
A Detailed Discussions and Proofs of Section 3

A.1 A rounding procedure to bound the discretization error

In this subsection, we bound the loss in revenue due to discretization. Specifically, let ep⇤, e⇢⇤ be the
solution of the following program:

max
p2P

max
⇢

p

X

i2[m]

�i

Z 1

0
⇢i(q)D((p, q))dq

s.t.

P
i2[m] �i⇢i(q)!̄iP
i2[m] �i⇢i(q)

= q, q 2 Qp

⇢i 2 �Qp , i 2 [m] .

(eP)

The main result of this subsection is then summarized as follows:

Proposition A.1. For any type CDF F , we have Rev(p⇤, ⇢⇤)� Rev(ep⇤, e⇢⇤)  2".

We prove the above result by showing that we can use a rounding procedure (see Procedure 2) to
round the optimal price p⇤ and the optimal advertising ⇢

⇤ to a new price p† and a new advertising ⇢
†

that satisfy: (i) p† 2 P, supp(⇢†) ✓ Qp† ; and (ii) the revenue loss Rev(p⇤, ⇢⇤)�Rev(p†, ⇢†)  2". It
is worth noting that Procedure 2, which we believe is of independent of interest, works for any buyer
valuation function that is linear in quality and satisfies Assumption 1. And it only uses the knowledge
of critical-type function (·, ·) and prior distribution �. In particular, Procedure 2 does not depend
on any knowledge or estimates about the unknown demand function. Indeed, Proposition A.1 still
holds if we replace the demand function D in the revenue formulation (1) with any monotone non-
increasing function. A graphic illustration of Procedure 2 is provided in Figure 1.

In this subsection, we provide details of our rounding procedure and its graphical illustration.

Procedure 2: Rounding(p, ⇢): A critical-type guided procedure to round the strategy p, ⇢

Input: ", a price p such that p � 2", and an advertising ⇢ such that p, ⇢ satisfy Lemma A.2 and
Lemma A.3.

Output: A price p
† 2 P , an advertising ⇢

† satisfy supp(⇢†) ✓ Qp†

1 Initialization: Let the set Q ;. // The set Q contains the support of the
advertising ⇢†.

2 Define price p
†  max{p0 2 P : p� 2"  p

0  p� "}.
3 for each posterior mean q 2 supp(⇢) do
4 if q 2 Qp† then // Namely, for this case (p†, q) 2 S
5 Q Q [ {q}, and let ⇢†(q) = ⇢(q), and let

{i0 2 [m] : ⇢†i0(q) > 0} = {i0 2 [m] : ⇢i0(q) > 0}.
6 else
7 Suppose {i0 2 [m] : ⇢i0(q) > 0} = {i, j} where i < j.
8 Let x , (p, q), and let x† , (p†, q) 2 ((z � 1)", z") for some z 2 N+.
9 Let qL, qR satisfy (p†, qL) = z", (p†, qR) = (z � 1)".

10 Let q†L , qL _ !̄i, and let q†R , qR ^ !̄j .
11 Q Q [ {q†L, q

†
R}.

/* The conditional probabilities below are constructed to satisfy (BC).
*/

12 Let ⇢†i (q
†
L) =

!̄j�q†L
!̄j�!̄i

1
�i

⇢(q)(q†R�q)

q†R�q†L
and ⇢

†
i (q

†
R) = ⇢i(q)� ⇢

†
i (q

†
L);

⇢
†
j(q

†
L) =

q†L�!̄i

!̄j�!̄i

1
�j

⇢(q)(q†R�q)

q†R�q†L
and ⇢

†
j(q

†
R) = ⇢j(q)� ⇢

†
j(q

†
L).
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Figure 1: Graphical illustration for Procedure 2. Given the input price and advertising (p, ⇢), fix a
posterior mean q 2 supp(⇢) where {i0 2 [m] : ⇢i0(q) > 0} = {i, j} (drawn in black dashed line).
According to the procedure, we first identify x = (p, q), and x

† = (p†, q) 2 ((z� 1)", z") where
the constructed price p

† is defined as in the procedure. We then find two posterior means qL, qR

(here qL � !̄i, qR  !̄j) such that (p†, qL) = z" and (p†, qR) = (z � 1)" (drawn in brown
dashed line), and (p†, qR) < (p†, qL) < (p, q).

Details and guarantees of Procedure 2. Procedure 2 takes as input an input advertising strategy
⇢ that satisfies |{i0 2 [m] : ⇢i0(q) > 0}|  2 for any posterior mean q 2 supp(⇢). This structural
requirement says that in advertising ⇢, the realized signal either fully reveals the product quality, or
randomizes buyer’s uncertainty within two product qualities. Indeed, we can show that there exists
an optimal advertising strategy for program POPT that satisfies this structural requirement:
Lemma A.2 (see, e.g., [33]). There exists an optimal advertising strategy ⇢

⇤ satisfying that |{i 2
[m] : ⇢⇤i (q) > 0}|  2 for every q 2 supp(⇢⇤).

Intuitively, the above result is an implication of the fact that the extreme points of the distributions
with fixed expectations are binary-supported distributions. Meanwhile, we can also deduce the
following property for the optimal price p

⇤ and optimal advertising ⇢
⇤:

Lemma A.3. There exist an optimal price p⇤ and optimal advertising ⇢
⇤ such that for any posterior

mean q 2 supp(⇢⇤) and q /2 ⌦, we have that p⇤  max✓2⇥ v(✓, q).

The above property follows from the observation that if there exists a posterior mean q 2 supp(⇢⇤)
and q /2 ⌦, then from Lemma A.2, it must be the case {i0 2 [m] : ⇢

⇤
i0(q) > 0} = {i, j} for

some i < j such that !̄i < q < !̄j . Now, if p⇤ > max✓2⇥ v(✓, q), then for all types of buyers,
the valuation at this posterior mean is below the given price p

⇤ so that this posterior mean does
not contribute to the revenue; therefore one can decompose the probability over this posterior mean
⇢
⇤(q) to probabilities over !̄i, !̄j without losing any revenue and thus obtain a p⇤, ⇢⇤ with the desired

property.

Proof of Lemma A.3. Let us fix the optimal price p
⇤ and optimal advertising ⇢

⇤. Suppose there
exists a posterior mean q 2 supp(⇢⇤) and q /2 ⌦, then from Lemma A.2, it must be the case {i0 2
[m] : ⇢⇤i0(q) > 0} = {i, j} for some i < j that !̄i < q < !̄j . Suppose p⇤ > max✓2⇥ (✓, q), then it
is easy to see that the revenue contributed from this posterior mean p

⇤P
i �i⇢

⇤
i (q)D((p⇤, q)) = 0.

Thus, decoupling this posterior mean q to the states !̄i and !̄j will not lose any revenue.

With the above Lemma A.2 and Lemma A.3, we now formally present two guarantees on the price
and advertising strategy obtained from Procedure 2.
Lemma A.4 (Feasibility guarantee). Given an input price and advertising strategy p, ⇢ satisfying
the properties stated in Lemma A.2 and Lemma A.3, the output price p† and the advertising strategy
⇢
† from Procedure 2 satisfies: p

† 2 P , ⇢† is a feasible advertising and satisfies (p†, q) 2 S for
every q 2 supp(⇢†).

Lemma A.5 (Revenue guarantee). Fix a price p � 2" and a feasible advertising strategy ⇢, let
p
†
, ⇢

† = Rounding(p, ⇢) be the output from Procedure 2, then we have Rev(p, ⇢)�Rev(p†, ⇢†)  2".

15



The proofs of the above two lemmas are provided in Appendix A.2. With these two guarantees, we
can now prove Proposition A.1:

Proof of Proposition A.1. Let p
†
, ⇢

† = Rounding(p⇤, ⇢⇤), then we have Rev(p⇤, ⇢⇤) �
Rev(ep⇤, e⇢⇤)  Rev(p⇤, ⇢⇤) � Rev(p†, ⇢†)  2" where the first inequality follows from the fea-
sibility guarantee of price p

† and advertising ⇢
† in Lemma A.4 and the definition of ep⇤, e⇢⇤, and the

second inequality follows from revenue guarantee in Lemma A.5.

A.2 Proofs of Lemma A.4 and Lemma A.5

In this subsection, we provide proofs of Lemma A.4 and Lemma A.5. At a high-level the argument
is as follows. Given an input price p, Procedure 2 outputs the closest price p

† 2 P that satisfies
p � 2"  p

†  p � ". Given an input advertising ⇢, for every posterior mean q 2 supp(⇢) and
q /2 Qp† , with Lemma A.2, there must exist two qualities !̄i, !̄j where i < j such that {i0 2
[m] : ⇢i0(q) > 0} = {i, j}. For such posterior mean q, Procedure 2 first identifies the critical
type x = (p, q) and x

† = (p†, q) where x
† lies within a grid ((z � 1)", z") for some z 2 N+.

Then, Procedure 2 utilizes the critical-type function (p†, ·) for the constructed price p
† to find two

posterior means qL, qR such that they satisfy: (p†, qL) = z" and (p†, qR) = (z � 1)". 6 To
construct a feasible advertising strategy, we then round qL up to be !̄i when qL < !̄i happens and
round qR down to be !̄j when qR > !̄j happens. By Assumption 1, and together with Lemma A.3,
we can also show that the constructed two posterior means qL, qR satisfy (a): qL < q < qR; and
moreover (b): (p†, qL)  (p, q), (p†, qR)  (p, q). The relation (a) enables us to decompose
the probability over this posterior mean ⇢(q) into probabilities over the two posterior means qL, qR
while still satisfying (BC) condition. Together with the monotonicity of demand function D, the
relation (b) can guarantee that the revenue of the output from Procedure 2 is 2"-approximate of the
revenue of the input.

Lemma A.4 (Feasibility guarantee). Given an input price and advertising strategy p, ⇢ satisfying
the properties stated in Lemma A.2 and Lemma A.3, the output price p† and the advertising strategy
⇢
† from Procedure 2 satisfies: p

† 2 P , ⇢† is a feasible advertising and satisfies (p†, q) 2 S for
every q 2 supp(⇢†).

Proof. p
† 2 P holds trivially by construction. In below, we first show that the output ⇢† is indeed

a feasible advertising strategy, and then prove that (p†, q0) 2 S for every q
0 2 supp(⇢†). In below

analysis, let the price p and the advertising strategy ⇢ be the input of Procedure 2, and we will focus
on an arbitrary posterior mean q 2 supp(⇢) and analyze the corresponding construction for ⇢† from
the posterior mean q.

⇢
† as a feasible advertising strategy: Clearly, a strategy ⇢

† is a feasible advertising strategy must
satisfy that ⇢† 2 �([0, 1]), i.e., ⇢† is indeed a distribution over [0, 1]; and the associated condi-
tional distributions (⇢†i )i2[m] must be Bayes-consistent as defined in (BC). In below analysis, by
Lemma A.3, we assume that p⇤  v(1, q) for every q 2 supp(⇢⇤) and q /2 ⌦.

We first prove that the constructed advertising strategy ⇢
† is indeed a feasible distribution. We focus

on the case where q /2 Qp† . In this case, we must have p
† 2 (v(0, q), v(1, q)), otherwise it either

p
†  v(0, q) or p† = v(1, q) which both cases falls into the scenario q 2 Qp† . We first show the

following claim: For any posterior mean q 2 supp(⇢) with {i0 2 [m] : ⇢i0(q) > 0} = {i, j}, we
have q

†
L  q  q

†
R. To see this, by definition, we have v(x†

, q) = p
†
, v(z", qL) = p

†
, v((z �

1)", qR) = p
†, where x

† 2 ((z � 1)", z"). By Assumption 1 where buyer’s valuation v(·, ·) is
monotone non-decreasing, we know qL  q  qR. Now we show that ⇢†i (q

†
L)  ⇢i(q) (similar

analysis can also show that ⇢†j(q
†
L)  ⇢j(q)). To see this, notice that from Lemma A.2, we must

6To see that such qL and qR always exist, note that because the valuation function is assumed to be mono-
tone increasing in type ✓ (see Assumption 1b), given any ✓, p, q, if we have v(✓, q) = p, then (p, q) = ✓.
Therefore, qL and qR are the values of q satisfying v(z✏, q) = p† and v((z � 1)✏, q) = p†, respectively. Now,
under linearity in quality, v(✓, q) is continuous in q for any given ✓, which means that such solutions qL and
qR always exist.
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have

⇢(q) = �i⇢i(q) + �j⇢j(q),
�i⇢i(q)!̄i + �j⇢j(q)!̄j

⇢(q)
= q .

Thus, we must have ⇢i(q) =
⇢(q)·(!̄j�q)
�i(!̄j�!̄i)

. Hence,

⇢i(q)� ⇢
†
i (q

†
L) =

⇢(q) · (!̄j � q)

�i(!̄j � !̄i)
� !̄j � q

†
L

!̄j � !̄i
· 1

�i
· ⇢(q) · (q

†
R � q)

q
†
R � q

†
L

=
⇢(q) · (!̄j � q

†
L)

�i(!̄j � !̄i)
·
 

!̄j � q

!̄j � q
†
L

� ⇢(q) · (q†R � q)

q
†
R � q

†
L

!
� 0 ,

where the last inequality follows from the fact that !̄i  q
†
L  q  q

†
R  !̄j . Together with the fact

that ⇢i(q)  1, this shows that value ⇢
†
i (q

†
L) 2 [0, 1].

We now argue that in the constructed advertising strategy ⇢
†, the summation of all conditional prob-

abilities for realizing all possible posterior mean in Q indeed equals to 1. Notice that from Procedure
2, for any posterior mean q 2 supp(⇢) with {i0 2 [m] : ⇢i0(q) > 0} = {!̄i, !̄j}, the constructed
advertising strategy ⇢

† included two posterior means q†L, q
†
R, and the probabilities for realizing pos-

terior means q†L, q
†
R are ⇢†(q†L) = �i⇢

†
i (q

†
L)+�j⇢

†
j(q

†
R) (resp. ⇢†(q†R) = �i⇢

†
i (q

†
R)+�j⇢

†
j(q

†
R)). By

construction, we have ⇢
†(q†L) + ⇢

†(q†R) = ⇢(q). Hence, from

X

q2supp(⇢)

⇢
†(q†L) + ⇢

†(q†R) =
X

q2supp(⇢)

⇢(q) = 1,

we know the constructed advertising strategy ⇢
† is indeed a feasible distribution.

We now show that the constructed advertising strategy ⇢
† indeed satisfies the condition (BC). In

other words, we want to prove that for every q
0 2 supp(⇢†), we have

P
i2[m] �i⇢

†
i (q)!̄i

P
i2[m] �i⇢

†
i (q)

= q
0

Notice that when {i0 2 [m] : ⇢i0(q) > 0} = {i}, the condition (BC) holds trivially. When {i0 2
[m] : ⇢i0(q) > 0} = {i, j}, Procedure 2 adds two posterior means q†L, q

†
R to the support of ⇢†. For

the posterior mean q
†
L:

�i⇢
†
i (q

†
L)!̄i + �j⇢

†
j(q

†
L)!̄j

�i⇢
†
i (q

†
L) + �j⇢

†
j(q

†
L)

=

!̄j�q†L
!̄j�!̄i

· ⇢(q)·(q†R�q)

q†R�q†L
· !̄i +

q†L�!̄i

!̄j�!̄i
· ⇢(q)·(q†R�q)

q†R�q†L
· !̄j

!̄j�q†L
!̄j�!̄i

· ⇢(q)·(q†R�q)

q†R�q†L
+

q†L�!̄i

!̄j�!̄i
· ⇢(q)·(q†R�q)

q†R�q†L

=
!̄j � q

†
L

!̄j � !̄i
· !̄i +

q
†
L � !̄i

!̄j � !̄i
· !̄j = q

†
L

On the other hand, we observe

⇢
†(q†L)q

†
L + ⇢

†(q†R)q
†
R = (�i⇢

†
i (q

†
L) + �j⇢

†
j(q

†
L))q

†
L + (�i(⇢i(q)� ⇢

†
i (q

†
L)) + �j(⇢j(q)� ⇢

†
j(q

†
L)))q

†
R

= (�i⇢i(q) + �j⇢j(q))q
†
R � (�i⇢

†
i (q

†
L) + �j⇢

†
j(q

†
L))(q

†
R � q

†
L)

= ⇢(q)q†R �
 
!̄j � q

†
L

!̄j � !̄i
· ⇢(q) · (q

†
R � q)

q
†
R � q

†
L

+
q
†
L � !̄i

!̄j � !̄i
· ⇢(q) · (q

†
R � q)

q
†
R � q

†
L

!
(q†R � q

†
L)

= ⇢(q)q†R + ⇢(q)(q†R � q) = ⇢(q)q .
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Thus, for the posterior mean q
†
R, we have

�i⇢
†
i (q

†
R)!̄i + �j⇢

†
j(q

†
R)!̄j

�i⇢
†
i (q

†
R) + �j⇢

†
j(q

†
R)

=
�i(⇢i(q)� ⇢

†
i (q

†
L))!̄i + �j(⇢j(q)� ⇢

†
j(q

†
L))!̄j

�i(⇢i(q)� ⇢
†
i (q

†
L)) + �j(⇢j(q)� ⇢

†
j(q

†
L))

=
�i⇢i(q)!̄i + �j⇢j(q)!̄j � q

†
L · (�i⇢

†
i (q

†
L) + �j⇢

†
j(q

†
L))

⇢(q)� (�i⇢
†
i (q

†
L) + �j⇢

†
j(q

†
L))

=
⇢(q)q � ⇢

†(q†L)q
†
L

⇢(q)� ⇢†(q†L)
=

⇢
†(q†R)q

†
R

⇢†(q†R)
= q

†
R .

We now have shown that the constructed advertising strategy ⇢
† indeed satisfies condition (BC).

(p†, q0) 2 S for every q
0 2 supp(⇢†): Fix a posterior mean q 2 supp(⇢), we focus on the case

q /2 Qp† (the other case is trivial by construction), we know that in Procedure 2, the corresponding
posterior means q†L, q

†
R 2 supp(⇢†). And either q†L = qL or q†L = !̄i, either q†R = qR or q†R = !̄j .

When q
†
L = qL, we have (p†, q†L) = (p†, qL) = z" 2 S . When q

†
L = !̄i, we have (p†, q†L) =

(p†, !̄i) 2 S as p† 2 P . Similar analysis also shows that (p†, q†R) 2 S . The proof completes.

Lemma A.5 (Revenue guarantee). Fix a price p � 2" and a feasible advertising strategy ⇢, let
p
†
, ⇢

† = Rounding(p, ⇢) be the output from Procedure 2, then we have Rev(p, ⇢)�Rev(p†, ⇢†)  2".

Proof. We provide the proof when the input to Procedure 2 is p
⇤
, ⇢

⇤. The proof only utilizes the
monotoncity of the function D. In below analysis, let p†, ⇢† be the advertising strategy output from
Procedure 2 with the input p⇤, ⇢⇤. We now fix a posterior mean q 2 supp(⇢⇤) and consider the
following two cases:

Case 1: q 2 Qp† . In this case, we have (p†, q)  (p⇤, q).

Case 2: q /2 Qp† . Let {i0 2 [m] : ⇢⇤i0(q) > 0} = {i, j}. Let q†L, q†R be the corresponding counterpart
in the new advertising strategy ⇢

†, we now show the following claim:

Claim A.6. (p†, q†R)  (p†, q†L)  (p⇤, q).

To see the above claim, recall that in construction, we have v(x, q)  p
⇤, v(x†

, q) = p
†, and by

construction, we have p
†  p

⇤ � ". Thus, by Assumption 1b, we have "  p
⇤ � p

†  v(x, q) �
v(x†

, q)  x� x
†, which implies that z"  x

† + "  x. Fix any price p, from Assumption 1a, we
know that the function (p, ·) is monotone non-increasing. Recall that in previous analysis, we have
shown qL  q

†
L  q  q

†
R  qR. We thus have (p†, q†R)  (p†, q†L)  (p†, qL) = z"  x =

(p⇤, q) .
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With the above observations, we have
Rev(p⇤, ⇢⇤)� Rev(p†, ⇢†)

= p
⇤
X

i2[m]

�i

Z 1

0
⇢
⇤
i (q)D((p⇤, q))dq � p

†
X

i2[m]

�i

Z 1

0
⇢
†
i (q)D((p†, q))dq

= p
⇤
Z 1

0
⇢
⇤(q)D((p⇤, q))dq � p

†
Z 1

0
⇢
†(q)D((p†, q))dq

(a)
 p

⇤
Z 1

0
⇢
⇤(q)D((p⇤, q))dq � (p⇤ � 2")

Z 1

0
⇢
†(q)D((p†, q))dq

(b)
= p

⇤
X

q2supp(⇢⇤)

⇢
⇤(q)D((p⇤, q))� p

⇤
X

q2supp(⇢⇤)

⇣
⇢
†(q†L)D(p†, q†L) + ⇢

†(q†R)D(p†, q†R)
⌘
+ 2"

(c)
= p

⇤
X

q2supp(⇢⇤)

⇣
⇢
⇤(q)D ((p⇤, q))�

⇣
⇢
†(q†L)D

⇣
(p†, q†L)

⌘
+ ⇢

†(q†R)D
⇣
(p†, q†R)

⌘⌘⌘
+ 2"

(d)


X

q2supp(⇢⇤)

p
⇤
⇣
⇢
⇤(q)D((p⇤, q))�

⇣
⇢
†(q†L)D((p⇤, q)) + ⇢

†(q†R)D((p⇤, q))
⌘⌘

+ 2"

(e)
=

X

q2supp(⇢⇤)

p
⇤ (⇢⇤(q)D((p⇤, q))� ⇢

⇤(q)D((p⇤, q))) + 2" = 2" ,

where inequality (a) holds since p† � p
⇤� 2"; in equality (b), we, for simplicity, focus on else case,

the analysis for other scenarios is the same; equality (c) holds by the construction of the strategy
⇢
†, inequality (d) holds from Claim A.6; inequality (e) holds since by construction, we have for any

q 2 supp(⇢†), we have ⇢
†(q†L) + ⇢

†(q†R) = ⇢
⇤(q).

A.3 Estimation error and optimism

We begin our estimation error analysis by showing that DUCB
t (x) provides an upper confidence

bound on the true demand function D(x) for all x 2 S , and deriving a bound on how large it can be
compared to D(x).
Lemma A.7. For every t � |S|+ 1, the following holds with probability at least 1� 1/T 2:

D
UCB

t (x) � D(x), 8x 2 S; (4)

D
UCB

t (x)�D(x)  2

s
16 log T

Nt(x)
+

2
p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
, 8x 2 S. (5)

To prove the inequalities for the points x 2 S , we first show that the empirical estimates D̄t(x), 8x 2
S concentrate around the true demand value D(x) as Nt(x) increases. We prove this concentration
bound by using a uniform bound given by scalar-valued version of self-normalized martingale tail
inequality [1]. The proof of the above lemma is provided in Appendix A.4.

We now analyze how close the seller’s optimistic revenue estimates using the upper confidence
bound D

UCB
t is to the true revenue. In particular, we have the following result.

Lemma A.8. For every time t � |S|+ 1, with probability at least 1� 2/T 2, we have

Rev(ep⇤, e⇢⇤)  RevUCBt (ep⇤, e⇢⇤)  RevUCBt (pt, ⇢t)

The above results follow from the bounds in Lemma A.7 where we established that DUCB
t (x) �

D(x) with high probability. The proof of the above Lemma A.8 is provided in Appendix A.5.

Next we show that we can also upper bound RevUCBt (pt, pt)�Rev(pt, ⇢t) by applying the results in
Lemma A.7 again.
Lemma A.9. For every time t � |S|+ 1, with probability at least 1� 2/T 2, we have

RevUCBt (pt, ⇢t)� Rev(pt, ⇢t)  5pt
X

q2supp(⇢t)

⇢t(q)

s
log T

Nt((pt, q))
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The proof of above Lemma A.9 is provided in Appendix A.6. Intuitively, the difference between
the estimated seller’s revenue RevUCBt (pt, pt), and the true expected revenue Rev(pt, ⇢t), can be
bounded by a weighted sum (weighted by probabilities ⇢t(q), q 2 supp(⇢t)) of errors in demand
estimates on the points (pt, q) for q 2 supp(⇢t): |DUCB

t ((pt, q))�D((pt, q))|.

A.4 Proof of Lemma A.7

We use the following self-normalized martingale tail inequality to prove the high-probability bounds.
In particular, we use the following results obtained in Abbasi-Yadkori et al. [1]:
Lemma A.10 (Uniform Bound for self-normalized bound for martingales, see 1). Let {Ft}1t=1 be
a filtration. Let {Zt}1t=1 be a sequence of real-valued variables such that Zt is Ft-measurable.
Let {⌘t}1t=1 be a sequence of real-valued random variables such that ⌘t is Ft+1-measurable and is
conditionally R-sub-Gaussian. Let V > 0 be deterministic. For any � > 0, with probability at least
1� �, for all t � 0:

�����

tX

s=1

⌘sZs

�����  R

vuuut2

 
V +

tX

s=1

Z2
s

!
ln

0

@

q
V +

Pt
s=1 Z

2
s

�
p
V

1

A (6)

Lemma A.7. For every t � |S|+ 1, the following holds with probability at least 1� 1/T 2:

D
UCB

t (x) � D(x), 8x 2 S; (4)

D
UCB

t (x)�D(x)  2

s
16 log T

Nt(x)
+

2
p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
, 8x 2 S. (5)

Proof. To prove the results, we first show the following concentration inequality for the empirical
demand estimates of the points in the set S: the following holds with probability at least 1� 1/T 2,

|D̄t(x)�D(x)| 

s
16 log T

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
, 8x 2 S . (7)

To prove the above inequality, we fix an arbitrary x 2 S . We define the random variable Zt(x) =
1[(pt, qt) = x], We also define random variable ⌘t(x) = at(x) �D(x) if Zt(x) = 1 at time step
t. Then by definition, we know that the sequence {

Pt
s=1 ⌘t(x)Zt(x)} is a martingale adapted to

{Ft+1}1t=0. Moreover, the sequence of the variable {Zt(x)}1t=1 is Ft-measurable, and the variable
⌘t(x) is 1-sub-Gaussian. Now take V = 1 and substitute for ⌘t(x) = at(x) � D(x), apply the
uniform bound obtained in Lemma A.10, we have for any t � |S| + 1, the following holds with
probability at least 1� �,

�����

tX

s=1

(as(x)�D(x))Zs(x)

����� 
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s=1 Zs(x)2
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1

A

Observe that in the above inequality, the term
���
Pt

s=1(as(x)�D(x))Zs(x)
��� is exactly

|
P

s2Nt(x)
as(x) � Nt(x)D(x)|, and the term

Pt
s=1 Zs(x)2 exactly equals to Nt(x). Dividing

both sides with Nt(x), substituting for
Pt

s=1 Zs(x)2 = Nt(x), we obtain

��D̄t(x)�D(x)
��  1

Nt(x)

vuut2 (1 +Nt(x)) ln

 p
1 +Nt(x)

�

!

=

s
2 (1 +Nt(x)) ln

1
� + (1 +Nt(x)) ln (1 +Nt(x))

Nt(x)2



s
4 ln 1

�

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
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where in last inequality we use the fact that 1 + Nt(x)  2Nt(x), and
p
u+ v 

p
u +
p
v for

any u, v � 0. Setting � = T
�5, we know that the above inequality holds with probability at least

1� 1/T 5. Taking the union bound over all choices of t and over all choices of x 2 S , we obtain that
the first statement holds with probability at least 1 � 1/T 2 as long as |S|  T , which is the case for
us.

For the inequality (4), for notation simplicity, let CRt(x) ,
q

16 log T
Nt(x)

+
p

(1+Nt(x)) ln(1+Nt(x))

Nt(x)

be the high-probability error, and we also write S = {x(1)
, . . . , x

(|S|)} where x
(i)

< x
(j) for any

i < j. Now fix an arbitrary x
(i) 2 S , fix a time round t � |S| + 1. Denote the random variable

i
† = argmini0:i0i D̄t(x(i0)) + CRt(x(i0)) ^ 1.

P
h
D

UCB

t (x(i)) � D(x(i))
i
= 1�

iX

j=1

P
⇥
i
† = j

⇤
P
h
D

UCB

t (x(i)) < D(x(i)) | i† = j

i

= 1�
iX

j=1

P
⇥
i
† = j

⇤
P
h
D̄t(x

(j)) + CRt(x
(j)) < D(x(i)) | i† = j

i

(a)
� 1�

iX

j=1

P
⇥
i
† = j

⇤
P
h
D̄t(x

(j)) + CRt(x
(j)) < D(x(j)) | i† = j

i

= 1�
iX

j=1

P
h
D̄t(x

(j)) + CRt(x
(j)) < D(x(j)), i† = j

i

� 1�
iX

j=1

P
h
D̄t(x

(j)) + CRt(x
(j)) < D(x(j))

i

(b)
� 1� |S|� � 1� T

�4

where inequality (a) holds since D(x(j)) � D(x(i)) for any j  i, and inequality (b) holds follows
from earlier analysis where for a fixed t and fixed x 2 S , we have P

⇥
D̄t(x) + CRt(x) < D(x)

⇤
 �.

Taking the union bound over all choices of t and over all choices of x 2 S finishes the proof.

For the inequality (5), from triangle inequality, we have
��DUCB

t (x)�D(x)
�� 

��DUCB

t (x)� D̄t(x)
��+
��D̄t(x)�D(x)

��



s
16 log T

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
+
��D̄t(x)�D(x)

��

(a)
 2

s
16 log T

Nt(x)
+

2
p

(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)
,

where the inequality (a) holds with probability at least 1 � 1/T 2 according to the first statement we
just proved.

A.5 Proof of Lemma A.8

Lemma A.8. For every time t � |S|+ 1, with probability at least 1� 2/T 2, we have

Rev(ep⇤, e⇢⇤)  RevUCBt (ep⇤, e⇢⇤)  RevUCBt (pt, ⇢t)

Proof. We begin our analysis by defining the following event. For all t = |S| + 1, . . . , T , define
events Et

Et ,
[

x2S

(
D

UCB

t (x) < D(x) or DUCB

t (x) > D(x) +

s
16 log T

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)

)
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From union bound, it follows that

P[Et] 
X

x2S
P
"
D

UCB

t (x) < D(x) or DUCB

t (x) > D(x) +

s
16 log T

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)

#


X

x2S
P
⇥
D

UCB

t (x) < D(x)
⇤
+

X

x2S
P
"
D

UCB

t (x) > D(x) +

s
16 log T

Nt(x)
+

p
(1 +Nt(x)) ln(1 +Nt(x))

Nt(x)

#

(a)
 2

T 2

where the inequality (a) follows from inequalities (4) and (5) in Lemma A.7. Recall that whenever
1[Ec

t] = 1, we have

Rev(ep⇤, e⇢⇤)� RevUCBt (ep⇤, e⇢⇤)

= ep⇤
X

i2[m]

�i

Z 1

0
e⇢⇤i (q)D((ep⇤, q))dq � ep⇤

X

i2[m]

�i

Z 1

0
e⇢⇤i (q)DUCB

t ((ep⇤, q))dq

= ep⇤
X

i2[m]

�i

Z 1

0
e⇢⇤i (q)

�
D((ep⇤, q))�D

UCB

t ((ep⇤, q))
�
dq  0

Thus, whenever 1[Ec
t] = 1, we have

Rev(ep⇤, e⇢⇤)  RevUCBt (ep⇤, e⇢⇤)
(a)
 Rev(pt, ⇢t)

where inequality (a) follows from our algorithm design.

A.6 Proof of Lemma A.9

Lemma A.9. For every time t � |S|+ 1, with probability at least 1� 2/T 2, we have

RevUCBt (pt, ⇢t)� Rev(pt, ⇢t)  5pt
X

q2supp(⇢t)

⇢t(q)

s
log T

Nt((pt, q))

Proof. Follow from the definition of the event Ec
t, when 1[Ec

t] = 1, we have

RevUCBt (pt, ⇢t)� Rev(pt, ⇢t)

 pt

X

i2[m]
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Z 1

0
⇢i,t(q)

�
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UCB

t ((pt, q))�D((pt, q))
�
dq
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 pt

X

i2[m]

�i

Z 1

0
⇢i,t(q)

 s
16 log T

Nt((pt, q))
+

p
(1 +Nt((pt, q))) ln(1 +Nt((pt, q)))

Nt((pt, q))

!
dq

(b)
 5pt

X

i2[m]

�i

Z 1

0
⇢i,t(q)

s
log T

Nt((pt, q))
dq

(c)
= 5pt

X

q2supp(⇢t)

⇢t(q)

s
log T

Nt((pt, q))
,

where inequality (a) follows from the definition of event Ec
t, inequality (b) follows from the fact

that Nt(x)  T, 8t and thus,
p

(1+Nt(x)) ln(1+Nt(x))

Nt(x)

q

log T
Nt(x)

, and in last equality (c), we have
⇢t(q) =

P
i2[m] �i⇢i,t(q).
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A.7 Putting it all together

We can now combine the above lemmas to prove Theorem 1.1.

Proof of Theorem 1.1. We have that with probability at least 1�O(1/T ),

Regret[T ]  |S|+ E

2

4
TX

t=|S|+1

Rev(p⇤, ⇢⇤)� Rev(pt, ⇢t)

3

5

(a)
 |S|+ 2"T + E

2

4
TX

t=|S|+1

RevUCBt (pt, ⇢t)� Rev(pt, ⇢t)

3

5

(b)
 |S|+ 2"T + 5UE

2

4
TX

t=|S|+1

X

q2supp(⇢t)

⇢t(q)

s
log T

Nt((pt, q))

3

5

(c)
= |S|+ 2"T + 5UE

2

4
X

x2S

TX

t=|S|+1

�t(x)

s
log T

Nt(x)

3

5 , (8)

where the first inequality follows from the definition of regret. Inequality (a), follows from
Lemma A.8 and Proposition A.1, and inequality (b) follows from Lemma A.9 along with upper
bound U on prices pt in all rounds. For inequality (c), we use that by construction (pt, q) 2 S for
every posterior mean q 2 supp(⇢t). and define distribution �t 2 �S over the set S as

�t(x) =
X

q2supp(⇢t):(pt,q)=x

⇢t(q), x 2 S .

Define Bernoulli random variable Xt(x) = 1[xt = x], where xt = (pt, qt). Then, from the
definition of �t(x) observe that P[Xt(x) = 1|Nt(x)] = �t(x). Also, by definition

Nt+1(x) = 1 +
tX

`=|S|+1

X`(x)  2Nt(x) .

We use these observations below to obtain a bound on the third term in the RHS of (8):

E
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X

x2S

TX

t=|S|+1

�t(x)

s
log T

Nt(x)

3
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s
log T

Nt(x)

��� Nt(x)

#3
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4
X

x2S

TX

t=|S|+1

Xt(x)

s
2 log T

Nt+1(x)

3

5

= E
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4
X

x2S

NT+1(x)X

n=2

r
2 log T

n

3

5

 E
"
X

x2S

p
8NT+1(x) log(T )

#

 2
p
2|S|T log(T ) ,

Substituting this bound in (8), we obtain that with probability 1�O(1/T ),

Regret[T ]  |S|+ 2"T + 10U
p
2|S|T log(T ) .

Now, by construction, the set S has the cardinality of O(mU/"). Optimizing " = ⇥((m log T/T)1/3)
in the above regret bound, we have Regret[T ]  O

�
T

2/3(m log T )1/3
�
.
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B Improved Regret bounds For Additive Valuations

In this section, we discuss improved regret bounds for Algorithm 1 in the case when valuation
function is additive, i.e., v(✓,!) = ✓ + !.

First we consider an additional assumption that the product quality domain ⌦ is an ‘equally-spaced
set’, which include many natural discrete ordered sets like ⌦ = {0, 1} or ⌦ = [m] that are commonly
used in the Bayesian persuasion literature.

Definition B.1 (Equally-spaced sets). We say that a discrete ordered set ⌦ = {!̄1, . . . , !̄m} is
equally-spaced if for all i 2 [m� 1], !̄i+1 � !̄i = c for some constant c.

With this definition, we prove the following improved regret bound.

Theorem B.1. Given an additive valuation function, v(✓,!) = ✓ + !, and equally-spaced product
quality domain, ⌦ Algorithm 1 with parameter " = ⇥(( log T/T)1/3 ^ 1/m) has an expected regret of
O
�
T

2/3(log T )1/3 +
p
mT log T

�
.

Note that a corollary of the above theorem is that the regret is bounded by O(T 2/3(log T )1/3) when
m  (T/log T)1/3 and by O(

p
mT log T ) for larger m. The high-level idea behind the above re-

sult is as follows. In the previous section (see Section A.7) we show that the expected regret
of Algorithm 1 is bounded by O(T" +

p
|S|T log T ). To prove Theorem B.1 we show that in

case of additive valuation and the equally-spaced qualities, there exists a discretization parameter
" = ⇥(( log T/T)1/3 ^ 1/m) such that {(p,!)}p2P,!2⌦ ⇢ {0, ", 2", . . . , 1}. Thus, the constructed
set S satisfies |S| = O(m + 1/"). Substituting the value of " then gives the result in Theorem B.1.
A formal proof of Theorem B.1 is provided in Appendix C.1.

Furthermore, for additive valuation functions, we can also handle arbitrary large or continuous qual-
ity spaces to obtain an Õ(T 3/4) regret independent of size of quality space m.

Theorem B.2. Given an additive valuation function v(✓,!) = ✓ + !, and arbitrary (discrete or
continuous) product quality space ⌦, there exists an algorithm (Algorithm 3 in Appendix C.2) that
has expected regret of O(T 3/4(log T )1/4).

The proposed Algorithm 3 that achieves the above result is essentially a combination of a pre-
processing step and Algorithm 1. In this pre-processing step, we pool the product qualities that are
“close enough”. This gives us a new problem instance with a smaller discrete product quality space
so that we can apply Algorithm 1. With additive valuation function, we show that this reduction does
not incur too much loss in revenue. A formal description of the algorithm and proof of Theorem B.2
is provided in Appendix C.2.

C Missing Proofs of Section B

C.1 Proof of Theorem B.1

Theorem B.1. Given an additive valuation function, v(✓,!) = ✓ + !, and equally-spaced product
quality domain, ⌦ Algorithm 1 with parameter " = ⇥(( log T/T)1/3 ^ 1/m) has an expected regret of
O
�
T

2/3(log T )1/3 +
p
mT log T

�
.

Proof. For additive valuation, we know (p, q) = ((p� q) ^ 1) _ 0. Since q 2 [0, 1], we know that
v̄ = 2, v = 0.

We first prove the regret O(T 2/3(log T )1/3) when m  (T/log T)1/3 + 1. Define the following dis-
cretization parameter that will be used to define the discretized price space P and the discretized
type space S in (2).

" = max

(
"
0 � 0 :

1/m

"0
2 N+ ^ "

0 
✓
log T

T

◆1/3
)

(9)
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We now argue that the above " = ⇥(( log T/T)1/3). To see this, let the integers k1, k2 2 N+ satisfy
$

1/(m � 1)

( log T
T )1/3

%
= k1,

$
1/(m � 1)

1
2 (

log T
T )1/3

%
= k2 .

By assumption, we have 1
m�1 � ( log T/T)1/3, implying k1 � 1, and k2 � 2. Thus, there must

exist an "
0 2 [( 12 (

log T/T)1/3, ( log T/T)1/3] such that
1/(m � 1)

"0 2 [k1 : k2], which implies that the
above defined " = ⇥(( log T/T)1/3). Suppose K" 2 N+ such that K"" = 1/(m � 1). By definition
of uniformly-spaced qualities, we know that !̄i = i�1

(m�1) , 8i � 2. For a discretized price space
P = {", 2", . . . , 2� ", 2}, we know that for any price p = kp" 2 P for some integer kp 2 N+, we
have (kp", !̄i) = kp"� !̄i = kp"� (i� 1)K"" 2 {0, ", . . . , 1}. Thus, for the set S defined in (2)
we have |S| = O(1/"). With " defined in (9), Algorithm 1 has the desired regret upper bound.

We now prove the regret O(
p
mT log T ) when number of qualities m > (T/log T)1/3 + 1. For

this case, we can simple feed the Algorithm 1 with discretization parameter " = 1/(m � 1). Then,
according to the proof of Theorem 1.1, the regret of Algorithm 1 can be bounded as O(T/m +p
Tm log T ) = O(

p
Tm log T ) as desired.

C.2 Missing Algorithm and Proof of Theorem B.2

The detailed algorithm description when the number of qualities is large is provided in Algorithm 3.

Algorithm 3: Algorithm for arbitrary size m of product quality space.

1 Input: Discretization parameter " and pooling precision parameter b".
2 Input: Instance I with quality space ⌦ and prior �.
3 Construct instance I† as follows: Let the quality space ⌦† = {!̄†

i }i2[d1/b"e+1] where
!̄
†
1 = 0,�†

1 = �1; and !̄
†
i+1 = E!⇠�[! | ! 2 ((i� 1)b", ib"]], and let the prior

�
† = (�†

i )i2[d1/b"e+1] where �
†
i+1 = P!⇠�[! 2 ((i� 1)b", ib"]] for all 1  i  d1/b"e.

4 Run Algorithm 1 on instance I† with discretization parameter ".

In below, we provide a regret bound that is independent of the size of quality space and it holds for
valuation function beyond the additive one as long as it satisfies the following assumption:
Assumption 2. Function (p, ·) satisfies that for any price p 2 [0, U ], for any q1, q2 where q1  q2,
(p, q1)� (p, q2)  q2 � q1. 7

Notice that additive valuation v(✓,!) = ✓ + !, which has (p, q) = p � q, satisfies the above
assumption.

Proposition C.1. With Assumption 1 and Assumption 2, Algorithm 3 with b" = " = ( log T/T)1/4 has
an expected regret of O(T 3/4(log T )1/4) independent of the size m of quality space.

Given the above Proposition C.1, Theorem B.2 simply follows as additive valuation function satisfies
Assumption 2.

Proof of Proposition C.1. We fix a small b" 2 (0, 1). Let I be an instance with quality space ⌦ and
prior � 2 �⌦. For exposition simplicity, let us assume that for each i 2 [d1/b"e], there exists at least
one quality ! 2 ⌦ such that ! 2 ((i � 1)b", ib"]. We now construct a new instance I† with quality
space ⌦† = (!̄†

i )i2[d1/b"e+1] and prior �† = (�†
i )i2[d1/b"e+1] as follows:

• for i = 1: !̄†
i = 0,�†

i = �1;

7We can also relax the assumption to be (p, q1) � (p, q1)  L(q2 � q1) where an arbitrary constant
L 2 R+ can be treated similarly.
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• for 2  i  d1/b"e + 1: !̄
†
i = E!⇠�[! | ! 2 ((i� 2)b", (i� 1)b"]] ,�†

i =
P!⇠�[! 2 ((i� 2)b", (i� 1)b"]].

Essentially, the instance I† is constructed by pooling all product qualities that are “close enough”
with each other (i.e., qualities in a grid ((i�1)b", ib"]). By construction, we know that |⌦†| = O(1/b").
Given a price p and an advertising ⇢, let RevI(p, ⇢) be the seller’s revenue for problem instance I.
In below, we have the following revenue guarantee between these two problem instances I, I†.

Lemma C.2. Let p⇤, ⇢⇤ be the optimal price and optimal advertising for instance I, with As-
sumption 2, there exists a price p

† and advertising ⇢
† for instance I† such that RevI(p⇤, ⇢⇤) 

RevI†
�
p
†
, ⇢

†�+ b".

The proof of the above Lemma C.2 utilizes Assumption 2 and is provided subsequently. With
Lemma C.2, by feeding Algorithm 1 with new instance I†, the total expected regret for instance I
can be bounded as follows

RegretI [T ]  O

⇣
T b"+ T"+

p
|S|T log T

⌘
= O

 
T b"+ T"+

r
1

"b"T log T

!
 O

⇣
T

3/4(log T )
1/4
⌘

where the term T b" is from Lemma C.2 and due to reducing the instance I to the new instance I†,
the term T" +

p
|S|T log T is the incurred regret of Algorithm 1 for the new instance I† where

the number of discretized types |S| for the new instance I† equals 1
b"" , and in the last inequality, we

choose b" = " = ( log T/T)1/4.

In below, we provide the proof for Lemma C.2.

Proof of Lemma C.2. Let us fix the problem instance I with quality space ⌦, |⌦| = m and prior
distribution �. Let I† be the constructed instance (see Line 3 in Algorithm 3). In the proof, we
construct a price p

† and an advertising strategy ⇢
† for instance I† based on p

⇤
, ⇢

⇤. Consider a price
p
† = p

⇤ � b". In below, we show that how to construct advertising strategy ⇢
† from the advertising

strategy ⇢
⇤. In particular, for each posterior mean q 2 supp(⇢⇤), we construct a corresponding

posterior mean q
† 2 supp(⇢†), and furthermore, with Assumption 1 and Assumption 2, we also

show that we always have (p⇤, q) � (p†, q†). Recall that from Lemma A.2, the advertising
strategy ⇢

⇤ satisfies {i 2 [m] : ⇢⇤i (q) > 0}  2 for all q 2 supp(⇢⇤). Our construction based on
threes cases of {i 2 [m] : ⇢⇤i (q) > 0}.

• Case 1 – if {i 2 [m] : ⇢⇤i (q) > 0} = {i0}, in this case, suppose !̄i0 2 ((j � 1)b", jb"] for some
j 2 [d1/b"e], then consider

⇢
†
j+1(q

†) =
�i0⇢

⇤
i0(q)

�
†
j+1

; where q
† = !̄

†
j+1.

From the above construction, we know that (p⇤, q) = (p⇤, !̄i0), and

(p⇤, !̄i0)
(a)
� (p†, !̄i0) + b"

(b)
� (p†, !̄†

j+1) = (p†, q†)

where inequality (a) holds since b" = p
⇤�p

†  (p⇤, !̄i0)�(p†, !̄i0) due to Assumption 1b, and
inequality (b) holds since |(p†, !̄†

j+1)� (p†, !̄i0)|  |!̄†
j+1 � !̄i0 |  b" due to Assumption 2.

• Case 2 – if {i 2 [m] : ⇢⇤i (q) > 0} = {i0, i00} where i
0
< i

00, in this case, suppose both !̄i0 , !̄i00 2
((j � 1)b", jb"] for some j 2 [d1/b"e], then consider

⇢
†
j+1(q

†) =
�i0⇢

⇤
i0(q) + �i00⇢

⇤
i00(q)

�
†
j+1

; where q
† = !̄

†
j+1.

From the above construction, we know that

(p⇤, q)
(a)
� (p†, q) + b"

(b)
� (p†, !̄†

j+1) = (p†, q†)
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where inequality (a) holds since b" = p
⇤ � p

†  (p⇤, q) � (p†, q) due to Assumption 1b, and
inequality (b) holds since |(p†, !̄†

j+1)�(p†, q)|  |!̄†
j+1� q|  b" due to Assumption 2 and the

fact that q =
�i0⇢

⇤
i0 (q)!̄i0+�i00⇢

⇤
i00 (q)!̄i00

�i0⇢
⇤
i0 (q)+�i00⇢

⇤
i00 (q)

2 ((j � 1)b", jb"].

• Case 3 – if {i 2 [m] : ⇢
⇤
i (q) > 0} = {i0, i00} where i

0
< i

00, in this case, suppose !̄i0 2
((j0 � 1)b", j0b"] and !̄i00 2 ((j00 � 1)b", j00b"] for some j

0
, j

00 2 [d1/b"e] where j
0
< j

00, then consider

⇢
†
j0+1(q

†) =
�i0⇢

⇤
i0(q)

�
†
j0+1

, ⇢
†
j00+1(q

†) =
�i00⇢

⇤
i00(q)

�
†
j00+1

;

where q
† =

�
†
j0+1⇢

†
j0+1(q

†)!̄†
j0+1 + �

†
j00+1⇢

†
j00+1(q

†)!̄†
j00+1

�
†
j0+1⇢

†
j0+1(q

†) + �
†
j00+1⇢

†
j00+1(q

†)

From the above construction, we know that

(p⇤, q)
(a)
� (p†, q) + b"

(b)
� (p†, q†)

where inequality (a) holds since b" = p
⇤ � p

†  (p⇤, q) � (p†, q) due to Assumption 1b, and
inequality (b) holds due to Assumption 2 and the following fact:

|q � q
†| =

�����
�i0⇢

⇤
i0(q)!̄i0 + �i00⇢

⇤
i00(q)!̄i00

�i0⇢
⇤
i0(q) + �i00⇢

⇤
i00(q)

�
�
†
j0+1⇢

†
j0+1(q

†)!̄†
j0+1 + �

†
j00+1⇢

†
j00+1(q

†)!̄†
j00+1

�
†
j0+1⇢

†
j0+1(q

†) + �
†
j00+1⇢

†
j00+1(q

†)

�����

=

�����
�i0⇢

⇤
i0(q)!̄i0 + �i00⇢

⇤
i00(q)!̄i00

�i0⇢
⇤
i0(q) + �i00⇢

⇤
i00(q)

�
�i0⇢

⇤
i0(q)!̄

†
j0+1 + �i00⇢

⇤
i00(q)!̄

†
j00+1

�i0⇢
⇤
i0(q) + �i00⇢

⇤
i00(q)

�����


�i0⇢

⇤
i0(q)|!̄

†
j0+1 � !̄i0 |+ �i00⇢

⇤
i00(q)|!̄

†
j00+1 � !̄i00 |

�i0⇢
⇤
i0(q) + �i00⇢

⇤
i00(q)

 �i0⇢
⇤
i0(q)b"+ �i00⇢

⇤
i00(q)b"

�i0⇢
⇤
i0(q) + �i00⇢

⇤
i00(q)

= b"

We also note that by construction, for any posterior mean q 2 supp(⇢⇤), the corresponding con-
structed posterior mean q

† 2 supp(⇢†) satisfies that

⇢
†(q†) =

X

i2[d1/b"e+1]

⇢
†
i (q

†)�†
i = ⇢

⇤(q) (10)

Armed with the above observation (p⇤, q) � (p†, q†), we are now ready to show RevI(p⇤, ⇢⇤) 
RevI†

�
p
†
, ⇢

†�+ b":

RevI(p
⇤
, ⇢

⇤)� RevI†
�
p
†
, ⇢

†� = p
⇤
Z

q
⇢
⇤(q)D((p⇤, q))dq � p

†
Z

q†
⇢
†(q†)D((p†, q†))dq†

(a)
 p

⇤
Z

q
⇢
⇤(q)D((p⇤, q))dq � p

⇤
Z

q†
⇢
†(q†)D((p†, q†))dq† + b"

= p
⇤
✓Z

q
⇢
⇤(q)D((p⇤, q))dq �

Z

q†
⇢
†(q†)D((p†, q†))dq†

◆
+ b"

(b)
 b"

where inequality (a) holds since we have p
† = p

⇤ � b", and inequality (b) holds by the observation
(p⇤, q) � (p†, q†) and (10).
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