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ABSTRACT

Multimodal large language models have demonstrated impressive capabilities in
visual-language understanding, particularly in offline video tasks. More recently,
the emergence of online video modeling has introduced early forms of active
interaction. However, existing models, typically limited to tens of minutes, are
not yet capable of all-day proactive understanding over ultra-long video streams.
They struggle to maintain long-term context online, as they suffer from token
accumulation and lack scalable memory mechanisms. These limitations hinder
critical tasks such as reminding users that medication was taken hours earlier—an
ability that exemplifies the shift from reactive to memory-oriented assistants with
long-term reasoning. To bridge this gap, we present Memento, the first proactive
vision-language framework for ultra-long streaming video. To avoid token growth
and support scalable long-duration understanding, we introduce Dynamic Memory
and Query-related Memory Selection, enabling sparse memory retention and effi-
cient retrieval. To address the training challenges of memory-based modeling, we
propose Step-Aware Memory Attention, which aligns memory access with tempo-
ral steps for stable supervision. To support both training and evaluation of active,
long-term behavior, we construct Memento-54K and MementoBench, a dataset-
benchmark suite covering diverse tasks on text, object, and action across video
streams up to 7 hours. Experiments demonstrate that Memento achieves superior
performance, paving the way toward reliable all-day proactive video assistants.

1 INTRODUCTION

Recent advancements in large language models (LLMs) (Ouyang et al.,[2022; Touvron et al., 2023}
Yang et al., 2024bja; |Xin et al., 2025} |Guo et al.,[2025) and vision-language models (VLMs) (Liu
et al.,[2023};|2024a; |Achiam et al.| 2023} Bai et al., |2025) have shown remarkable progress in video
understanding, particularly with the emergence of long-form (Ren et al., [2024} Song et al.| 2024a};
Zeng et al., [2025) and online video LLMs (Chen et al., [2024a; |Wu et al., 2024b; |L1 et al., 2025a;
Qian et al.,|2025). Such progress has further raised expectations for an all-day, proactive assistant.
This assistant would continuously perceive the environment through ultra-long video streams and
proactively interact with humans, rather than merely responding passively to explicit user queries.
Achieving this capability would not only fundamentally transform the role of Al assistants in daily
human activities, but also represent a critical step toward genuine autonomous agents (Fan et al.|
2024} 'Wang et al.,|2024b; |Putta et al., 2024; Hong et al., 2024)).

Despite this promising progress, existing models still fall short of realizing such a proactive assistant
in practice. Their limitations become especially evident in scenarios requiring extremely long-term
behavioral monitoring and temporal reasoning. For instance, an all-day assistant should be able to
recall whether the user has already taken a specific medication hours ago, detect that the same object
has been accessed multiple times throughout the day, or notice a warning text previously ignored.
Fig. |l|illustrates a detailed case, inspired by a scene from the film Memento: the wife asks for an
insulin shot three times within a few hours, but the husband, due to short-term memory loss, fails to
recognize the repeated requests, potentially leading to serious consequences. In this scenario, existing
long-form video models fail to assist during critical moments. They cannot issue timely warnings
during the shots and fail to respond accurately. On the other hand, even the most advanced online
streaming models struggle with ultra-long durations due to their token-based architectures, which
cause visual tokens from each frame to accumulate in memory usage over time. As a result, after
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Figure 1: Comparison of model behaviors for all-day proactive assistance. Long-term and online
video models both fail to assistant at injection points beyond 25 minutes. Conversely, Memento
continuously tracks repeated shots, demonstrating its capability toward serving as an all-day proactive
assistant. Results for online models and Memento are obtained via supervised fine-tuning (SFT),
while long video model outputs are based on prompt engineering due to architectural limitation.

at most a few dozen minutes, the model exceeds GPU memory limits, and cannot recognize that
previous requests occurred.

To address the above issues, we propose Memento, a proactive vision-language framework for ultra-
long video streams. To handle the long-term memory challenge, we introduce a Dynamic Memory
(DM) mechanism that learns to retain or fuse incoming visual information over time, allowing
Memento to preserve relevant context while keeping memory usage bounded. In addition, we propose
a Query-related Memory Selection (QMS) module that retrieves only the most relevant memory
slots during generation, enabling efficient and targeted access across extended video durations. This
framework departs from the token-based paradigm, in which frame-level features are concatenated
and multiple positions are supervised jointly. In contrast, Memento operates over dynamically updated
memory representations, which evolve over time and cannot be aligned to discrete frame steps. As
a result, directly applying token-level supervision leads to misaligned inputs and invalid training.
To resolve this structural mismatch, we introduce Step-Aware Memory Attention (SAMA), which
restricts attention to memory available at each step, ensuring temporally consistent and semantically
valid learning. While Memento addresses the architectural challenges of proactive interaction with

long-range memory, existing datasets (Chen et al,[2024a} [Yao et al., 2025} (Grauman et al., [2022;

[Yang et al.| [2025)) offer limited support for training or evaluation. Online benchmarks (Chen et al.|
20244} |Li et al.l [2025b; [Wu et al.} [20244) include only short-term proactive tasks such as behavior
recap based on recent frames, lacking supervision for long-term monitoring. To bridge this gap, we
construct Memento-54k and MementoBench, covering diverse task types on text, object, and action
over video streams up to 7 hours, all requiring long-range, proactive understanding.

Our contributions are summarized as follows:

* Framework. For the first time, a framework for proactive interaction over ultra-long video streams,
named Memento, is proposed.

* Memory modeling. To address the scalable long-term memory challenges, we introduce dynamic
memory and a query-related selection for selective retention and efficient retrieval.

* Training strategy. To enable training compatibility with dynamic memory, we propose step-aware
memory attention, ensuring stable and effective learning for proactive vision-language modeling.

» Dataset and benchmark. We construct Memento-54k and MementoBench, covering diverse long-
range proactive tasks, validating the effectiveness of Memento and supporting the development of
an all-day proactive assistant.
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Related Work | Visual Input Long Form Proactive
LLaMA-VID (ECCV 2024) fixed token v X
TimeSuite (ICLR 2025) fixed token v X
MovieChat (CVPR 2024) fixed memory v X
MA-LMM (CVPR 2024) fixed memory v X
VideoLLM-online (CVPR 2024) fixed token X v
VideoLLM-MoD (NeurIPS 2024) dynamic token X v
LION-FS (CVPR 2025) dynamic token X v
Memento | dynamic memory v v

Table 1: Comparison between related methods and the proposed Memento. ‘“Proactive” indicates
whether the model supports interaction without explicit queries.

2 RELATED WORK

Long-Form Video Understanding. Recent multimodal large language models have demonstrated
strong instruction-following capabilities in video understanding (Cheng et al.| 2024; Zhang et al.,
2023} L1 et al., [2024b; [Liu et al., |2024bj; Wang et al., [2025; |[Zhang et al., 2024b), particularly for
long-range content. As early approaches based on sparse frame sampling often fail to capture key
clues in long videos (Lin et al.| 2024; Li et al.,|2024aj; Maaz et al.| 2024; Ma et al., 2024} Zhou et al.|
2024), fixed token-based methods have been introduced via encoding each frame into a fixed number
of visual tokens, with compression algorithm for acquiring more frames (Wang et al.,|2024c; Ren
et al.| 2024} 'Weng et al.| [2024). For example, LLaMA-VID (Li et al., |2024c) represents each frame
only using two visual tokens, enabling efficient processing of hour-long videos. Beyond token-based
compression, fixed memory-based models, including MovieChat (Song et al., 2024b), Koala (Tan
et al., [2024), MA-LMM (He et al., 2024), and others (Fan et al.,|2024; |Wang et al.l 2024b}; |[Zhang
et al., [20244a), maintain a fixed-length memory bank as the visual tokens. They achieve effective
long-video compression by aggregating redundant frames with similar features. However, these
approaches suffer from increasing inference overhead, limited long-term memory and the inability to
proactively interact, making them unsuitable for all-day assistant scenarios.

Online Video LLMs. Online Video LLMs aim to achieve real-time, proactive interaction over
streaming inputs, with the ultimate ambition of supporting continuous operation across ultra-long
video streams in open-ended scenarios. VideoLLM-online (Chen et al.| 2024a)) is the first to enable
proactive interaction in video-language modeling by introducing a Streaming-EOS objective to decide
when to respond or remain silent. However, like other fixed token-based approaches, it requires
extracting visual tokens for each incoming video frame, leading to unacceptable growth in memory
usage and computational cost. To reduce overhead, subsequent models introduce dynamic token
strategies, such as MoE-style (Jacobs et al., {1991} [Fedus et al., 2022} [Shazeer et al., 2017} Lepikhin
et al.,|2021) token routing in VideoLLM-MoD (Wu et al.,|2024b) and LION-FS (Li et al., [2025al),
where only a subset of tokens are forwarded into deeper layers, and patch-level token dropping in
TimeChat-online (Yao et al.,[2025)), where high redundancy regions are discarded. These methods
increase the supported video duration to tens of minutes, but still retain frame token accumulation.
Even the most advanced multimodal models (Wang et al.,|2024a; (Chen et al., 2024c} |Gao et al., |2024;
Chen et al., [2024Db)), such as GPT-40 (Achiam et al., 2023)) and Gemini 1.5 Pro (Team et al., 2024;
2023)), struggle to proactively reason over ultra-long streaming video. Unlike prior works, Memento
introduces a dynamic memory design and query-related retrieval, as shown in Table. |1} avoiding
token burden and preserving relevant information beyond fixed memory limits. Overall, it paves the
way toward reliable, all-day proactive assistants..

3 MEMENTO: A PROACTIVE LLM OVER ULTRA-LONG VIDEO STREAMS

3.1 OVERVIEW

In this section, we introduce our Memento in detail. As shown in Fig. [2|(a), given a streaming video
V = {f1, f2,- .., fr}, Memento encodes each frame f; using a ViT-based (Radford et al.| 2021)

encoder. The result v, € RO+ %) XC contains a global [CLS] token and hy, x w), spatial tokens.

Instead of directly projecting v; into the language space via an MLP projector as in LLaVA (Liu
et al.| 2023} 2024a), we first process it through the Dynamic Memory (DM). At each step ¢, the
current v; and historical memory M;_; are fused according to a Remember-and-Forget (R&F)
strategy. It decides whether to retain the original information, and produces the updated memory
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Figure 2: Overall architecture of Memento. (a) Memento receives user queries and historical
responses with the current memory state, achieving proactive interaction over ultra-long video streams.
(b) Details of the DM mechanism, which mainly utilizes similarity-based retention and aggregation.
(c) Details of the QMS module using query-conditioned gating and masking.

M; = DM(vy, M;_1) as R&F Memory. Then, for all the user queries ¢ = {q1,¢2,...,¢,} in the
past, the current R&F memory M is filtered by the Query-related Memory Selection (QMS) to
retrieve the most relevant subset M; C M,. The selected memory M, is fed into the LLM to
generate the next-token distributions P, enabling both reactive and proactive responses.

Finally, considering that the fused memory changes across frames but lacks per-frame token structure,
we apply Step-Aware Memory Attention (SAMA) to restrict attention to available memory at each
time step during training. Thanks to this alignment, the supervision objective from VideoLLM-
online (Chen et al.} [2024a) can be directly adopted to train the memory-based framework:

Z—logl B og g, (1)

LM Loss Streaming Loss
where [; is 1 if the j-th token is a language response token, and 0 otherwise. f; is 1 if both (1) the

j-th token is the last token in M}, and (2) [, 41 is 0. P][Tth 1 is the probability on the j + 1-th text

token, output from the large language model head of the j-th token, and P][EOS]

the EOS token.

is the probability for

3.2 DYNAMIC MEMORY

To update R&F memory M, we aim to balance between retaining essential information and fusing
redundant content, which may arise in the short term (adjacent frames with little change) or in the
long term (repeated scenes or actions), as shown in Fig. ] (b). To handle both, we compute two
relevance scores: (1) a short-term score §, based on cosine similarity (Wang et al.| [2024d}e) between
the current frame v; and the last memory m;_; € R(Hrpxwe)xC in M, and (2) a long-term
score o, obtained via cross-attention (Vaswani et a] between v, and all flattened historical

memory tokens M, _; € RNt—1(1+hyxwp)XCin Eq Dl A fixed threshold e controls memory update.
(Uth)(Mt—lVVk)T>

\/Zl )
o = ((Attn(vy, My_1) - (My_1W,)) W),

where W, Wy, W, and W, are projection matrices. 1(-) denotes a summation followed by a
sigmoid activation (LeCun et al.[1998)), yielding a scalar score o € R.

The R&F gate selects the memory update strategy based on a relevance threshold e. If § > ¢, the
current frame is considered locally redundant and is fused into the last memory token using Eq. 3]

Attn(vy, M;_1) = softmax ( )

score = softmax(Attn(ms_1,v¢)), w = score - u,

. _ 3
mi—1 =my—1 - (1 —sum(w)) + wloy, M= Concaut(./\/l,[{ivf’1 1},771,5_1),

4
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where score € R+ xwp)x(1+hy xwy) g the normalized attention weight in spatial, u € R is a fixed
scalar update ratio. m;_; is the fused token, and Ml[;ivf”_l] denotes the first N;_; — 1 memory. If
0 < e while o > ¢, the frame is semantically aligned with long-term memory content; we thus reuse
the same update strategy but compute attention scores by treating M;_; as queries and v; as keys and
values, enabling soft updates across all memory slots. Finally, if both 6 < € and o < ¢, the frame is

considered distinct and directly appended to memory, namely M; = Concat(M;_1, v;).

This gated update mechanism enables Memento to forget redundant content via token fusion, and
remember distinct information. Different from token-based methods, this mechanism could avoid
unacceptable growth in memory usage and computational cost. Compared with the fixed-length
memory banks, it dynamically expands for novel content. This design maintains a compact yet
expressive representation across ultra-long video streams.

3.3 QUERY-RELATED MEMORY SELECTION

To reduce memory consumption while preserving response quality, we filter the current R&F
memory M; according to user queries ¢ in Fig. 2] (c). Specifically, we transform M, into
M, € RNex(t+hpxwp)xC gpd compute cross-attention with user tokens @) as keys and values,
following Eq. to yield the score R € R™ for each memory frame. QMS then applies a top-k gating
strategy to select the most relevant k = rqys - IV; tokens, M; = TopK(M, R, k). The selected
compact memory M} is then passed to the LLM for generation. Our QMS ensures query-aware
generation while decreasing the cost of full-memory attention, thereby enabling scalable reasoning
over ultra-long temporal sequences.

3.4 STEP-AWARE MEMORY ATTENTION
Unlike token-based mod- =
els with frame-wise ac- L

cumulation, the memory =
bank lacks explicit align- [u~]
ment with video steps.

o]

Thus, prior standard train-
ing methods in
[2024a}; [Wu et al., 2024b;
[2025a) with causal at-

tention are inapplicable. As

T ED

shown in Fig. (@), this ) (el (o) ) el
attention will allow access R PRPIONEDDD - DD DD DD 5

to expired memory. In con-
trast, our propose d SAMA (a) Causal Attention (b) Step-Aware Memory Attention (SAMA)
£

in Fig. [3] (b) introduces
a masking scheme to align
with frame-wise visibility.

Figure 3: Causal attention vs. SAMA. Causal attention (left) permits
access to all past tokens, including expired memory. SAMA (right)
restricts attention to valid memory, excluding irrelevant tokens.

Specifically, an example of input sequence is:
I

tokens = [M}, [EOS], M), qi, [Txt]i, M, [EOS], g2, [Txt]e, M}, [Txtls]r. (4)
A binary attention mask A € {0, 1}2*L is built, where token z; is allowed to attend to token z; if:
1, z; € M{UqU{[Txt]r}r=12,., 1 > J, T; # [EOS]
Aij =<1, i=j, x; = [EOS] 5)
0, otherwise
Here, s = step(z;) denotes the video frame index when token z; is added to the sequence. Further-

more, we reassign correct position ids for each token to ensure that tokens within the same frame
share a base offset. This aligns positional encoding with the token visibility defined by the mask.

During inference, we maintain the same masking structure so that only previous dialog tokens are
stored as key-value cache (Dao et all, 2023} Ge et al.| [2024)), allowing efficient streaming decoding
with minimal computation.
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Figure 4: Overview of Memento-54k. Left: the 9 task types categorized by spatial vs. temporal, and
by modality (text, object, action). Right: example QA instances for each task type.

4 DATASET AND BENCHMARK: MEMENTO-54K AND MEMENTOBENCH

4.1 MEMENTO-54K DATASET CONSTRUCTION

Video Filtering and Sampling. To support long-duration, proactive interaction, we construct
Memento-54k based on Ego4D (Grauman et al., [2022). We filter all videos to retain those between
5 minutes and 7 hours, to ensure long-term context. To reduce sample imbalance, we downsample
videos from overrepresented scenarios (e.g., cooking), yielding a subset of 4,466 daily-life videos.

Task Annotation. As illustrated in Fig.[d] we define 9 task types spanning spatial and temporal
reasoning, where spatial tasks focus on short-term perception (e.g., object presence), and temporal
tasks require long-range memory (e.g., repeated actions or text changing). These tasks are designed
for three modalities: action, object, and text. Each sample is annotated as a streaming QA pair,
including a question and multiple assistant responses with timestamps. For each modality, we first
obtain timestamp-level labels, and then generate QA pairs:

* Action. Based on Ego4D timestamp narrations, we prompt GPT-4o0 to generate QA pairs such as
repeated actions of Temporal Counting on the right side of Fig. @] see Appendix for details.

* Object. We extract objects at 2 FPS using ChatReX (Jiang et al.,|2024)), a category-agnostic detector.
QA pairs are then generated via rule-based scripts. For example, in temporal duration tasks, we
track object appearance and disappearance timestamps to identify presence for producing response.

e Text. On-screen text is detected by Qwen2-VL at 2 FPS. Text annotations are similar to object,
such as temporal changing tasks identify cases where a previously seen full text is later partially
disappeared, and once the subset is matched, a response is triggered to form a QA pair.

Streaming QA Formatting. For each task, up  “gplit | Duration | Videos | Samples | Responses
to 9 instances are annqtated per video, each fo- Train| Total | 4426 | 53.6k | 2.5M
cusing on a distinct action, object, or text. Failed

or invqlid cases are manually corrected.. Then, 156_13%%& %8 g% %glﬁ
QA pairs are grouped by randomly selecting 1-5  Test |30.60 min| 15 56 4.8k
user queries with their timestamped responses >60min | 5 13 2.5k
to form new streaming samples. This forms the | Total | 40 | 198 | 13.5k
final release of the Memento-54k dataset, and

the specific distribution is as shown in Table. [2] Table 2: Distribution of Memento-54k.

Especially, streaming QA must scan entire videos, making evaluation expensive. Though it contains
only 40 videos, the test set covers over 13k responses, which is sufficient for robust evaluation.

4.2 MEMENTOBENCH EVALUATION

To evaluate models under the proactive long-term understanding setting, we identify three essential
requirements for this task: temporal alignment, answer quality, and minimal redundancy.
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TimeRecall. TimeRecall is the fraction of ground-truth responses for which the model produces at
least one response within a 5-second window, reflecting the ability to anticipate when to respond.

Score. Score measures the generation quality by comparing all the model responses within the above
window with ground-truth answers. We use GPT-3.5-turbo-0125 to assign score from 1 to 10 and
take the maximum among multiple outputs. Scoring details are provided in the Appendix.

Redundancy. Redundancy captures the extent of unnecessary generation, defined as the proportion of
model responses outside the time window in TimeRecall.

The most closely related benchmark to ours is Ego4D Narration Stream (Chen et al., 2024a; Lin et al.,
2022])), which evaluates the temporally align performance on generated descriptions with visual events
in streaming egocentric videos. However, it focuses only on the current narration, overlooking tasks
that require long-term past information. In addition, its evaluation relies on exact text match, whereas
MementoBench supports free-form outputs, enabling more flexible and robust assessment.

Notably, existing online benchmarks (L1 et al., 2025bj [Wu et al.,|2024a) such as OVO-Bench, which
appear to evaluate proactive interaction, in fact offer an offline-form question and predefined response
timestamps during inference. All past video frames before each timestamp are provided, which
ideally should be judged by the model. As a result, such benchmarks emphasize response accuracy
for specified questions, allowing non-proactive models to be evaluated under this setting. In contrast,
MementoBench compares whether models can proactively interact at the right time with the correct
content, enabling more accurate evaluation of the desired capabilities in real-world proactive settings.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

In this work, we implement our Memento following the VideoLLM-online framework (Chen et al.|
2024a)). Unless otherwise stated, we use SigLIP-ViT-L/384 (Zhai et al.| 2023)) as the vision encoder,
which extracts frame-wise features at 2 FPS, and set h, = w, = 3. For the LLM module, we use
LLaMA-3.1-8B-Instruct (Grattafiori et al.,2024)). Following (Chen et al.| 2024a), we train 1 epoch
for our model in the DeepSpeed Zero-2 (Rajbhandari et al., 2020) configuration, with LoRA (Hu
et al., 2022) to all linear layers in the LLM with a rank of 128 and a scaling factor of 256. For our
DM module, we set the relevance threshold € = 0.7, and update ratio v = 0.2. In the QMS module,
the top-k ratio rqms = 50%. We use AdamW optimizer (Loshchilov & Hutter, [2019)) with a learning
rate of le-4 and cosine decay. All experiments are conducted on 4 NVIDIA A100 GPUs (80GB).
Please refer to Appendix for inference details with a dynamic correction strategy.

5.2 MAIN RESULTS

We compare our method with VideoLLM-online (Chen et al., 2024a)) using MementoBench. To
ensure fairness, we train VideoLLM-online with our Memento-54k dataset using the same training
schedule, denoted as VideoLLM-online*.

To assess runtime scalability, Figure 5] (right) shows GPU mem- Memory Usage vs Time

ory usage during streaming video inference. VideoLLM-online =~ gsor-r==---==-=-----== QoM. -
quickly accumulates tokens and runs into OOM at about 25 min- %;g

utes, with memory peaking at 80.5 GB. In contrast, Memento £ 50

maintains bounded usage under 45.3 GB across the entire 4-hour § - f
streaming videos, demonstrating its advantages for proactive  §5 VideolLM-online
response to ultra-long videos with stable memory and no in- 310 —— Memento (Ours)
terruption. The occasional rises correspond to dense response %o % 20 im0 2
periods and are reduced afterward as temporary variables are

released. Figure 5: Memory Usage.

The results on MementoBench are shown in Table [3] The original VideoLLM-online performs
poorly across all aspects, with only 6.1% spatial and 11.8% temporal recall, and nearly 0% beyond
25 minutes due to memory overflow. Even after supervised fine-tuning (SFT) on Memento-54k
(VideoLLM-online*), average recall only rises to 8.9%, with long-term recall still at 0.3%. While
it reports a higher score of 5.32 and lower redundancy of 21.3%, this is largely because it triggers
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| TimeRecall © | Score 1 | Redund. !
Sp. Temp. Long (> 25min) Avg.

Method

| Sp. Temp. Avg. |

Online Video LLMs

VideoLLM-online 6.1% 11.8% 0.1% 81% | 155 1.21 1.40 56.4%
VideoLLM-online* | 7.9% 11.6% 0.3% 89% |5.11 568 5.32 21.3%
Ours

Memento* | 45.9% 51.3% 35.2% 475% | 431 402 422] 64.5%

Table 3: Evaluation on MementoBench. Sp. and Temp. denote spatial and temporal task types,
where Temp. requires long-term visual reasoning. Long marks responses beyond 25 minutes, for
assessing understanding persistence under ultra-long video streams, independent of task type. In
particular, VideoLLM-online is the only model with available open-source online inference code.

Memory Bank Size vs Time

Memory | TimeRecall © | Score 1 | Redund. 1 Lonal — 3522212 EZiiZE?i

Schema | Sp. Temp. Avg. | Sp. Temp. Avg.| = ';i:g':‘:;fif):”’

Fixed Memory e )
Len=8 14.8% 22.1% 16.9% |4.61 4.65 4.64] 55.5% £

Len=32 [20.4% 26.4% 22.1% |5.14 5.04 5.12| 53.7% I

Len=128 |28.1% 31.2% 29.0% |4.77 4.74 4.76| 52.7% 2

Dynamic Memory E

€=0.6 23.1% 25.5% 23.8% |5.12 5.25 5.16] 50.9% g

e=0.7 382% 46.7% 40.4% [4.36 4.67 4.39| 56.2% £

€=0.8 43.9% 46.6% 44.7% |4.59 4.05 4.43| 61.4% =

Table 4: Ablation on memory schema. “Len” indicates the Lk T e e 3%
fixed memory bank size. Our dynamic memory consistently Time (minutes)

yields better recall and offers superior trade-offs in others.  Figure 6: Memory Size Comparison.

very few responses, often staying silent when answers are expected. The resulting low recall makes it
unsuitable for real-world applications. In contrast, Memento achieves 45.9% spatial, 51.3% temporal,
and 35.2% long-duration recall, while maintaining a solid score of 4.22. Although its redundancy
increases to 64.5%, given the substantial gain in recall (+38.6%), we consider this a worthwhile
trade-off, as ensuring timely and consistent response is critical in ultra-long online scenarios.

5.3 ABLATION STUDY

We conduct three ablation studies to evaluate the core design components of Memento. Our analysis
focuses on three aspects: memory mechanism (with 142 x2 frame tokens, rqmszl()O%), frame token
configuration (with €¢=0.7, rqmszloo%) and QMS top-k ratio (with €=0.7, 142X 2 frame tokens).

Memory Mechanism. To examine the impact of memory structure and hyperparameter on long-term
reasoning, we compare fixed-length memory banks with our dynamic memory mechanism, as shown
in Table 4] Increasing the fixed memory size improves recall from 16.9% to 29.0% and slightly
reduces redundancy. In comparison, dynamic memory achieves notably higher recall (up to 44.7%
at € = 0.8) while maintaining comparable score and redundancy (up to 5.16 and 50.9% at € = 0.6).
Notably, for temporal tasks that require long-range memory, recall improves significantly from 31.2%
(fixed) to 46.7% at € = 0.7. Figure 6] further shows that dynamic memory scales naturally with video
length, enabling long-range context retention. However, e = 0.8 results in nearly 10x larger memory
than e = 0.7 with marginal gain in all the metrics, so we adopt the default e = 0.7.

Frame Token Configuration. We futher analyze
different frame tokens in Table[5] 1 + 3 x 3 offers ~ Frame Token| TimeRecall 1| Score 1| Redund. |,
a better balance, which achieves the highest recall 142x2 40.4% 4.39 | 56.2%

of 68.9%, while maintaining a reasonable score of 1+3x%x3 68.9% 3.78 66.6%
3.78 and moderate redundancy at 66.6%. Fewer L+4x4 60.9% 3.93 67.2%
tokens achieve a too low recall of 40.4%. 1+4 x 4
increases redundancy without improving recall.

Table 5: Ablation on frame tokens.
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Tqms | TimeRecall 1 | Score T | Redund. | | Memory Usage |
| Sp. Temp. Avg. | Sp.  Temp. Avg. | |

10% | 387% 31.5% 33.6% | 431 4.67 4.33 63.0% 39.53 GB

50% | 54.7% 59.5% 56.1% | 396 3.86 3.93 66.7% 45.19 GB

90% | 49.0% 52.8% 50.1% | 4.15 397 4.10 63.7% 53.50 GB

100% | 382% 46.7% 404% | 436 4.67 4.39 56.2% 55.44 GB

Table 6: Ablation on QMS top-% ratio. We exclude textual KV cache in “Memory Usage” reporting,
as dialogue history size varies with response behavior and is independent of 7.
Time = Oh : Om : Os Time = Oh : 27m : 04s Time = Oh: 35m : 05s Time = Oh 44m 38s

Q3: When have | had these
consecutive events sequence:
‘look up', ‘look around’, and
'hold the rope'? )

[ ) QI: When does the event of 3."“'.@. a0 [ )
. me holding the rope occur? - 4 Your action of holding @ Your pulling the rope .
Q2: When will the pulling the rope has come up. task has been completed.

User the ro > Memento %
pe task end?

Time = Oh : 44m : 59s

Time = Oh : 49m : 59s Time = Th: 25m : 41s

— 'look around’ (after the rope has come up.
300.0s) = "hold the rope"

7 & =
é?"v You've had these sequential g‘P
o [43 \ events: ‘look up' (after 1.0s) o 43 Your action of holding

Figure 7: Qualitative results of Memento on ultra-long streaming video. The scene involves rock
climbing over a 1.5-hour timeline, with three user queries issued at 0, 0, and 44 minutes, respectively.
These queries cover the tasks of spatial appear, temporal disappear and temporal ordering for action.

QMS Top-k£ Ratio. To assess how QMS filtering affects retrieval relevance, we adjust the top-k se-
lection ratio 7qms in the QMS module. As shown in Table@ selecting all memory slots (rqmszloo%)
results in suboptimal performance: although it achieves the highest score of 4.39 and lowest redun-
dancy of 56.2%, its recall is notably lower compared to the best rqms = 50% setting by 15.7%. This
highlights that overly broad memory access may introduce irrelevant context and distract attention
from key visual evidence. Meanwhile, too few slots (r=10%) limits context recall and harms perfor-
mance. The 50% configuration strikes the best trade-off across all metrics, demonstrating that QMS
effectively prioritizes relevant memory and improves response alignment.

5.4 VISUALIZATION OF MEMENTO

Figure[7]showcases Memento’s performance on a 1.5-hour streaming video with temporally distant
queries. The model identifies “holding the rope” at 27 minutes in response to an initial query and
triggers “pulling the rope completed” 8 minutes later. It also tracks the ordered occurrence of
“look up”, “look around”, and “hold the rope” before issuing a final response. Moreover, it remains
proactive across the entire duration, generating correct responses even after 80 minutes, demonstrating
its robustness in ultra-long streaming scenarios.

6 CONCLUSION

In this paper, we present Memento, a proactive vision-language framework for ultra-long streaming
video. It introduces dynamic memory, query-related selection and step-aware attention for scalable
long-term context modeling and temporally aligned training. Moreover, we construct Memento-54k
and MementoBench for training and evaluation. Experiments show that Memento enables effective
proactive interaction. Declaration of LLM usage will be discussed in Appendix.
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A.1 DETAILED BEHAVIOR OF SAMA MODULE

The Step-Aware Memory Attention (SAMA) module defines how attention and position encodings
are assigned for memory-based streaming video modeling, as illustrated in Fig. |1} Specifically:

* Only the current memory is retained, and all earlier memory tokens are discarded.
» All previous user queries and assistant responses remain visible to support long-term reasoning.
* Any [EOS] token is masked out from future attention—no later token can see it.

These constraints ensure that meaningful interactions remain persistently accessible, while non-
response markers such as [EOS] are excluded to prevent memory accumulation and interference
during decoding. To preserve temporal consistency, position IDs are propagated from the most recent
remembered dialogue turn, enabling the model to build upon prior context. If no memory is retained,
position IDs are instead reinitialized to avoid drift from irrelevant history.

offset = 0
# (1) Causal attention and local position ids
for block in causal_tokens:
start, end = block_range (block)
attention_mask[start:end, start:end] = tril (1)
position_ids[start:end] = range (0, end - start)
# (2) Global offset shift for remembered QA (always—-attend dialog)
for start, end in remembered_QA_tokens:

attention_mask[end:, start:end] = 1
position_ids[end:] += position_ids[end - 1] + 1 - offset
offset = position_ids[end - 1] + 1

# (3) Mask out [EOS] and reset position alignment
for start, end in eos_tokens:
attention_mask[end:, start:end] = 0
if end < seqg_len and tokens[end] is not Memory:
# shift to align with last remembered content
position_ids[end:] -= end - start

Figure 1: Algorithmic illustration of attention masking and position encoding in SAMA.

Position logic. In implementation, SAMA updates position IDs based on the latest remembered
dialog (e.g., from a past user turn). The position ID of the first token in the current memory continues
from the end of that remembered span. If a token follows a masked [EOS], it continues from the
most recent valid memory, skipping over the [EOS] as if it never existed in the context timeline.

A.2 INFERENCE DETAILS

To balance the timing of model responses in streaming video, VideoLLM-online introduces a
correction strategy. Specifically, if the predicted probability of [EOS] falls below a fixed threshold
0, it is forced to zero; otherwise, it remains silent. However, we observe this approach to be highly
sensitive in practice, even minor changes in training configuration may cause over-response in one
case and under-response in another. This makes consistent evaluation difficult and requires expensive
manual tuning per model. To address this, we design a simple dynamic adjustment strategy during
inference, from an inverse perspective: instead of suppressing [EOS], we explicitly require the
probability of generating a [ Txt ] token to exceed a threshold ¢’ before triggering a response. Then,
the threshold 6’ will be initialized at 0.5 and increased by Ay =0.1 after 10 consecutive response
frames to reduce over-generation. If no responses occur for 30 frames, 6’ resets. This adaptive
mechanism stabilizes behavior across models and is consistently applied in all our evaluations.

A.3 PERFORMANCE ON OVBENCH BENCHMARK

Beyond our long-form and proactive setting, we further evaluate our Memento on established online
benchmarks for assessing its generalization. To this end, we conducted additional experiments
on OVBench (Huang et al.} [2025)), a recently proposed benchmark for streaming vision-language
understanding, covering diverse online tasks, as shown in Table
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Method | av | FP | THV | PM | sp | sTP | TP
| | AA GSP MP | AP SV OP| AR PR TR | AL OP| AT OT | AS SL OES

% VideoChat-Online | 54.9 | 64.1 59.7 16.6 | 63.1 583 62.8 |42.2 544 70.6|54.1 248|887 485|730 259 71.7
VideoChat-Online 539 | 564 63.0 15.6|57.1 579 61.9|39.1 542 739|413 297|922 531|698 273 69.9
Gemini-1.5-Flash 50.7 | 71.4 53.6 219|565 608 40.6|36.7 47.9 625|323 37.5|87.0 50.0 | 83.3 223 46.9
Qwen2-VL 49.7 1603 66.1 22.1|549 515 51.1|37.8 644 693|353 285[97.0 494|651 308 11.7
LLaVA-OneVision 49.5 | 68.0 62.7 359|584 503 465|294 60.7 58.0|43.1 142 |86.5 49.7|70.7 28.1 30.2
InternVL2-7B 48.7 152.6 60.2 27.6|575 520 585|388 67.1 583|381 313|874 370|754 314 59
InternVL2-4B 44.1 | 577 570 144|592 494 60.0 303 61.8 463|309 20.1|83.0 323|70.7 294 34
LongVA 43.6 | 64.1 565 295|549 519 348|353 556 57.7|31.6 34 | 674 447]80.0 267 4.0
LLaMA-VID 419 [43.6 509 19.6|64.0 475 46.8 294 489 512|319 112|757 248|59.1 26.0 40.0
MiniCPM-V 2.6 39.1 {333 359 15.0(59.2 508 55.1(250 374 41.7 266 11.8|98.3 363 |66.1 264 62
VTimeLLM 33.1 |37.2 234 150|648 438 532|259 38.8 325|259 204|409 68 |484 435 8.6
% Flash-Vstream 312 1269 37.6 239|60.1 419 40.0|234 353 26.1 247 288|27.0 214|298 256 268
% MovieChat 309 |23.1 27.5 23.6 (584 439 403|256 31.1 239269 39.6|244 289293 255 219
LITA 204 |19.2 245 199408 489 249| 3.1 273 64 | 69 146|352 239|274 05 34
TimeChat 128 | 7.7 153 18.7(20.6 157 11.7]| 9.1 147 98 | 7.5 195|139 103 | 93 10.1 10.8
% VideoLLM-Online | 9.6 | 0.0 1.8 209| 52 59 326| 00 23 267| 06 266| 09 199| 09 1.7 83

% Memento (Ours) | 48.5 [48.7 59.9 356|57.9 53.7 605|322 57.6 574|363 40.1|648 365|649 368 336

Table 7: Comparison on OVBench. % indicates the input is streaming video. FP (Future Prediction)
includes AA (Action Anticipation), GSP (Goal/Step Prediction) and MP (Movement Prediction).
THYV (Temporal Hallucination Verification) includes AP (Action Persistence), SV (Step Verification)
and OP (Object Presence). PM (Past Memory) includes AR (Action Retrieval), PR (Procedure
Recall), and 7R (Trajectory Retrieval). SP (Spatio Perception) includes AL (Action Location) and
OP (Object Position). STP (Spatio-Temporal Perception) includes AT (Action Trajectory) and OT
(Object Trajectory). TP (Temporal Perception) includes AS (Action Sequence), SL (Step Localization)
and OES (Object Existence State).

Method ‘ Training  Testing ‘ TimeRecall ‘ Score 1 ‘ Redund. |
‘ ‘ Sp. Temp. Long (> 25min)  Avg. ‘ Sp.  Temp. Avg. ‘

Memento+ (Ours) | w/o A +B A 333% 30.1% 22.0% 31.1% | 490 5.01 4.96 35.8%

Memento+ (Ours) | w/o A +B B 28.7% 34.9% 26.9% 31.6% | 443 3.67 4.10 57.0%

Table 8: Zero-shot evaluation on MementoBench. A corresponds to Crafting / Knitting / Sewing /
Drawing / Painting scenario, B corresponds to Cooking scenario.

OVBench includes 16 tasks for streaming visual-language understanding. To ensure fair comparison,
we trained our model using a subset of the VideoChat-Online training data, specifically VideoChat-
Online-1T and 0.27M samples from VideoChat2-1T (approximately 1/7 of the full dataset used by
some advanced methods). Despite using only a fraction of the training data compared to larger
baselines, our method achieves strong performance, outperforming long-context models such as
LongVA and MovieChat, and matching the performance of InternVL2. Notably, our model surpasses
online understanding methods like Flash-VStream and VideoLLM-online. While we fall short of
VideoChat-Online with 6.4%, we attribute this gap largely to training scale. Most importantly, we
emphasize that this experiment serves to demonstrate compatibility and generalization. Our primary
goal remains enabling proactive assistance in ultra-long video streams, the capability not captured by
existing online benchmarks. In fact, neither the tasks nor the baselines in OVBench are designed to
measure such behavior.

A.4 ZERO-SHOT EVALUATION ON MEMENTOBENCH

Regarding zero-shot generalization performance, due to the unique nature of proactive streaming
assistance over ultra-long videos, no directly compatible benchmark currently exists, so we design
a strict zero-shot setting within the Memento-54k dataset. Specifically, we removed the two most
frequent scene categories of ~’Crafting/knitting/sewing/drawing/painting” and "Cooking” (labeled by
original Ego4D dataset) from training, reducing the training set size from 53.6k to 42.6k samples,
and tested exclusively on these unseen scenarios. The results is shown in Table |8 This reduces the
training data by 21% with an expected performance drop. Nevertheless, Memento retained stable
long-range proactive response behavior and competitive scores. This experiment demonstrates that
its core proactive capabilities can extend, to a certain degree, beyond the training scenes.
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A.5 MEMENTO-54K ANNOTATION
A.5.1 ACTION MODALITY

Our action-oriented annotation comprises six types spanning short-term perception and long-term
temporal understanding. Based on timestamped narrations from Ego4D, we employ GPT-40 to
automatically construct 37,024 fine-grained question-answer (QA) pairs for action modality.

Action Spatial Appear. This task aims to identify the frame where an instance of a countable user
action becomes visually observable in the video. The prompt for data generation is detailed below.

The Prompt for Spatial Appear Task in Action QA Generation

You are an excellent expert in understanding long video descriptions. Please follow the instructions below and, based on the provided
video captions, help me label the data:

Please strictly follow these requirements for annotation:
1. In the provided video captions, the pronoun you” refers to the user (i.e., ’I”).
2. In assistant responses, “’you” refers to the user.
3. Automatically identify all countable events in the video captions.
- An event is countable if it refers to an action or occurrence that can be quantified.
4. For each identified event, generate the following in JSON format:
* A user question inserted at the timestamp of the first occurrence minus 1 second (use 0 if result is negative), asking about the
timing of the event.
« For each occurrence of the event, insert an assistant response indicating that the user’s action has occurred.
5. The final output must conform to the following JSON format:

[

"event": "Event Name",
"data": [{
"user": "User question related to identifying the event occurrences.",
"time": Insertion time of the question (seconds)
oA
"assistant": "Assistant acknowledgment response.",
"time": Insertion time of the question (seconds)
bod
"assistant": "Your action of [event] has come up.",
"time": Time when the first occurrence of the event happens (seconds)

—— Reference Video Descriptions

Action Spatial Disappear. Following the spatial appear task, the spatial disappear task aims to detect
the point at which an individual action instance becomes no longer visually observable. GPT-4o0 is
prompted to identify such moments and return the end timestamp for each individual occurrence.

The Prompt for Spatial Disappear Task in Action QA Generation

You are an excellent expert in understanding long video descriptions. Please follow the instructions below and, based on the provided
video captions with timestamps, help me label the data:

Annotation Guidelines:
1. In the provided video captions, the pronoun you” refers to the user (i.e., ”I”).
2. When generating user questions, replace ’you” with ”’I”.
3. In assistant responses, “’you” refers to the user.
4. Identify Events with Timestamps:
« Extract all events from the video captions along with their corresponding timestamps.
 Ensure that the events are listed in chronological order.
5. Select Relevant Events:
« Identify events that occur two or more times in the video.
« Select up to three such events.
6. Determine Event End Timestamps:
« For each occurrence, the end timestamp is the time of the next event that is different.
« If the event is the last one, its end timestamp equals its start timestamp.
« If the same event occurs back-to-back, treat each as a separate occurrence.
7. Format the Output:
« Insert a user question at the beginning (time = 0) asking when the event ends.
« Insert an assistant acknowledgment response at the same timestamp.
* For each occurrence, add an assistant response stating that the event has ended.
8. The final output must strictly conform to the following JSON format: ...

—— Reference Video Descriptions
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Action Temporal Duration. It focuses on estimating the duration of a single narrated event as it
continuously occurs in the video. GPT-40 is prompted to determine when each event starts and ends.

The Prompt for Temporal Duration Task in Action QA Generation

You are an excellent expert in understanding long video descriptions. Please follow the instructions below and, based on the provided
video captions with timestamps, help me label the data:

Annotation Guidelines:
1. In the provided video captions, the pronoun “’you” refers to the user (i.e., ”I”).
2. When generating user questions, replace ’you” with ”I”’.
3. In assistant responses, ’you” refers to the user.
4. Identify Events with Timestamps:
 Extract all events from the video captions with their corresponding timestamps.
« Ensure events are ordered chronologically.
5. Select Relevant Events:
* Identify events that occur two or more times.
* Select up to three such events.
* Event names must match their wording in the video captions.
6. Determine Start and End Timestamps:
« For each occurrence, define the start as the current timestamp.
* The end is the timestamp of the next different event.
« If the event is last in sequence, its end equals its start.
* Back-to-back identical events are treated as separate occurrences.
7. Calculate Duration:
* For each occurrence, compute the duration as end - start in seconds.
8. Format the Output:
¢ At the beginning, insert:
— A user question at time = 0: "How long did each [event] last?"
— An assistant acknowledgment at time = 0: "I will inform you of the duration each time [event]
ends."
* For each event occurrence, add:
— start and end timestamps
— An assistant message indicating when the event ended and how long it lasted
— A time field showing the duration in seconds
9. The final output must strictly conform to the following JSON format: ...

Reference Video Descriptions

Action Temporal Disappear. This task focuses on identifying when a high-level action disappears, as
indicated by a semantically coherent sequence of events bounded by a clear starting and ending event.
Since the ending event alone is insufficient, the model must reason over prior context to determine
whether the action has concluded. This task evaluates temporal abstraction and context-aware
understanding in streaming long-form videos.

The Prompt for Temporal Disappear Task in Action QA Generation

You are an expert in analyzing video captions to identify tasks with distinct start and end events, and calculating the duration of these
tasks. Please follow the instructions below to help me label the data based on the provided video captions.

Annotation Guidelines:
1. Identify Tasks with Distinct Start and End Events:
* Identify tasks in the video captions.
¢ Each task must have a unique start event and a distinct end event.
* Select up to three tasks from the video.
« Use the exact wording of the start and end events as described in the captions.
2. Calculate Task Durations:
* For each task, compute the time difference between the start and end event timestamps.
3. Generate Data for Each Task:
* At the task’s start time (or time = O for the first task), insert:
— A user question: "When will the [task] task end?"
— An assistant response: "I will let you know when the [task] task ends."
At the task’s end time, insert:
— A response indicating task completion and total duration: "Your [task] task has been completed. It
took [duration] seconds."
4. Format the Output:
* The final output should be a JSON array with entries for each task.
* Each entry includes the task name, start/end event names, and a list of time-stamped user/assistant interactions.
5. The output must strictly follow the structure below: ...

Reference Video Descriptions ———
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Action Temporal Counting. It focuses on tracking and responding to repeated occurrences of
identifiable actions in a video. Below is the prompt used to generate the annotations.

The Prompt for Temporal Counting Task in Action QA Generation

You are an excellent expert in understanding long video descriptions. Please follow the instructions below and, based on the provided
video captions, help me label the data:

Annotation Guidelines:
Important Notes:
* In the provided video captions, the pronoun ’you” refers to the user ("I").
* Replace ’you” with I’ when generating user questions.
« In assistant responses, ’you” refers to the user.
1. Identify Countable Events:
* Detect all countable events from the video captions.
* An event is countable if it refers to an action or occurrence that can be clearly quantified.
2. Select Relevant Events:
¢ Only include events that occur two or more times.
« Select up to three such events.
3. Generate Data for Each Event:
Insert a user question and assistant acknowledgment one second before the first occurrence (or at time = 0 if the result is

negative):

— User: "When does the event of me [event] occur?"

— Assistant: "I understand. Every time you [event], I will remind you."
« For each subsequent occurrence:

— Add: Assistant: "You have [event]."

— Include the corresponding timestamp.
4. Format the Output:
* The final output is a JSON array, one entry per event.
» Each entry includes the event name and a sequence of time-stamped interactions.
5. The output must strictly follow the structure below: ...

Reference Video Descriptions

Action Temporal Ordering. It emphasizes the recognition of consecutive event sequences that may
span long temporal intervals, and requires the assistant to respond upon their completion. It evaluates
the model’s ability to capture long-range temporal dependencies and track consistent action orderings.

The Prompt for Temporal Ordering Task in Action QA Generation

You are an excellent expert in understanding long video descriptions. Please follow the instructions below and, based on the provided
video captions, help me label the data:

Annotation Guidelines:
Important Notes:
* In the provided video captions, the pronoun you” refers to the user ("I").
* Replace ”’you” with I’ when generating user questions.
« In assistant responses, ’you” refers to the user.
1. Identify All Events and Their Timestamps:
« Extract all events along with their corresponding timestamps.
* Only consider events with identical wording as the same event.
 Sort events chronologically.
2. Identify the Two Most Frequent Event Pairs:
A valid event pair is formed when two different events occur consecutively with no other events in between.
* Identify the two most frequent such pairs across the captions.
3. Generate Data for Each Event Pair:
* Attime = 0, insert:
— User: "When did I have these consecutive events of [event 1] and then [event 2]?"
— Assistant: "I understand. Every time you have these consecutive events, I will
remind you."
* For each valid pair occurrence:
— Insert: Assistant: "The [event 1] and then [event 2] has occurred."
— Include both event timestamps and set the message time to the second event’s timestamp.
4. Format the Output:
* The final output should be a JSON array with two entries—one per frequent event pair.
 Each entry includes the pair description, timestamps, and user/assistant dialogue.
5. The output must strictly follow the structure below: ...

Reference Video Descriptions
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A.5.2 OBJECT MODALITY

In this section, we describe our seven object-oriented tasks for generating QA pairs based on dense
object-level narrations, extracted using ChatReX at 2 FPS. Each narration includes a timestamped list
of objects, such as “<69, 278, 659, 539> <wooden cabinet>". Based on these structured annotations,
we generate initial 74,742 QA pairs by applying a fixed user-assistant interaction pattern, where
placeholders are filled in accordingly. All QA pairs are stored in structured JSON format before
further human correction.

Below is an example of the predefined QA pattern used for the Temporal Ordering Task:

» User: “When do these object sequences appear in the video: '[A]’, ’[B]’, ’[C]’?”

o Assistant: “I understand. I will monitor the object sequence: '[A]’ — '[B]’ —
[C]’ and notify you when detected.”

* Assistant (at detection time): “Object sequence detected: °[A]’ (after [X]s) —
'[B]’ (after [Y]s) — ’[C]’, completed at [T]s.”

Object Spatial Appear. Its goal is to identify when a specific object appears in the video frame.
Objects are temporally counted along the video timeline, and only those with a moderate frequency
of occurrence are retained for QA generation.

Object Spatial Disappear. Its goal is to identify when a specific object disappears from the video
frame. We compute the maximum continuous visible duration for each object and retain only those
whose presence lasts sufficiently long.

Object Spatial Counting. Its goal is to identify how many instances of a specific object appear in the
current video frame. For robustness, we retain objects with a moderate number of total appearances,
which are based on total frame count, with defaults set to [10, 30] for short videos.

Object Temporal Duration. It evaluates a model’s temporal sensitivity by detecting both the duration
of continuous visibility and the duration of absence between object reappearances. We retain objects
with long visible or invisible durations and a moderate number of total appearances.

Object Temporal Counting. Its goal is to count how many times a specific object appears throughout
the video. We retain objects with a moderate number of total appearances.

Object Temporal Ordering. Its goal is to detect when a specific sequence of three distinct objects
appears in a consistent temporal order. We identify valid triplets that occur repeatedly (e.g., 7-20
times) with proper temporal spacing, and track their appearance timings across the video.

Object Temporal Abnormal. Its goal is to identify co-occurrence of multiple variants of the same
base object (e.g., different colors or sizes of “cup”) within a single frame. We retain base objects that
exhibit 2 or more distinct variants co-occurring at 2—10 distinct time points.

A.5.3 TEXT MODALITY

In this section, we describe our seven text-oriented tasks for generating QA pairs based on dense
timestamped OCR results, extracted using Qwen2.5-VL at 2 FPS. Each frame-level annotation
provides a list of visible text strings, such as “Welcome to the Museum”. After normalization and
filtering for different languages, we generate initial 40,447 QA pairs by applying a fixed user-assistant
interaction pattern, where placeholders are filled with the selected text content. All QA pairs are
stored in structured JSON format before further human refinement.

Text Spatial Appear. Its goal is to identify when a specific text appears completely in the video
frame. We retain text spans that are semantically complete and appear with moderate frequency (e.g.,
7-20 times).

Text Spatial Disappear. Its goal is to detect when a specific text starts to leave the video screen. We
retain text spans with complete structure and disappearance durations exceeding 30 seconds.

Text Spatial Counting. Its goal is to count how many instances of a specific text appear in each
video frame. We keep text blocks that appear in multiple frames, and at least one frame contains
multiple instances of this text.
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(c) Number of QA pairs per task type.

Figure 9: Statistics of the Memento-54K dataset. (a) shows the distribution of video durations ; (b)
illustrates the number of responses across different duration; and (c) breaks down the total number of
QA pairs by task type.

Text Temporal Duration. It detects the duration of continuous visibility and the duration of absence
between complete text reappearances. We retain texts with the longest visible or invisible duration.

Text Temporal Counting. Its goal is to track how many times a complete text appears across the full
video timeline. Texts with moderate appearance counts are retained.

Text Temporal Ordering. Its goal is to detect ordered sequences of three distinct texts appearing in
succession. We retain frequent sequences and report the time intervals between their elements.

Text Temporal Changing. Its goal is to detect when a previously complete text block changes into
only part of itself in later frames. The assistant alerts the user whenever such a partial form appears,
along with the timestamp of the last full appearance.

A.5.4 DATASET SUMMARY

In summary, Figure 9] presents the statistics of the Memento-54K dataset. As shown in Fig. 0] (a), the
dataset covers a wide range of long-video durations, from 5 minutes to over 7 hours. Notably, Fig.
(b) shows that videos exceeding 1 hour account for the largest number of response (from assistant)
annotations, highlighting the high density of temporal supervision required for streaming long-form
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Task Name

Evaluation Focus

object_temporal.ordering
object.spatial_appear
object.spatial_disappear
object_temporal_counting
object_spatial_counting
object_spatial_abnormal
object_temporal_.duration
text_spatial_appear

Focus on overall description, object targets, and their correct sequence.

Focus on overall description and whether the object is correctly identified.

Focus on overall description and whether the object disappearance is correctly captured.
Focus on overall description, object identity, and correct appearance count.

Focus on overall description, object identity, and quantity in the frame.

Focus on object count and presence of distinct types or variants.

Focus on correct object identity and time duration since last occurrence.

Focus on correctness of textual content appearance.

text_spatial_disappear
text_spatial_counting
text_temporal_counting
text_temporal_duration
text_temporal_changing
text_temporal_ordering
action_spatial_appear
action_spatial_disappear
action_temporal.ordering
action_temporal_duration
action_temporal._disappear
action_temporal_counting

Focus on correctness of textual content disappearance.
Focus on correct textual content and count.

Focus on correct textual content and appearance frequency.
Focus on textual identity and elapsed time since disappearance.
Focus on content variations and the timing of changes.
Focus on correctness of textual sequence.

Focus on correctness of the action appearance.

Focus on the overall disappearance of an event.

Focus on sequence and identity of events.

Focus on action correctness and duration.

Focus on correct identification of the action disappearance.
Focus on event identity and number of occurrences.

Table 9: Task-specific evaluation focus used in MementoBench scoring.

video understanding. Fig. [0](c) further breaks down the QA distribution by task type, demonstrating
the coverage across diverse spatial, temporal, and multimodal understanding categories.

In fact, the dataset is hierarchically structured into three levels: (1) Responses, each representing
an individual assistant reply to an online user query; (2) QA Pairs, each composed of a single user
question and its corresponding set of responses; (3) Samples, formed by randomly selecting 1-5 QA
pairs from a single video. These samples comprise the 53,824 final entries in the Memento-54K.

A.6 MEMENTOBENCH EVALUATION SCORING

As described in the main paper, the Score metric in MementoBench is designed to assess the quality
of model responses within the temporal window used by TimeRecall. To ensure consistency and
interpretability, we use GPT-3.5-turbo-0125 as an expert judge with a structured prompt.

Scoring Prompt Used in MementoBench Evaluation

You are an expert evaluator responsible for assessing the Answer Accuracy of Al-generated responses based on a given user question
(if any), multiple AI outputs, and a reference answer.

Each evaluation is guided by a Task Name and its Key Evaluation Focus, which indicate the specific goal and assessment priorities
for this task. Please review the responses accordingly, with emphasis on the core evaluation points.

Note: Aspects not included in the core evaluation focus are considered supplementary. These are not required for the response to be
deemed correct, but their accurate inclusion may enhance the overall quality.
For tasks involving estimates (e.g., time, quantity), a certain degree of deviation is acceptable.

Task Name: {task-name}
Key Evaluation Focus: {task_focus}
Scoring Criteria (1-10):

* 1-2: Response is incorrect or contains major factual/logical errors.

¢ 3—4: Partially correct, with notable inaccuracies or omissions.

¢ 5-6: Mostly correct, but lacks completeness or task-specific focus.

* 7-8: Accurate, detailed, and clearly aligned with the task goals.

* 9-10: Fully correct, well-structured, and adds value beyond expectations.
Instructions:

» Assign a score (1-10) to each response.

« Choose the highest score as the Overall Score.

* Provide a concise explanation, referencing correctness and task alignment.
Output Format:

{"Overall Score": <score>, "Explanation": "<concise rationale>"}

Each scoring instance provides the task name, a user query (if available), multiple generated responses,
and a reference answer. The judge is guided by a task-specific evaluation focus and is instructed to
(1) assign a score between 1 and 10 to each response and (2) provide a concise explanation grounded
in task relevance and factual accuracy. The final score is taken as the maximum across all candidate
responses.
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This explanation-enhanced evaluation enables finer-grained judgment, especially in borderline cases,
and improves transparency for evaluation. The task-specific focuses are listed in Table. [9]

A.7 DECLARATION OF LLM USAGE

Large Language Models (LLMs) were not involved in the conception, design, or implementation of
the core methodology in this research. Their usage was limited to assisting with language polishing
and improving the clarity of writing. No original scientific contributions, technical innovations, or
non-standard components relied on LLMs.
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