(1/δ)

)
n
− 2r

2(1+2r) .

This result suggests that the rates achievable for algebraically mixing processes are qualitatively
much slower than what one can get for i.i.d. or geometrically mixing data sequences (although the
rates do eventually approach 1/

√
n as r goes to infinity).

4.3. Multiplicative weights with delay

We now turn our attention to picking online strategies for the purpose of bounding the main term in the
decomposition of the generalization error. We start by focusing on the classic exponential weighted
average (EWA) algorithm (Vovk, 1990; Littlestone and Warmuth, 1994; Freund and Schapire, 1997).
We fix a data-free prior P1 ∈ ∆W and a learning rate parameter η > 0. We consider the updates

Pt+1 = arg min
P∈∆W

{
⟨P, ct⟩+

1

η
DKL(P ||Pt)

}
,

Combining the standard regret bound of EWA (see Appendix B.1) with Lemma 8 and Corollary 10
yields the result that follows.

Corollary 12 Suppose that (Zt)t∈N∗ is a geometric mixing process with constants τ, C > 0.
Suppose that ℓ(w, z) ∈ [0, 1] for all w, z. Then, for any P1 ∈ ∆W and any δ > 0, with probability
at least 1− δ, uniformly on any learning algorithm A we have

Gen(A, Sn) ≤
DKL(PWn|Sn

||P1)(τ log n+ 1)

ηn
+

η

2
+

C

n
+

√
2 (τ log n+ 1) log

(
1
δ

)
n

.

This results suggests that when considering geometric mixing processes, by applying a union bound
over a well-chosen range of η we recover the PAC-Bayes bound of McAllester (1998) up to a
O(

√
τ log n) factor that quantifies the price of dropping the i.i.d. assumption. A similar result can be

derived from Corollary 11 for algebraically mixing processes, leading to a bound typically scaling as
n−2r/(2(1+2r)).

4.4. Follow the regularized leader with delay

We finally extend the common class of online learning algorithms known as follow the regularized
leader (FTRL, see, e.g., Abernethy and Rakhlin, 2009; Orabona, 2019) to the problem of learning
with delay. FTRL algorithms are defined using a convex regularization function h : ∆W → R. We
restrict ourselves to the set of proper, lower semi-continuous and α-strongly convex functions with
respect to a norm ∥·∥ (and its respective dual norm ∥·∥∗) defined on the set of signed finite measures
on W (see Appendix B.2 for more details). The updates of of the FTRL algorithm (without delay)
are defined as follows:

Pt+1 = argmin
P∈∆W

{
t∑

s=1

⟨P, cs⟩+
1

η
h(P )

}
.

9
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The existence of the minimum is guaranteed by the compactness of ∆W under ∥·∥, and its uniqueness
is ensured by the strong convexity of h. Combining the analysis of FTRL (see Appendix B.2) with
Lemma 8 and Corollary 10 yields the following result.

Corollary 13 Suppose that (Zt)t∈N∗ is a geometric mixing process with constants τ, C > 0.
Suppose that ℓ(w, z) ∈ [0, 1] for all w, z. Assume there exists B > 0 such that for all t, ||ct||∗ ≤ B.
Then, for any P1 ∈ ∆W , for any δ > 0 with probability at least 1− δ on the draw of Sn, uniformly
for all A,

Gen(A, Sn) ≤
(
h(PWn|Sn

)− h(P1)
)
(τ log n+ 1)

ηn
+

ηB2

2α
+

C

n
+

√
2 (τ log n+ 1) log

(
1
δ

)
n

.

This generalization bound is similar to the bound of Theorem 9 of Lugosi and Neu (2023) up to a
O(

√
τ log n) factor, when applying a union-bound argument over an appropriate grid of learning-

rates η. In particular, this result recovers PAC-Bayesian bounds like those of Corollary 12 when
choosing h = DKL(·∥P1). We refer to Section 3.2 in Lugosi and Neu (2023) for more discussion on
such bounds. As before, a similar result can be stated for algebraically mixing processes, with the
main terms scaling as n−2r/2(1+2r) instead of n−1/2.

5. Generalization bounds for dynamic hypotheses

Finally, inspired by the works of Eringis et al. (2022, 2024), we extend our framework to accom-
modate loss functions ℓ that rely not only on the last data point Zt, but on the entire data sequence
Zt = (Zt, Zt−1, . . . , Z1). Formally, we will consider loss functions of the form ℓ : W ×Z∗ → R+

2

and write ℓ(w, zt) to denote the loss associated with hypothesis w ∈ W on sequence zt ∈ Zt. This
consideration extends the learning problem to class of dynamical predictors such as Kalman filters,
autoregressive models, or recurrent neural networks (RNNs), broadly used in time-series forecasting
(Ariyo et al., 2014; Takeda et al., 2016). Specifically, if we think of zt = (xt, yt) as a data-pair of
context and observation, in time-series prediction we usually not only rely on the context xt but also
on the past sequence of contexts and observations (xt−1, yt−1, . . . , x1, y1). As an example, consider
ℓ(w, zt, . . . , z1) =

1
2(yt − hw(xt, zt−1, . . . , z1))

2 where h ∈ H is a function class parameterized by
W . For this type of loss function a natural definition of the test error is:

L̃(w) = lim
n→∞

E[ℓ(w,Z ′
t, Z

′
t−1, ..., Z

′
t−n)],

where Z
′
t = (Z ′

t, Z
′
t−1, . . . ) is a semi-infinite random sequence drawn from the same stationary

process that has generated the data Zt. We consider the following assumption.

Assumption 2 For a given process (Zt)t∈Z with joint-distribution ν over ZZ and same marginals
µ over Z , there exists a non-increasing sequence (ϕd)d∈N∗ of non-negative real numbers such that
the following holds for all w ∈ W , for all t ∈ N∗:

E
[
ℓ(w,Zt, . . . , Z1)− L̃(w)

∣∣∣Ft−d

]
≤ ϕd.

2. Here, Z∗ denotes the disjoint union Z∗ = ⊔t∈NZt.

10
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This is a generalization of Assumption 1 in the sense that taking ℓ(w,Zt, . . . , Z1) = ℓ(w,Zt) simply
amounts to requiring the same mixing condition as before. For our online-to-PAC conversion we
consider the same framework as in Definition 3, except that now the cost function is defined as

ct : w 7→ ℓ(w,Zt, . . . , Z1)− L̃(w) .

It easy to check that result of Lemma 7 still holds for this specific cost, and we can thus extend all
the results of Section 4. We state the following adaptation of Theorem 6 below.

Theorem 14 Assume (Zt)t∈Z which satisfies Assumption 2 and consider a d-delayed online learning
algorithm with regret bounded by Regretd,n(P

∗) against any comparator P ∗. Then, for any δ > 0,
it holds with probability 1− δ:

Gen(A, Sn) ≤
Regretd,n(PWn|Sn

)

n
+ ϕd +

√
2d log

(
1
δ

)
n

.

To see that Assumption 2 can be verified and the resulting bounds can be meaningfully applied,
consider the following concrete assumptions about the hypothesis class, the loss function, and the
data generating process. The first assumption says that for any given hypothesis, the influence of past
data points on the associated loss vanishes with time (i.e., the hypothesis forgets the old data points
at a controlled rate).

Assumption 3 There exists a decreasing non-negative sequence (Bd)d∈N∗ such that, for any two
sequences zt = (zt, . . . , zi) and z′t = (z′t, . . . , z

′
j) of possibly different lengths that satisfy zk = z′k

for all k ∈ t, . . . , t− d+ 1, we have |ℓ(w, zt)− ℓ(w, z′t)| ≤ Bd, for all w ∈ W .

This condition can be verified for stable dynamical systems like autoregressive models, certain
classes of RNNs, or sequential predictors that have bounded memory by design (see Eringis et al.,
2022, 2024). The next assumption is a refinement of Assumption 1, adapted to the case where the
loss function acts on blocks of d data points zt−d+1:t = (zt, zt−1, . . . , zt−d+1).

Assumption 4 Let Zt = (Zt, . . . , Z1) be a sequence of data points and Z
′
t = (Z ′

t, . . . , Z
′
0, . . . )

an independent copy of the same process. Then, there exists a decreasing sequence (βd)d∈N∗

non-negative real numbers such that the following is satisfied for all hypotheses w ∈ W and all
d ∈ N∗:

E
[
ℓ(w,Z

′
t−d+1:t)− ℓ(w,Zt−d+1:t)

∣∣∣Ft−2d

]
≤ βd .

This assumption can be verified whenever the loss function is bounded and the joint distribution of
the data block Zt−d+1:t satisfies a β-mixing assumption. This latter condition amounts to requiring
that the conditional distribution of each data block given a block that trails d steps behind is close to
the marginal distribution in total variation distance, up to an additive term of βd. The next proposition
shows that these two simple conditions together imply that Assumption 2 holds, and the bound of
Theorem 14 can be meaningfully instantiated for bounded-memory hypothesis classes deployed on
mixing processes.

Proposition 15 Suppose that the loss function satisfies Assumption 3 and the data distribution
satisfies Assumption 4. Then Assumption 2 is satisfied with ϕd = 2Bd/2 + βd/2.

11
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6. Conclusion

We have developed a general framework for deriving generalization bounds for non-i.i.d. processes
under a general mixing assumption, extending the online-to-PAC-conversion framework of Lugosi
and Neu (2023). Among other results, this approach has allowed us to prove PAC-Bayesian gener-
alization bounds for such data in a clean and transparent way, and even study classes of dynamic
hypotheses under a simple bounded-memory condition. We now conclude by mentioning links with
the most closely related previous works in the literature.

The PAC-Bayesian bound in Corollary 12 is closely related to Theorem 19 of Ralaivola et al.
(2010). Their bound has the advantage to upper-bound a nonlinear proxy of the generalization error
and may imply faster rates if the training error is close to zero. Conversely, the proof of this result
is a rather cumbersome application of the heavy machinery developed in the rest of their paper. In
comparison, our proofs are direct and straightforward, and generalize easily to other divergences
than the relative entropy, as discussed in Section 4.4.

Our results concerning dynamic hypotheses provide a clean and tight alternative to the results of
(Alquier and Wintenberger, 2012; Eringis et al., 2022). Our Assumptions 3 and 4 can be both shown
to hold under their conditions, and the dependence of our bounds on the parameters appearing in
these assumptions are stated explicitly. This is a significant advantage over the guarantees of Eringis
et al. (2022), which are stated without clearly spelling out the dependence of the problem parameters
they consider. Finally, their bounds are stated in PAC-Bayesian terms, which is just one instance
of the variety of generalization bounds that our framework can recover. It is worth mentioning that
there are other models for studying non-stationarity in statistical learning (León and Perron, 2004;
Simchowitz et al., 2018). While our techniques may not be directly applicable to these settings, we
believe that a similar online-learning-based perspective might prove helpful for these purposes too.

We also wish to comment on the concurrent work of Chatterjee et al. (2025) who recently
proposed a very similar framework for extending the Online-to-PAC technique of Lugosi and Neu
(2023) to deal with non-i.i.d. data. Their assumptions and techniques are closely related to ours,
except for the major difference that their reduction does not involve delays. Instead, Chatterjee et al.
(2025) make strong assumptions about both the loss function and the online learning algorithm:
the losses are assumed to be Lipschitz and the online learning method to be “stable” in a rather
strong sense. These assumptions are inherited from Agarwal and Duchi (2012) who made the same
type of assumptions in the context of proving excess risk bounds for online-to-batch conversions in
non-i.i.d. settings. Thanks to the use of delays, our framework does not require any such assumptions,
and yields strictly tighter bounds. We note that this observation can be easily used to improve the
guarantees of Agarwal and Duchi (2012): by introducing delays into their algorithmic reduction, one
can remove the stability conditions required for their results.

Given these positive results, we believe that our results further demonstrate the power of the
Online-to-PAC framework of Lugosi and Neu (2023), and clearly show that it is particularly promising
for developing techniques for generalization in non-i.i.d. settings. We hope that the flexibility of our
framework will find further uses and enable more rapid progress in the area.
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Appendix A. Omitted proofs

A.1. The proof of Theorem 1

Let (Pt)
n
t=1 ∈ ∆n

W be the predictions of an online learner playing the generalization game. Then

Gen(A, Sn) =
1

n

n∑
t=1

E[ℓt(Wn)− L(Wn)|Sn]

= − 1

n

n∑
t=1

E[ct(Wn)|Sn]

= − 1

n

n∑
t=1

⟨PWn|Sn
, ct⟩

=
1

n

n∑
t=1

⟨Pt − PWn|Sn
, ct⟩ −

1

n

n∑
t=1

⟨Pt, ct⟩

=
Regretn(PWn|Sn

)

n
+Mn.

A.2. Proof of lemma 7

Assume n = Kd and denote Mn =
∑n

t=1⟨Pt, ct⟩. Then

Mn =

d∑
i=1

K∑
t=1

⟨Pi+d(t−1), ci+d(t−1)⟩ .

We denote X
(i)
t = ⟨Pi+d(t−1), ci+d(t−1)⟩ and we want to bound in high-probability the term Mn =∑d

i=1Mi, where Mi =
∑K

t=1X
(i)
t . We notice that f 7→ logE

[
eλf
]

is convex. Therefore, from
Jensen’s inequality, for any positive p1, . . . , pd such that

∑M
i=1 pi = 1, and for any λ > 0, it holds

that

logE
[
eλMn

]
≤

d∑
i=1

pi logE
[
e
λ

Mi
pi

]
.

Let us denote F (i)
t = Fi+d(t−1), we have for all i ∈ [d]

E
[
e
λ

Mi
pi

]
= E

[
e

λ
pi

∑K
t=1 X

(i)
t

]
= E

[
e

λ
pi

∑K−1
t=1 X

(i)
t E

[
e

λ
pi

X
(i)
K

∣∣∣F (i)
K−1

]]
.

Now remark that

E
[
e

λ
pi

X
(i)
K

∣∣∣F (i)
K−1

]
= E

[
e

λ
pi

(X
(i)
K −E[X(i)

K |F (i)
K−1])

∣∣∣F (i)
K−1

]
e

λ
pi

E[X(i)
K |F (i)

K−1] .

Denote Z = X
(i)
K − E[X(i)

K |F (i)
K−1]. Note that |Z| ≤ 2 and E[Z|F (i)

K−1] = 0. By Hoeffding’s

inequality we have E
[
e

λ
pi

X
(i)
K

∣∣∣F (i)
K−1

]
≤ e

λ2

2p2
i

+
λϕd
pi . Repeating this reasoning K times yields

E
[
e
λ

Mi
pi

]
≤ e

λ2K

2p2
i

+
λKϕd

pi .
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Finally,

logE
[
eλMn

]
≤

d∑
i=1

pi

(
λ2K

2p2i
+

λKϕd

pi

)
now taking pi =

1
d essentially gives logE

[
eλMn

]
≤ n(λ

2d
2 +λϕd). Now, from Chernoff’s inequality

P
(
Mn

n
≥ t

)
≤ E

[
eλ

Mn
n

]
e−λt ≤ e

λ2d
2n

+λϕd−λt ≤ e−
n(t−ϕd)

2

2d .

Setting t = ϕd +

√
2d log( 1

δ
)

n concludes the proof.

A.3. Proof of Proposition 15

Suppose without loss of generality that d is even and define d′ = d/2. For the proof, let Z ′
n be a

semi-infinite sequence drawn independently from the same process as Zn. Then, we have

L̃(w) = lim
n→∞

E[ℓ(w,Z ′
t, Z

′
t−1, ..., Z

′
t−n)]

≤ E[ℓ(w,Z ′
t, Z

′
t−1, . . . , Z

′
t−d′)] +Bd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Zt−d′)| Ft−2d′ ] +Bd′ + βd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Zt−d′ , . . . , Z1)| Ft−2d′ ] + 2Bd′ + βd′

≤ E [ℓ(w,Zt, Zt−1, . . . , Z1)| Ft−2d′ ] + 2Bd′ + βd′ ,

where we used Assumption 3 in the first inequality, Assumption 4 in the second one, and Assumption 3
again in the last step. This proves the statement.

Appendix B. Online Learning Tools and Results

B.1. Regret Bound for EWA

Recalling EWA updates we have:

Pt+1 = arg min
P∈∆W

{
⟨P, ct⟩+

1

η
DKL(P ||Pt)

}
,

where η > 0 is a learning-rate parameter. The minimizer can be shown to exist and satisfies:

dPt+1

dPt
(w) =

e−ηct(w)∫
W e−ηct(w′)dPt(w′)

,

and the following result holds.

Proposition 16 For any prior P1 ∈ ∆W and any comparator P ∗ ∈ ∆W the regret of EWA simulta-
neously satisfies for η > 0:

Regret(P ∗) ≤ DKL(P
∗||P1)

η
+

η

2

n∑
t=1

||ct||2∞.

We refer the reader to Appendix A.1 of Lugosi and Neu (2023) for a complete proof of the result
above.
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B.2. Regret Bound for FTRL

We say that h is α−strongly convex if the following inequality is satisfied for all P, P ′ ∈ ∆W and
all λ ∈ [0, 1]:

h(λP + (1− λ)P ′) ≤ λh(P ) + (1− λ)h(P ′)− αλ(1− λ)

2
||P − P ′||2.

Recalling the FTRL updates:

Pt+1 = argmin
P∈∆W

{
t∑

s=1

⟨P, cs⟩+
1

η
h(P )

}
,

the following results holds.

Proposition 17 For any prior P1 ∈ ∆W and any comparator P ∗ ∈ ∆W the regret of FTRL
simultaneously satisfies for η > 0:

Regretn(P
∗) ≤ h(P ∗)− h(P1)

η
+

η

2α

n∑
t=1

||ct||2∗.

We refer the reader to Appendix A.3 of Lugosi and Neu (2023) for a complete proof of the results
above.

B.3. Details about the reduction of Weinberger and Ordentlich (2002)

For concretenes we formally present how to turn any online learning algorithm into its delayed
version. For sake of convenience, assume n = Kd. We denote c̃

(i)
t = ci+d(t−1) (for instance

c̃
(1)
1 = c1 is the cost revealed at time d+ 1). Then we create d instances of horizon time K of the

online learning as follows, for i = 1, . . . , d:

• We initialize P̃
(i)
1 = P0,

• for each block i of length K we update for t = 1, . . . ,K:

P̃
(i)
t+1 = OLupdate

(
(c̃(i)s )ts=1

)
.

Here OLupdate refers to the update function of the online learning algorithm we consider which can
possibly depend of the whole history of cost functions (e.g., in the case of the FTRL update).
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