
The Power of Extrapolation in Federated Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose and study several server-extrapolation strategies for enhancing the1

theoretical and empirical convergence properties of the popular federated learning2

optimizer FedProx [Li et al., 2020]. While it has long been known that some form3

of extrapolation can help in the practice of FL, only a handful of works provide any4

theoretical guarantees. The phenomenon seems elusive, and our current theoretical5

understanding remains severely incomplete. In our work, we focus on smooth6

convex or strongly convex problems in the interpolation regime. In particular,7

we propose Extrapolated FedProx (FedExProx), and study three extrapolation8

strategies: a constant strategy (depending on various smoothness parameters and9

the number of participating devices), and two smoothness-adaptive strategies;10

one based on the notion of gradient diversity (FedExProx-GraDS), and the other11

one based on the stochastic Polyak stepsize (FedExProx-StoPS). Our theory is12

corroborated with carefully constructed numerical experiments.13

1 Introduction14

Federated learning (FL) is a distributed training approach for machine learning models, where multiple15

clients collaborate under the guidance of a central server to optimize a loss function. [Konečný16

et al., 2016, McMahan et al., 2017]. This method allows clients to contribute to model training while17

keeping their data private, as it avoids the need for direct data sharing. Often, federated optimization18

is formulated as the minimization of a finite-sum objective function,19

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where each fi : Rd 7→ R is the empirical risk of model x associated with the i-th client. The federated20

averaging method (FedAvg) is among the most favored strategies for addressing federated learning21

problems, as proposed by McMahan et al. [2017], Mangasarian and Solodov [1993]. In FedAvg, the22

server initiates an iteration by selecting a subset of clients for participation in a given round. Each23

chosen client then proceeds with local training, employing gradient-based techniques like gradient24

descent (GD) or stochastic gradient descent (SGD) with random reshuffling, as discussed by Bubeck25

et al. [2015], Gower et al. [2019], Moulines and Bach [2011], Sadiev et al. [2022].26

Li et al. [2020] proposed replacing the local training of each client via SGD in FedAvg with the27

computation of a proximal term, resulting in the FedProx algorithm.28

xk+1 =
1

n

n∑
i=1

proxγfi (xk) , (2)

where γ > 0 is the step size, and the proximal operator is defined as29

proxγfi (x) := arg min
z∈Rd

{
fi (z) +

1

2γ
∥z − x∥2

}
.
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Contrary to gradient-based methods like GD and SGD, algorithms based on proximal operation, such30

as proximal point method (PPM) [Rockafellar, 1976, Parikh et al., 2014] and stochastic proximal31

point methods (SPPM) [Asi and Duchi, 2019, Bertsekas, 2011, Khaled and Jin, 2022, Patrascu and32

Necoara, 2018, Richtárik and Takác, 2020] benefit from stability against inaccuracies in learning rate33

specification [Ryu and Boyd, 2014]. Indeed, for GD and SGD, a step size that is excessively large can34

result in divergence of the algorithm, whereas a step size that is too small can significantly deteriorate35

the convergence rate of the algorithm. PPM was formally introduced and popularized by the seminal36

paper of Rockafellar [1976] to solve the variational inequality problems. In practice, the stochastic37

variant SPPM is more frequently used.38

It is known that the proximal operator applied to a proper, closed and convex function can be viewed39

as the projection to some level set of the same function depending on the value of γ. In particular, if40

we let each fi be the indicator function of a nonempty closed convex set Xi, then proxγfi (·) becomes41

the projection ΠXi(·) onto the set Xi. In this case, FedProx in (2) becomes the parallel projection42

method for convex feasibility problem [Censor et al., 2001, 2012, Combettes, 1997a, Necoara et al.,43

2019], if we additionally assume44

X :=

n⋂
i=1

Xi ̸= ∅.

A well known fact about the parallel projection method is that its empirical efficiency can often be45

improved by extrapolation [Combettes, 1997a, Necoara et al., 2019]. This involves moving further46

along the line that connects the last iterate xk and the average projection point, resulting in the47

iteration48

xk+1 = xk + αk

(
1

n

n∑
i=1

ΠXi
(xk)− xk

)
, (3)

where αk ≥ 1 defines extrapolation level. Despite the various heuristic rules proposed over the49

years for setting αk [Bauschke et al., 2006, Censor et al., 2001, Combettes, 1997b], which have50

demonstrated satisfactory practical performance, it was only recently that the theoretical foundation51

explaining the success of extrapolation techniques for solving convex feasibility problems was52

unveiled by Necoara et al. [2019], where the authors considered randomized version of (3) named53

Randomized Projection Method (RPM). The practical success of extrapolation has spurred numerous54

extensions of existing algorithms. Notably, Jhunjhunwala et al. [2023] combined FedAvg with55

extrapolation, resulting in FedExP, leveraging insights from an effective heuristic rule [Combettes,56

1997b] for setting αk as follows:57

αk =

∑n
i=1 ∥xk −ΠXi

(xk)∥2

∥
∑n

i=1 (xk −ΠXi(xk))∥
2 . (4)

However, the authors did not consider the case of a constant extrapolation parameter, nor did58

they disclose the relationship between the extrapolation parameter and the stepsize of SGD. The59

extrapolation parameter can be viewed as a server side stepsize in the context of federated learning,60

its effectiveness was discussed by Malinovsky et al. [2022].61

1.1 Contributions62

Our paper contributes in the following ways; for the notations used please refer to Appendix A.63

• Based on the insights gained from the convex feasibility problem, we extend FedProx to64

its extrapolated counterpart FedExProx for both convex and strongly1 convex interpolation65

problems (See Table 1). By optimally setting the constant extrapolation parameter, we obtain66

iteration complexity O
(

Lγ(1+γLmax)
ϵ

)
2 in the convex case and O

(
Lγ(1+γLmax)

µ log
(
1
ϵ

))
67

in the strongly convex case, when all the clients participate in the training (full participation).68

We reveal the dependence of the optimal extrapolation parameter on smoothness, indicating69

that simply averaging the iterates from local training on the server is suboptimal. Instead,70

1Strongly convex: f is µ-strongly convex.
2As we later see in Theorem 1, here Lmax = maxi∈[n] Li, where each Li is the smoothness of fi, Lγ is the

smoothness constant of Mγ = 1
n

∑n
i=1 M

γ
fi

.
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Table 1: General comparison of FedExP, RPM and FedExProx in terms of conditions and convergence.
Each entry indicates whether the method has the corresponding feature (✓) or not (✗). We use the
sign “—” where a feature is not applicable to the corresponding method.

Features FedExP RPMa FedExProx

Does not require interpolation regime ✓ ✗ ✗

Does not require convexityb ✓ ✗ ✗
Acceleration in the strongly convex settingc ✗ ✓ ✓

Does not require smoothnessd ✗ ✓ ✓
Allows for partial participation of clientse ✗ ✓ ✓
Works with constant extrapolation parameter ✗ ✓ ✓
Smoothness and partial participation influence extrapolation ✗ ✓ ✓

Semi-adaptivityf ✗ — ✓

a RPM refers to the randomized projection method of Necoara et al. [2019]. Our method includes it as a
special case, see Remark 12

b Convexity: local objective fi is convex, which is the indicator function of the convex set Xi in RPM.
c The strong convexity pertains to f , and for RPM, it indicates that the linear regularity condition is satisfied.
d Smoothness: fi is Li-smooth. Our algorithm also applies in the non-smooth case; see Appendix F.2.
e Jhunjhunwala et al. [2023] provides no convergence guarantee for client partial participation setting.
f The concept of “semi-adaptivity” is explained in Remark 9.

extrapolation should be applied to achieve faster convergence. Specifically, compared to71

FedProx with the same step size γ, our method is always at least 2+ 1
γLmax

+ γLmax times72

better in terms of iteration complexity, see Remark 5.73

• Our method, FedExProx, improves upon the worst-case iteration complexity O
(
Lmax

ϵ

)
of74

FedExP [Jhunjhunwala et al., 2023] to O
(

Lγ(1+γLmax)
ϵ

)
(See Table 2). The improvement75

could lead to acceleration up to a factor of n, see Remark 6. Furthermore, we extend76

FedExProx to client partial participation setting, showing the dependence of optimal extrap-77

olation parameter on τ which is the number of clients participating in the training and the78

benefits of a larger τ . In particular, we show that compared to the single client setting, with79

complexity O
(
Lmax

ϵ

)
, the full participation version enjoys a speed-up up to a factor of n,80

see Remark 7.81

• Our theory uncovers the relationship between the extrapolation parameter and the step size82

in typical gradient-type methods, leveraging the power of the Moreau envelope. We also83

recover RPM of Necoara et al. [2019] as a special case in our analysis (see Remark 12),84

and show that the heuristic outlined in (4), is in fact a step size based on gradient diversity85

[Horváth et al., 2022, Yin et al., 2018] for the Moreau envelopes of client functions.86

• Building on the insights from Horváth et al. [2022], we propose two adaptive rules for87

determining the extrapolation parameter: based on gradient diversity (FedExProx-GraDS),88

and the stochastic Polyak step size (FedExProx-StoPS) [Horváth et al., 2022, Loizou et al.,89

2021]. The proposed methods eliminate reliance on the unknown smoothness constant and90

exhibit “semi-adaptivity”, meaning the algorithm converges with any local step size γ and91

by selecting a sufficiently large γ, we ensure that we lose at most a factor of 2 in iteration92

complexity.93

• We validate our theory with numerical experiments. Numerical evidence suggests that94

FedExProx achieves a 2× or higher speed-up in terms of iteration complexity compared to95

FedProx and improved performance compared to FedExP. The framework and the plots96

are included in the Appendix.97

1.2 Related work98

Stochastic gradient descent. SGD [Robbins and Monro, 1951, Ghadimi and Lan, 2013, Gower99

et al., 2019, Gorbunov et al., 2020] stands as a cornerstone algorithm utilized across the fields of100

machine learning. In its simplest form, the algorithm is written as xk+1 = xk−η ·g(xk), where η > 0101

is a scalar step size, g(xk) represents a stochastic estimator of the true gradient ∇f(xk). We recover102
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Table 2: Comparison of convergence of FedExP, FedExProx, FedExProx-GraDS and
FedExProx-StoPS. The local step size of FedExP is set to be the largest possible value 1/6tL
in the full batch case, where t is the number of local iterations of GD performed. We assume the
assumptions of Theorem 1 also hold here. The notations are introduced in Theorem 1 and Theorem 2.
The convergence for our methods are described for arbitrary γ > 0. We use K to denote the total
number of iterations. For FedExProx, optimal constant extrapolation is used. The O (·) notation is
hidden for all complexities in this table.

Full Participation

Method General Case Best Case Worst Case

FedExP 6Lmax/∑K−1
k=0

αk,P
a 6Lmax/∑K−1

k=0
αk,P

6Lmax/K

FedExProx (New) Lγ(1+γLmax)/K b Lmax/nK Lmax/K

FedExProx-GraDS (New) (1+γLmax)/γ·∑K−1
k=0

αk,G
c (1+γLmax)/γ·∑K−1

k=0
αk,G

(1+γLmax)/γK

FedExProx-StoPS (New) (1+γLmax)/γ·∑K−1
k=0

αk,S
d (1+γLmax)/γ·∑K−1

k=0
αk,S

(1+γLmax)/γK

a The αk,P here is determined according to the theory of Jhunjhunwala et al. [2023].
b We have Lγ (1 + γLmax) ≤ Lmax, see Remark 6.
c We leave out a factor of 1+γLmax

2+γLmax
which is a constant between ( 1

2
, 1).

d See Remark 11 for a lower bound of αk,S , using which we can rewrite the rate as Lγ(1+γLmax)

K
.

GD when g(xk) = ∇f(xk). The evolution of SGD has been marked by significant advancements103

since its introduction by Robbins and Monro [1951], leading to various adaptations like stochastic104

batch gradient descent [Nemirovski et al., 2009] and compressed gradient descent [Alistarh et al.,105

2017, Khirirat et al., 2018]. Gower et al. [2019] presented a framework for analyzing SGD with106

arbitrary sampling strategies in the convex setting based on expected smoothness, which was later107

extended by Gorbunov et al. [2020] to the case of local SGD. While many methods have been crafted108

to leverage the stochastic nature of g(xk), substantial research efforts are also dedicated to finding a109

better stepsize. An illustration of this is the coordinate-wise adaptive step size Adagrad [Duchi et al.,110

2011]. Another approach involves employing matrix step size, as demonstrated by Safaryan et al.111

[2021], Li et al. [2024]. Our analysis builds on the theory of SGD mainly adapted from Gower et al.112

[2019] with additional consideration on the upper bound of the step size.113

Stochastic proximal point method. PPM was first introduced by Rockafellar [1976] to address the114

problems of variational inequalities at its inception. Its transition to stochastic case, motivated by the115

need to efficiently solve large scale optimization problems, results in SPPM. It is often assumed that116

the proximity operator can be computed efficiently for the algorithm to be practical. Over the years,117

SPPM has been the subject of extensive research, as documented by Bertsekas [2011], Bianchi [2016],118

Patrascu and Necoara [2018]. Unlike traditional gradient-based methods, SPPM is more robust to119

inaccuracies in learning rate specifications, as demonstrated by Ryu and Boyd [2014]. Asi and Duchi120

[2019] studied APROX, which includes SPPM as the special case using the full proximal model; APROX121

was later extended into minibatch case by Asi et al. [2020]. However, this extension was based on122

model averaging rather than iterate averaging. The convergence rate of SPPM has been analyzed in123

various contexts by Khaled and Jin [2022], Ryu and Boyd [2014], Yuan and Li [2022], revealing that124

its performance does not surpass that of SGD in non-convex regimes.125

Projection onto convex sets. The projection method originated from efforts to solve systems126

of linear equations or linear inequalities [Kaczmarz, 1937, Von Neumann, 1949, Motzkin and127

Schoenberg, 1954]. Subsequently, it was generalized to address the convex feasibility problem128

[Combettes, 1997b]. Typically, the method involves projecting onto a set Xi, where i is determined129

through sampling or other strategies. A particularly relevant method to our paper is the parallel130

projection method, in which individual projections onto the sets are performed in parallel, and their131

results are averaged in order to produce the next iterate. It is well-established experimentally that132

the parallel projection method can be accelerated through extrapolation, with numerous successful133

heuristics having been proposed to adaptively set the extrapolation parameter [Bauschke et al., 2006,134
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Pierra, 1984]. However, only recently a theory was proposed by Necoara et al. [2019] to explain this135

phenomenon. Necoara et al. [2019] introduced stochastic reformulations of the convex feasibility136

problem and revealed how the optimal extrapolation parameter depends on the smoothness of the137

setting and the size of the minibatch. A better result under a linear regularity condition, which is138

connected to strong convexity, was also obtained. However, the explanation provided by Necoara139

et al. [2019] was not satisfactory, as it failed to clarify why adaptive rules based on gradient diversity140

are effective.141

Moreau envelope. The concept of the Moreau envelope, also known as Moreau-Yosida regulariza-142

tion, was first introduced by Moreau [1965] as a mathematical tool for handling non-smooth functions.143

A particularly relevant property of the Moreau envelope is that executing proximal minimization144

algorithms on the original objective is equivalent to applying gradient methods to its Moreau envelope145

[Ryu and Boyd, 2014]. Based on this observation, Davis and Drusvyatskiy [2019] conducted an anal-146

ysis of several methods, including SPPM for weakly convex and Lipschitz functions. The properties of147

the Moreau envelope and its applications have been thoroughly investigated in many works including148

Jourani et al. [2014], Planiden and Wang [2016, 2019]. Beyond its role in proximal minimization149

algorithms, the Moreau envelope has been utilized in the contexts of personalized federated learning150

[T Dinh et al., 2020] and meta-learning [Mishchenko et al., 2023].151

Adaptive step size. One of the most crucial hyperparameters in training machine learning models152

with gradient-based methods is the step size. For GD and SGD, determining the step size often depends153

on the smoothness parameter, which is typically unknown, posing challenges in practical step size154

selection. There has been a growing interest in adaptive step sizes, leading to the development of155

numerous adaptive methods that enable real-time computation of the step size. Examples include156

Adagrad [Duchi et al., 2011], RMSProp [Hinton et al.], and ADAM [Kingma and Ba, 2015]. Recently,157

several studies have attempted to extend the Polyak step size beyond deterministic settings, leading to158

the development of the stochastic Polyak step size [Richtárik and Takác, 2020, Horváth et al., 2022,159

Loizou et al., 2021, Orvieto et al., 2022]. Gradient diversity, first introduced by Yin et al. [2018], was160

subsequently analyzed theoretically by Horváth et al. [2022].161

2 Preliminaries162

We now introduce the several definitions and assumptions that are used throughout the paper.163

Definition 1 (Proximity operator). The proximity operator of an extended-real-valued function164

ϕ : Rd 7→ R ∪ {+∞} with step size γ > 0 is defined as165

proxγϕ (x) := arg min
z∈Rd

{
ϕ(z) +

1

2γ
∥z − x∥2

}
.

It is known that for a proper, closed and convex function ϕ, the minimizer of ϕ(z) + 1
2γ ∥z − x∥2166

exists and is unique.167

Definition 2 (Moreau envelope). The Moreau envelope of an extended-real-valued function ϕ : Rd 7→168

R ∪ {+∞} with step size γ > 0 is defined as169

Mγ
ϕ (x) := min

z∈Rd

{
ϕ(z) +

1

2γ
∥z − x∥2

}
.

The following assumptions are used in our analysis. We use the notation [n] for the set {1, . . . , n}.170

Assumption 1 (Differentiability). The function fi in (1) is differentiable for all i ∈ [n].171

Assumption 2 (Interpolation regime). There exists x⋆ ∈ Rd such that ∇fi(x⋆) = 0 for all i ∈ [n].172

Note that Assumption 2 indicates that each fi and f are lower bounded. In this paper, we focus on173

cases where the interpolation regime holds. This assumption often holds in modern deep learning174

which are overparameterized where the number of parameters greatly exceeds the number of data175

points, as justified by Arora et al. [2019], Montanari and Zhong [2022]. Our motivation for this176

assumption partly arises from the convex feasibility problem [Combettes, 1997a, Necoara et al.,177

2019], wherein the intersection X is presumed nonempty. This is equivalent to assuming that the178

interpolation regime holds when fi is the indicator function of the nonempty closed convex set Xi.179

Further motivations derived from the proof for this assumption will be discussed later.180
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Algorithm 1 Extrapolated SPPM (FedExProx) with partial client participation
1: Parameters: extrapolation parameter αk > 0, step size for the proximity operator γ > 0, starting

point x0 ∈ Rd, number of clients n, total number of iterations K, number of clients participate
in the training τ , for simplicity, we use τ -nice sampling as an example

2: for k = 0, 1, 2 . . .K − 1 do
3: The server samples Sk ⊆ {1, 2, . . . , n} uniformly from all subsets of cardinality τ
4: The server computes

xk+1 = xk + αk

(
1

τ

∑
i∈Sk

proxγfi (xk)− xk

)
. (7)

5: end for

Assumption 3 (Convexity). The function fi : Rd 7→ R is convex for all i ∈ [n]. This means that for181

each fi,182

0 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ , ∀x, y ∈ Rd. (5)

Assumption 4 (Smoothness). Function fi : Rd 7→ R is Li-smooth, Li > 0 for all i ∈ [n]. This183

means that for each fi,184

fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ ≤ Li

2
∥x− y∥2 , ∀x, y ∈ Rd. (6)

We will use Lmax to denote maxi∈[n] Li.185

It is important to note that the smoothness assumption here is not necessary to obtain a convergence186

result, see Appendix F.2 for the detail. We introduce this assumption to highlight how the optimal187

extrapolation parameter depends on smoothness if it is present. The following strong convexity188

assumption is introduced that, if adopted, enables us to achieve better results.189

Assumption 5 (Strong convexity). The function f is µ-strongly convex, µ > 0. That is190

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2 , ∀x, y ∈ Rd.

We first present our algorithm FedExProx as Algorithm 1. In the subsequent sections, we first present191

the theory in the stochastic setting for FedExProx with a fixed extrapolation parameter in Section 3.192

Then we proceed to adaptive versions of our algorithm which eliminates the dependence on the193

unknown smoothness constant in Section 4.194

3 Constant extrapolation195

In order to demonstrate the convergence result of our algorithm in the stochastic setting, we use196

τ -nice sampling as the way of selecting clients for partial participation. This refers to that in each197

iteration, the server samples a set Sk ⊆ {1, 2, . . . , n} uniformly at random from all subsets of size τ .198

We want to emphasize that the sampling strategy here is merely an example, it is possible to use other199

client sampling strategies.200

Theorem 1. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-201

tion 3 (Convexity) and Assumption 4 (Smoothness) hold. If we use a fixed extrapolation parameter202

αk = α ∈
(
0, 2

γLγ,τ

)
and any step size 0 < γ < +∞, then the average iterate of Algorithm 1203

satisfies204

E [f(x̄K)]− inf f ≤ C (γ, τ, α) · ∥x0 − x⋆∥2

K
,

where K is the number of iteration, x̄K is sampled uniformly at random from the first K iterates205

{x0, x1, . . . , xK−1}, C (γ, τ, α) is defined as206

C (γ, τ, α) :=
1 + γLmax

αγ (2− αγLγ,τ )
and Lγ,τ :=

n− τ

τ(n− 1)

Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
Lγ ,
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where Lmax = maxi Li, Lγ is the smoothness constant of Mγ (x) := 1
n

∑n
i=1 M

γ
fi
(x). If we fix γ207

and τ the optimal constant extrapolation parameter is given by αγ,τ := 1
γLγ,τ

> 1, which results in208

the following convergence guarantee:209

E [f(x̄K)]− inf f ≤ C(γ, τ, αγ,τ ) ·
∥x0 − x⋆∥2

K
= Lγ,τ (1 + γLmax) ·

∥x0 − x⋆∥2

K
.

The proof of this theorem relies on the reformulation of the update rule in (7), using the identity210

∇Mγ
fi
(x) = 1

γ

(
x− proxγfi (x)

)
given in Lemma 2, which holds for any x ∈ Rd, into the following211

form:212

xk+1 = xk − αk · γ · 1
n

∑
i∈Sk

∇Mγ
fi
(xk) . (8)

We can then apply our modified theory for SGD given in Theorem 3, which is adapted from Gower et al.213

[2019], to obtain function value suboptimality in terms of Mγ (x). The results are then translated214

back to function value suboptimality in terms of f . Note that (8) unveils the connection between the215

step size of gradient type methods and extrapolation parameter in our case.216

Remark 1. Theorem 1 provides convergence guarantee for Algorithm 1 in the convex case. If in217

addition, we assume Assumption 5 (Strong convexity) holds, the rate can be improved and we obtain218

linear convergence. See Corollary 1 for the details.219

Remark 2. Theorem 1 indicates convergence for any 0 < γ < +∞. Indeed, as it is proved by220

Lemma 7, we have C (γ, τ, αγ,τ ) = Lγ,τ (1 + γLmax) ≤ Lmax holds for any 0 < γ < +∞. In221

cases where there exists at least one Li < Lmax, we have C (γ, τ, αγ,τ ) < Lmax. This shows that222

the algorithm is successfully managing data heterogeneity223

Remark 3. One may question the necessity of the interpolation regime assumption. This assumption224

is crucial to our analysis. Besides allowing us to revisit the convex feasibility problem setting, it also225

guarantees that Mγ (x) has the same set of minimizers as f(x) as illustrated by Lemma 8. It also226

allows us to improve the upper bound on the step size by a factor of 2 in the SGD theory, which is227

demonstrated in Theorem 3 in the Appendix.228

Remark 4. From the reformulation presented in (8), we see the best extrapolation parameter is229

obtained when αkγ is the best step size for SGD running on global objective Mγ (x). Since the best230

step size is affected by the smoothness and the minibatch size, so is the best extrapolation parameter.231

We can also compare our algorithm with FedProx in the convex overparameterized regime.232

Remark 5. Our algorithm includes FedProx as a special case when α = 1. To recover its result,233

we simply plug in α = 1, the resulting condition number is C(γ, τ, 1) = 1+γLmax

γ(2−γLγ,τ )
. Compared to234

FedProx, Algorithm 1 with the same γ > 0 demonstrates superior performance, with the acceleration235

factor being quantified by236

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 2 +

1

γLmax
+ γLmax ≥ 4.

See Lemma 14 for the proof. This suggests that the approach of the server averaging all iterates237

following local computation is suboptimal.238

In the following paragraphs, we study some special cases,239

Full participation case For the full participation case (τ = n), using definition from Theorem 1240

αγ,n =
1

γLγ
> 1, Lγ,n = Lγ , C (γ, n, αγ,n) = Lγ (1 + γLmax) ≤ Lmax. (9)

In this case, we can compare our method with FedExP in the convex overparameterized setting.241

Remark 6. Assume the conditions in Theorem 1 hold, the worst case iteration complexity of242

FedExP is given by O
(
Lmax

ϵ

)
, while for Algorithm 1, it is O

(
C(γ,n,αγ,n)

ϵ

)
. As suggested by243

Lemma 7, Algorithm 1 has a better iteration complexity (C (γ, n, αγ,n) < Lmax) whenever there244

exists Li ̸= Lmax for some i ∈ [n], and the acceleration could reach up to a factor of n as suggested245

by Example 1. In general, the speed-up in the worst case is quantified by246

Lmax

1 + γLmax
·

(
1

n

n∑
i=1

Li

1 + γLi

)−1

≤ Lmax

C (γ, n, αγ,n)
≤ n · Lmax

1 + γLmax
·

(
1

n

n∑
i=1

Li

1 + γLi

)−1

.
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Single client case For the single client case (τ = 1), using definition from Theorem 1247

αγ,1 = 1 +
1

γLmax
> 1, Lγ,1 =

Lmax

1 + γLmax
, C (γ, 1, αγ,1) = Lmax.

248

Remark 7. Compared with full and partial client participation, the following relations hold for any249

τ ∈ [n],250

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) and αγ,1 ≤ αγ,τ ≤ αγ,n, ∀τ ∈ [n].

Since the iteration complexity of FedExProx is given by O
(

C(γ,τ,αγ,τ )
ϵ

)
, the above inequalities tell251

us a larger client minibatch size τ leads to a larger extrapolation and a better iteration complexity.252

Specifically, Lemma 7 suggests the improvement over the single client case could be as much as a253

factor of n (C (γ, n, αγ,n) =
1
nC (γ, 1, αγ,1)) as suggested by Example 1.254

4 Adaptive extrapolation255

Observe that in Theorem 1, in order to determine the optimal extrapolation, we require the knowledge256

of Lγ,τ , which is typically unknown. Although theoretically it suggests that simply averaging257

the iterates may result in suboptimal performance, in practice, this implication is less significant.258

To address this issue, we introduced two variants of FedExProx, based on gradient diversity and259

stochastic Polyak step size, given their relation to the extrapolation parameter in our cases.260

Theorem 2. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-261

tion 3 (Convexity) and Assumption 4 (Smoothness) hold.262

(i) (FedExProx-GraDS): If we are using αk = αk,G, where263

αk,G :=
1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 ≥ 1, (10)

then the iterates of Algorithm 1 with τ = n satisfy264

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

,

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities265

pk = αk,G/
∑K−1

k=0 αk,G.266

(ii) (FedExProx-StoPS): If we are using αk = αk,S , where,267

αk,S :=

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 ≥ 1

2γLγ
, (11)

then the iterates of Algorithm 1 with τ = n satisfy268

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

, (12)

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities269

pk = αk,S/
∑K−1

k=0 αk,S .270

Theorem 2 describes the convergence in the full participation setting. However, we can also extend it271

to the stochastic setting by implementing a stochastic version of these adaptive step size rules for272

gradient-based methods [Horváth et al., 2022, Loizou et al., 2021]. See Theorem 5 in the Appendix273

for the details.274

Remark 8. In fact, the adaptive rule based on gradient diversity can be improved by using Lmax

1+γLmax
275

instead of 1
γ as the maximum of local smoothness constant of Moreau envelops, resulting in the276

extrapolation,277

αk = α′
k,G :=

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 . (13)
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Figure 1: Comparison of FedExProx and FedProx in terms of iteration complexity in the full
participation setting. The notation γ here denotes the local step size of the proximity operator and
αγ,n is the corresponding optimal extrapolation parameter computed in (9) in the full participation
case. In all cases, our proposed algorithm outperforms FedProx, suggesting that the practice of
simply averaging the iterates is suboptimal.

One can obtain a slightly better convergence guarantee than the FedExProx-GraDS case in Theo-278

rem 2, see Corollary 2 in the Appendix. However, the requires the knowledge of Lmax in order to279

compute 1+γLmax

γLmax
.280

Remark 9. Note that, compared to classical gradient-based methods, FedExProx-GraDS benefits281

from “semi-adaptivity”. This refers to the fact that the algorithm converges for any choice of γ > 0.282

Although a smaller γ hinders convergence, setting it to at least 1
Lmax

limits the worsening of the283

convergence to a factor of 2.284

Remark 10. Compared to FedExProx with the optimal constant extrapolation parameter, we gain285

“semi-adaptivity” here by using the gradient diversity based extrapolation. However, this results in286

losing the favorable dependence of convergence on Lγ and instead establishes a dependence on287

Lmax.288

Remark 11. For FedExProx-StoPS, as it is suggested by Lemma 20, the convergence depends on289

the favorable smoothness constant Lγ , rather than on Lmax. However, this comes at the price of290

having to know the minimum of each individual Moreau envelope.291

For a detailed discussion of the adaptive variants of FedExProx, we refer the readers to Appendix F.5.292

Since one of our starting points is the RPM by Necoara et al. [2019] to solve the convex feasibility293

problem with non-smooth local objectives, we have also adapted our method to non-smooth cases,294

as detailed in Theorem 4 in the Appendix. We also provided a discussion of our method in the295

non-interpolated setting and in the non-convex setting in Appendix F. Finally, we support our findings296

with experiments, see Figure 1 for a simple experiment confirming that FedExProx indeed has a297

better iteration complexity than FedProx. For more details on the experiments, we refer the readers298

to Appendix I in the Appendix.299

5 Conclusion300

5.1 Limitations301

Our analysis of FedExProx serves as an initial step in adding extrapolation to FedProx, which302

currently relies on the suboptimal practice of the server merely averaging the iterates. While we303

discuss the behavior of our algorithm in non-interpolated and non-convex scenarios, our analysis only304

validates the effectiveness of extrapolation under the interpolation regime assumption.305

5.2 Future Work306

As we have just mentioned, extending our method and analysis beyond interpolation and convex307

regime is intriguing. In this case, new techniques may be needed for variance reduction. It is308

also interesting to investigate whether extrapolation can be applied together with client-specific309

personalization.310
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A Notations489

Throughout the paper, we use the notation ∥·∥ to denote the standard Euclidean norm defined490

on Rd and ⟨·, ·⟩ to denote the standard Euclidean inner product. Given a differentiable function491

f : Rd 7→ R, its gradient is denoted as ∇f(x). For a convex function f : Rd 7→ R, we use ∂f(x)492

to denote its subdifferential at x. We use the notation Df (x, y) to denote the Bregman divergence493

associated with a function f : Rd 7→ R between x and y. The notation inf f is used to denote the494

minimum of a function f : Rd 7→ R. We use proxγf (x) to denote the proximity operator of function495

f : Rd 7→ R with γ > 0 at x ∈ Rd, and Mγ
f (x) to denote the corresponding Moreau Envelope. The496

notation □ is used for the infimal convolution of two proper functions. We denote the average of the497

Moreau envelope of each local objective fi by the notation Mγ : Rd 7→ R. Specifically, we define498

Mγ (x) = 1
n

∑n
i=1 M

γ
f (x). Note that Mγ (x) has an implicit dependence on γ, its smoothness499

constant is denoted by Lγ . We say an extended real-valued function f : Rd 7→ R ∪ {+∞} is500

proper if there exists x ∈ Rd such that f(x) < +∞. We say an extended real-valued function501

f : Rd 7→ R ∪ {+∞} is closed if its epigraph is a closed set. The following Table 3 summarizes the502

commonly used notations and quantities appeared in this paper.503

B Basic Facts504

Fact 1 (First prox theorem). [Beck, 2017, Theorem 6.3] Let f : Rd 7→ R be a proper, closed and505

convex function. Then proxf (x) is a singleton for any x ∈ Rd.506

Fact 2 (Second prox theorem). [Beck, 2017, Theorem 6.39] Let f : Rd 7→ R ∪ {+∞} be a proper,507

closed and convex function. Then for any x, u ∈ Rd, the following three claims are equivalent:508

(i) u = proxf (x).509

(ii) x− u ∈ ∂f(u).510

(iii) ⟨x− u, y − u⟩ ≤ f(y)− f(u) for any y ∈ Rd.511

Fact 3 (Bregman divergence). The Bregman divergence associated with a function f between512

x, y ∈ Rd is defined as,513

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ . (14)

If f is convex, then for any x, y ∈ Rd514

Df (x, y) ≥ 0. (15)
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Table 3: Summary of frequently used notations and quantities in this paper.

Notations Explanation

n The total number of clients.
d The dimension of the model.
x The model which belongs to Rd.
K The total number of iterations.
xk The model at k-th iteration.
αk The extrapolation parameter at iteration k.
fi(x) Each local objective function.
γ The step size in the proximity operator.
f(x) The global objective f .
proxγfi

(x) The proximity operator associated with fi and γ > 0 at point x ∈ Rd.
Mγ

fi
(x) The Moreau envelope associated with fi and γ > 0 at point x ∈ Rd.

Mγ (x) The average of Mγ
fi
(x).

Li The smoothness constant of fi.
L The smoothness constant of f .
µ The strong convexity constant of f .
Li/(1+γLi) The smoothness constant of Mγ

fi
Lmax The maximum of all Li, for i ∈ [n].
Lmax/(1+γLmax) The maximum of the smoothness constant of each Mγ

fi
for i ∈ [n].

Lγ The smoothness constant of Mγ .
Lγ,τ The interpolation between the Lγ and Lmax/(1+γLmax) induced by τ -nice sampling.
αγ,τ The optimal extrapolation parameter of FedExProx under τ -nice sampling.
C (γ, τ, α) The convergence rate of FedExProx with τ -nice sampling in the convex case.
αk,G The gradient diversity extrapolation in the k-th iteration defined in Theorem 2.
αk,S The stochastic Polyak extrapolation in the k-th iteration defined in Theorem 2.
α′
k,G The improved gradient diversity based extrapolation used in Corollary 2.

Df (x, y) The Bregman divergence associated with f between two points x, y ∈ Rd.
Sk The set of indices server sampled in the k-th iteration.
ατ,k,G The gradient diversity based extrapolation in the k-th iteration for FedExProx-GraDS-PP.
ατ,k,S The stochastic Polyak based extrapolation in the k-th iteration for FedExProx-StoPS-PP.

If f is convex, L-smooth and differentiable, the following inequalities hold for any x, y ∈ Rd,515

1

L
∥∇f(x)−∇f(y)∥2 ≤ Df (x, y) +Df (y, x) ≤ L ∥x− y∥2 ,

1

L
∥∇f(x)−∇f(y)∥2 ≤ 2Df (x, y) ≤ L ∥x− y∥2 . (16)

Fact 4 (Increasing function). Let f(x) = x
1+γx , where γ > 0. Then f(x) is monotone increasing516

when x > 0.517

C Properties of Moreau envelope518

In this section, we explore the properties of the Moreau envelope of individual functions fi, and the519

global objective Mγ = 1
n

∑n
i=1 M

γ
fi

. Before that, we present the definition of infimal convolution520

Definition 3 (Infimal convolution). The infimal convolution of two proper functions f, g : Rd 7→521

R ∪ {+∞} is defined via the following formula522

(f□g) (x) = min
z∈Rd

{f(z) + g(x− z)} .

One key observation is that Mγ
f can be viewed as the infimal convolution of the proper, closed and523

convex function f and the real-valued convex function 1
2γ ∥·∥2. This observation enables us to infer524

the convexity and smoothness of the Moreau envelope from the properties of the original function.525

First, we present two lemmas about basic properties of Moreau envelope.526
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Lemma 1 (Real-valuedness). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex function.527

Then its Moreau envelope Mγ
f for any γ > 0 is a real-valued function. In particular, the following528

identity holds for x ∈ Rd according to the definition of Moreau envelope,529

Mγ
f (x) = f

(
proxγf (x)

)
+

1

2γ

∥∥x− proxγf (x)
∥∥2 .

Lemma 2 (Differentiability of Moreau envelope). [Beck, 2017, Theorem 6.60] Let f : Rd 7→530

R ∪ {+∞} be a proper, closed and convex function. Then its Moreau envelope Mγ
f for any γ > 0 is531

1
γ -smooth, and for any x ∈ Rd, we have532

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.

We then focus on the relation between individual fi and Mγ
fi

. The following lemma suggests that the533

convexity of individual fi guarantees the convexity of Mγ
fi

.534

Lemma 3 (Convexity of Moreau envelope). [Beck, 2017, Theorem 6.55] Let f : Rd 7→ R ∪ {+∞}535

be a proper and convex function. Then Mγ
f is a convex function.536

It is also true that the smoothness of individual fi indicates the smoothness of Mγ
fi

.537

Lemma 4 (Smoothness of Moreau envelope). Let f : Rd 7→ R be a convex and L-smooth function.538

Then Mγ
f is L

1+γL -smooth.539

One notable fact is that fi and Mγ
fi

have the same set of minimizers.540

Lemma 5 (Minimizer equivalence). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex541

function. Then for any γ > 0, f and Mγ
f has the same set of minimizers.542

In addition, Mγ
f is a global lower bound of f .543

Lemma 6 (Individual lower bound). Let f : Rd 7→ R ∪ {+∞} be a proper, closed and convex544

function. Then the Moreau envelope Mγ
f satisfies Mγ

f (x) ≤ f(x) for all x ∈ Rd.545

Next, we focus on the global objective Mγ (x). The following lemma bounds its smoothness constant546

from both above and below.547

Lemma 7 (Global convexity and smoothness). Let each fi be proper, closed convex and Li-smooth.548

Then M is convex and Lγ-smooth with549

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

As a result of the above inequalities, we have the following inequality on the condition number defined550

in Theorem 1 which holds for any τ ∈ [n],551

Lγ (1 + γLmax) = C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) = Lmax.

When there exists at least one Li < Lmax, we have C (γ, n, αγ,n) < C (γ, τ, αγ,τ ) < Lmax =552

C (γ, 1, αγ,1). Even Li = Lmax holds for all i ∈ [n], there are cases (See Example 1 in the proof.)553

that C (γ, n, αγ,n) =
1
nC (γ, 1, αγ,1) =

1
nLmax.554

A key observation in this case is the generalization of Lemma 5 into the finite-sum setting under the555

interpolation regime.556

Lemma 8 (Minimizer equivalence). If we let every fi : Rd 7→ R ∪ {+∞} be proper, closed and557

convex, then f(x) = 1
n

∑n
i=1 fi(x) has the same set of minimizers and minimum as558

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) ,

if we are in the interpolation regime and 0 < γ < ∞.559
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The following lemma generalizes Lemma 6 into the finite-sum setting.560

Lemma 9 (Global lower bound). Let each fi : Rd 7→ R∪{+∞} be proper, closed and convex. Then561

the following inequality holds for any x ∈ Rd and γ > 0,562

Mγ (x) ≤ Mγ
f (x) ≤ f(x).

In addition, if we assume we are in the interpolation regime, then Mγ , Mγ
f and f have the same set563

of minimizers, for any x⋆ in this set of minimizers, the following identity holds,564

Mγ (x⋆) = Mγ
f (x⋆) = f(x⋆).

Besides the global lower bound provided above, there is also a relation between the function value565

suboptimality of Mγ and f .566

Lemma 10 (Suboptimality bound). Suppose Assumption 1 (Differentiability), 2 (Interpolation567

Regime), 3 (Convexity) and 4 (Smoothness) hold, for any minimizer x⋆ of Mγ (x), all x ∈ Rd, the568

following inequality holds for each client objective,569

Mγ
fi
(x)−Mγ

fi
(x⋆) ≥

1

1 + γLi
(fi(x)− fi(x⋆)) . (17)

Furthermore, this suggests570

Mγ (x)−Mγ (x⋆) ≥
1

1 + γLmax
(fi(x)− fi(x⋆)) . (18)

A direct consequence of the above function suboptimality bound is the star strong convexity of Mγ571

from the strong convexity of f .572

Lemma 11. (Star strong convexity) Assume Assumption 1 (Differentiability), Assumption 2 (Interpo-573

lation Regime), Assumption 3 (Convexity), Assumption 4 (Smoothness) and Assumption 5 (Strong574

convexity) hold, then the convex function Mγ (x) satisfies the following inequality,575

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ,

for any x ∈ Rd and a minimizer x⋆ of Mγ (x).576

The star strong convexity property of Mγ allows us to improve the sublinear convergence in the577

convex regime into linear convergence.578

D Technical lemmas579

Lemma 12. Let f : Rd 7→ R be a proper, closed and convex function. Then x is a minimizer of f if580

and only if x = proxγf (x).581

Lemma 13. Assume we are working with the finite-sum problem f = 1
n

∑n
i=1 fi, where each fi is582

convex and Li-smooth, f is convex and L-smooth. Then the smoothness of L satisfies583

1

n2

n∑
i=1

Li ≤ L ≤ 1

n

n∑
i=1

Li,

where both bounds are attainable.584

Lemma 14. Assume that all the conditions mentioned in Theorem 1 hold, then the condition number585

C(γ, τ, 1) of FedProx and the condition number C (γ, τ, αγ,τ ) of the optimal constant extrapolation586

parameter α⋆ = 1
γLγ,τ

satisfy the following inequality,587

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 2 +

1

γLmax
+ γLmax ≥ 4 ∀τ ∈ [n].

Lemma 15. Assume that all the conditions mentioned in Theorem 1 hold, then the following588

inequalities hold,589

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) , ∀τ ∈ [n],

and590

αγ,1 ≥ αγ,τ ≥ αγ,n, ∀τ ∈ [n].
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E Theory of SGD591

In order to prove our main theorem, we partly rely on the theory of SGD. The following theorem on592

the convergence of SGD with τ -nice sampling is adapted from Gower et al. [2019]. We introduce593

modifications to the proof technique and tailor the theorem specifically to the interpolation regime. In594

this context, the upper bound on the step size is increased by a factor of 2. We first formulate the595

algorithm as follows for completeness.596

Algorithm 2 SGD with τ -nice sampling
1: Parameters: learning rate η > 0, starting point x0 ∈ Rd, minibatch size τ ∈ {1, 2, . . . , n}
2: for k = 0, 1, 2, . . . do
3: The server samples Sk ⊆ {1, 2, . . . , n} uniformly from all subsets of cardinality τ
4: The server performs one gradient step

xk+1 = xk − η · 1
τ

∑
ξi∈Sk

∇fξi(xk).

5: end for

Theorem 3. Assume Assumption 1 (Differentiability), 2 (Interpolation regime), 3 (Convexity), 4597

(Smoothness) hold. Additionally, assume f is L-smooth where L ≤ 1
n

∑n
i=1 Li.3 If we are running598

SGD with τ -nice sampling using step size η that satisfies 0 < η < 2
Aτ

, where599

Aτ :=
n− τ

τ(n− 1)
Lmax +

n(τ − 1)

τ(n− 1)
L, and Lmax := max

i
Li,

then the iterates of Algorithm 2 satisfy600

E [f(x̄K)]− inf f ≤ 1

η(2− ηAτ )
· ∥x0 − x⋆∥2

K
,

where K is the total number of iterations, x̄K is chosen uniformly at random from the first K iterates601

{x0, x1, . . . , xK−1}. If, additionally, we assume the following property (which we will refer to as602

“star strong convexity”) holds, then the iterates of Algorithm 2 satisfy603

E
[
∥xK − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)K
∥x0 − x⋆∥2 .

F Additional analysis on FedExProx604

In this section, we provide some additional details on the analysis of FedExProx and its adaptive605

variants.606

F.1 FedExProx in the strongly convex case607

The following corollary summarizes the convergence guarantee in the strongly convex case.608

Corollary 1. Suppose the assumptions in Theorem 1 hold, and assume in addition that Assumption 5609

(Strong Convexity) holds, then we achieve linear convergence for the final iterate of Algorithm 1,610

which satisfies611

E
[
∥xK − x⋆∥2

]
≤
(
1− αγ(2− αγLγ,τ ) ·

µ

2

)K
∥x0 − x⋆∥2 ,

where the definition of Lγ,τ is given in Theorem 1. Fixing the choice of γ and τ , the optimal612

extrapolation parameter that minimizes the convergence rate is given by αγ,τ = 1
γLγ,τ

> 1, which613

results in the following convergence in the strongly convex case:614

E
[
∥xK − x⋆∥2

]
≤
(
1− µ

2Lγ,τ

)K

∥x0 − x⋆∥2 .

As one can observe, by additionally assuming µ strong convexity of the original function f , we615

improve the sublinear convergence in the convex case into linear convergence.616

3This is justified by Lemma 13.
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F.2 FedExProx in the non-smooth case617

Our analysis also adapts to the non-smooth cases. This is based on the observation that even if we only618

assume Assumption 1 (differentiability), Assumption 2 (Interpolation Regime) and Assumption 3619

(Convexity) hold and do not have additional assumptions on smoothness, still each Mγ
fi

is 1
γ -smooth620

because of Lemma 2. Thus, the theory of SGD in the convex smooth case still applies. However, there621

are some differences from the smooth case. For the sake of simplicity, we will mainly focus on the622

convex non-smooth case with a constant extrapolation parameter, the results in the strongly convex623

regime and with adaptive extrapolation can be obtained similarly as in the proof of Theorem 1 and624

Theorem 2.625

Theorem 4. Assume Assumption 1 (Differentiability), 2 (Interpolation Regime) and 3 (Convexity)626

hold. If we choose a constant extrapolation parameter αk = α satisfying627

0 < α <
2

γLγ,τ
,

where Lγ is the smoothness constant of Mγ (x) = 1
n

∑n
i=1 M

γ
fi
(x), Lγ,τ is given by628

Lγ,τ =
n− τ

τ(n− 1)
· 1
γ
+

n(τ − 1)

τ(n− 1)
· Lγ .

Then the iterates of Algorithm 1 satisfy629

γMγ (x̄K)− inf γMγ ≤ 1

α (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is chosen uniformly from the first K iterates {x0, x1, . . . , xK−1}. It is easy to see that the630

best α is given by631

α⋆ =
1

γLγ,τ
≥ 1,

where the corresponding convergence is given by632

γMγ (x̄K)− inf γMγ ≤
(

n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
γLγ

)
· ∥x0 − x⋆∥2

K
.

Remark 12. Notice that in this case we recover the convergence result of RPM presented in Necoara633

et al. [2019] in the convex case. Indeed, if each fi(x) = IXi (x), then we have634

proxγfi (x) = ΠXi (x) ,∀x ∈ Rd,

and635

γMγ
fi
(x) =

1

2
∥x−ΠXi

(x)∥2 , and γMγ (x) =
1

2
· 1
n

n∑
i=1

∥x−ΠXi
(x)∥2 .

Since we are in the interpolation regime, inf γMγ = 0, and the convergence result becomes636

1

2
· 1
n

n∑
i=1

∥xK −ΠXi
(xK)∥2 ≤

(
n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
γLγ

)
· ∥x0 − x⋆∥2

K
.

Notice that here γLγ ≤ 1 is the smoothness constant associated with each distance function637

1
2 ∥x−ΠXi

(x)∥2. The difference in the coefficients on the left-hand side from the original results638

presented in Necoara et al. [2019] results from different sampling strategies employed.639

A key difference in the non-smooth setting is that extrapolation in some cases may not be beneficiary,640

as illustrated by the following remark.641

Remark 13. In the non-smooth case, it is possible that γLγ = 1, where the optimal α⋆ = 1, in642

this case, extrapolation will not generate any benefits. However, as it is mentioned by Necoara et al.643

[2019], there are many examples where γLγ < 1 and extrapolation indeed accelerates the algorithm.644

This is different from the smooth case, where extrapolation always helps.645

Remark 14. Since we do not assume smoothness, Lemma 10 no longer applies. Therefore, the646

convergence result is stated in terms of the function value suboptimality of Moreau envelope instead647

of the original objective f which is used in the smooth case.648
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Using a similar approach, it is also possible to obtain a convergence guarantee for FedExProx in the649

strongly convex non-smooth regime, assuming in addition that Mγ (x) is µγ-strongly convex, where650

we recover the convergence result of RPM in Necoara et al. [2019] in cases where the smooth and651

linear regularity conditions are both satisfied. The following Table 4 confirms that our analysis of652

FedExProx recovers the theory of RPM as a special case.

Table 4: Comparison of iteration complexity of RPM from Necoara et al. [2019] obtained using our
theory and the original theory. In both cases, the optimal extrapolation parameter is used. The
notation O(·) is hidden. ε is the error level reached by function value suboptimality for convex case,
squared distance to the solution for strongly convex case.

Setting Original Theory Our Theory

Convex + smooth case(1) γLγ,τ · ∥x0−x⋆∥2
ε

γLγ,τ · ∥x0−x⋆∥2
ε

Strongly convex + smooth case(2) Lγ,τ

µγ
· log

(
∥x0−x⋆∥2

ε

)
Lγ,τ

µγ
· log

(
∥x0−x⋆∥2

ε

)
(1) The smoothness here does not refer to each fi being Li-smooth, but γMγ being γLγ -smooth. This

corresponds to the smooth regularity condition presented in Necoara et al. [2019].
(2) Here the strongly convex setting meaning that the linear regularity condition in Necoara et al.

[2019] is satisfied. In our theory, it refers to Mγ (x) being µγ-strongly convex with µγ < Lγ .

653

F.3 Discussion on the non-interpolation case654

For the non-interpolation regime cases, we assume that Assumption 1 (Differentiability), Assump-655

tion 3 (Convexity) and Assumption 4 (Smoothness) hold. The differences are listed as follows656

(i) Although fi and Mγ
fi

have the same set of minimizers, f and Mγ does not necessarily657

have the same set of minimizers. This will lead to the convergence of FedExProx to the658

minimizer x′
⋆,γ of Mγ (x) instead of x⋆ of f . As a result, we will only converge to a659

neighborhood of the x⋆ depending on the specific setting.660

(ii) Since we are not in the interpolation regime, the upper bound on the step size of SGD with661

sampling is reduced by a factor of 2. Thus, the optimal extrapolation parameter α′
⋆ in the662

non-interpolated cases is also halved, α′
⋆ = 1

2α⋆. As a result, it is possible that α′
⋆ ≤ 1. The663

same phenomenon is also observed in FedExP of Jhunjhunwala et al. [2023], where their664

heuristic in determining the extrapolation parameter adaptively is also reduced by a factor of665

2 in non overparameterized cases.666

Observe that all of the above results in both smooth/non-smooth, interpolated/non-interpolated cases667

suggests that the practice of server simply averaging the iterates it obtained from local training is668

suboptimal.669

F.4 Discussion on the non-convex case670

In the non-convex case, we assume Assumption 1 (Differentiability) holds, and we need the following671

additional assumptions on f : Rd 7→ R and fi : Rd 7→ R:672

Assumption 6 (Lower boundedness). Function fi is lower bounded by inf fi.673

Assumption 7 (Weak convexity). Function fi is ρ > 0 weakly convex, this means that fi + ρ
2 ∥·∥

2 is674

convex.675

We have the following lemma under the above assumptions:676

Lemma 16. [Böhm and Wright, 2021, Lemma 3.1] Let f be a proper, closed, ρ-weakly convex677

function and let γ < 1
ρ . Then the Moreau envelope Mγ

f is continuously differentiable on Rd with678

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.

In addition, the Moreau envelope is max
{

1
γ ,

ρ
1−γρ

}
-smooth. We will thereby denote the smoothness679

constant as Lγ,ρ.680
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Indeed, if the stepsize γ in this case is chosen properly such that 1
γ > ρ, then it is straight forward to681

see the function within the proximity operator proxγfi given by fi +
1
2 · 1

γ ∥·∥2 is strongly convex.682

Thus the proximity operator still results in a singleton. Lemma 16 allows us to again reformulate683

the original algorithm using the gradient of Moreau envelope. The only difference from the convex684

regime is that the Moreau envelope Mγ
fi

is not necessarily convex. The following lemmas illustrate685

the connection between Mγ
fi

and fi:686

Lemma 17. [Yu et al., 2015, Proposition 7] Let γ > 0, f be a closed, proper function that687

is lower bounded. Then Mγ
f ≤ f , infMγ

f = inf f , argminx M
γ
f (x) = argminx f(x) ⊆688 {

x : x ∈ proxγf (x)
}

.689

Lemma 18. Let f : Rd 7→ R be ρ-weakly convex with ρ > 0 and differentiable. If we take 0 < γ < 1
ρ ,690

then Mγ
fi

has the same set of stationary points as fi.691

For the sake of simplicity, we will consider only the full participation case with a constant extrapola-692

tion parameter αk = α. The following lemma describes the convergence of GD in the non-convex693

case, which is adapted from the theory of Khaled and Richtárik [2023].694

Lemma 19. Assume function f is L-smooth and lower bounded. If we are running GD with a constant695

stepsize η satisfying 0 < η < 1
L . Then for any K ≥ 1, the iterates xk of GD satisfy696

min
0≤k≤K−1

E
[
∥∇f(xk)∥2

]
≤ 2 (f(x0)− inf f)

ηK
.

Now we directly apply Lemma 19 in our case,697

1. Since each Mγ
fi

is Lγ,ρ-smooth, Mγ is Lγ-smooth with Lγ ≤ Lγ,ρ, which result in the698

following bound on the extrapolation parameter699

0 < α <
1

γLγ
.

Notice that in this case we have the following estimation of γLγ ,700

1

γLγ
≥ 1

γLγ,ρ
= min

{
1,

1− γρ

γρ

}
.

This suggests that extrapolation may not be much beneficiary in the non-convex case.701

2. The following convergence guarantee can be obtained.702

min
0≤k≤K−1

E
[
∥∇Mγ(xk)∥2

]
≤ 2 (Mγ (x0)− infMγ)

αγK
.

Notice that by Lemma 17, we know that Mγ
fi
(x0) ≤ fi (x0). We also have infMγ ≥703

1
n

∑n
i=1 infM

γ
fi

= 1
n

∑n
i=1 inf fi since infMγ

fi
= inf fi is true for each client by704

Lemma 17. Thus, we have705

Mγ (x0)− infMγ ≤ f(x0)− inf f + inf f − 1

n

n∑
i=1

inf fi.

We can relax the above convergence guarantee and obtain706

min
0≤k≤K−1

E
[
∥∇Mγ(xk)∥2

]
≤ 2 (f(x0)− inf f)

αγK
+

2
(
inf f − 1

n

∑n
i=1 inf fi

)
αγK

.

The above convergence guarantee indicates that the algorithm converges to some stationary707

points of Mγ (x) in the non-convex case.708

3. In the non-convex case, we did not assume anything similar to the interpolation regime in the709

convex case. As a result, we did not know the relation between the set of stationary points710

of Mγ (x) and f(x), denoted as Y ′ and Y , respectively. However, if we assume, in addition,711

that each stationary point y′ ∈ Y ′ of Mγ is also a stationary point of each Mγ
fi

, then y′ is also712

a stationary point of fi according to Lemma 18. Thus, ∇f (y′) = 1
n

∑n
i=1 ∇fi (y

′) = 0,713

which indicates y′ ∈ Y . As a result, we have Y ′ ⊆ Y . This means that under this additional714

assumption, the algorithm converges to a stationary point of f .715
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F.5 Additional notes on adaptive variants716

Notes on gradient diversity variant. In general, the gradient diversity step size ηk used in SGD to717

solve the finite sum minimization problem718

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

can be written as719

ηk :=
1

Lmax
·

1
n

∑n
i=1 ∥∇fi(xk)∥2∥∥ 1

n

∑n
i=1 ∇fi(xk)

∥∥2 ,
where Lmax is the maximum of local smoothness constants. In our case, since each local Moreau720

envelope is Li

1+γLi
-smooth and 1

γ -smooth4, we can use both Lmax

1+γLmax
(here in Corollary 2, if we know721

Lmax) and 1
γ (in original Theorem 2, if we do not know Lmax) as the maximum of local smoothness.722

We present the convergence result of Algorithm 1 with the following rule given in (13),723

α′
k,G =

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
724

Corollary 2. Suppose all the assumptions mentioned in Theorem 2 hold, if we are using (13) to725

determine α′
k,G in each iteration for Algorithm 1 with τ = n, then the iterates satisfy726

E [f(x̄K)]− f inf ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

where x̄K is chosen randomly from the first K iterates {x0, x1, ..., xK−1} with probabilities pk =727
α′

k,G/
∑K−1

k=0 α′
k,G.728

Notice that compared to the case of FedExProx-GraDS in Theorem 2, the convergence rate given in729

Corollary 2 is indeed better. This can be seen by comparing them directly, for FedExProx-GraDS,730

we have731

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

,

and for Algorithm 1 with α′
k,G given in (13), we have732

E [f(x̄K)]− f inf ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

=
γLmax

1 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

Since733
γLmax

1 + γLmax
≤ 1 + γLmax

2 + γLmax
, ∀γ > 0,

the convergence of Algorithm 1 in the full participation case with (13) given in Corollary 2 is indeed734

better than FedExProx-GraDS. However, this adaptive rule is only practical when we have the735

knowledge of local smoothness.736

Notes on stochastic Polyak variant. In this paragraph, we further elaborate on the convergence of737

FedExProx-StoPS. We start by providing a lower bound on the adaptive extrapolation parameter.738

Lemma 20. Suppose that all assumptions mentioned in Theorem 2 hold, then the following inequali-739

ties hold for any x ∈ Rd and x⋆ that is a minimizer of f ,740

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2 ≥ 1

2γLγ
.

4Note that Li
1+γLi

< 1
γ

for any γ > 0.
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Using the above lower bound, we can further write the convergence of FedExProx-StoPS as741

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

Observe that we recover the favorable dependence of convergence on the smoothness of Mγ . However,742

this comes at the price of having to know each Mγ
fi
(x⋆) or, equivalently in the interpolation regime,743

knowing Mγ (x⋆).744

F.6 Extension of adaptive variants into client partial participation (PP) setting745

In this subsection, we extend the adaptive variants of FedExProx into the stochastic setting. We746

will refer to them as FedExProx-GraDS-PP and, FedExProx-StoPS-PP respectively. Specifically,747

we consider that the server chooses the client using the τ -nice sampling strategy we have intro-748

duced before in Algorithm 1. The following theorem summarizes the convergence guarantee of749

FedExProx-GraDS-PP and FedExProx-StoPS-PP in the convex case. Its extension to the strongly750

convex case where we additionally assume Assumption 5 (Strong convexity) is straight forward.751

Theorem 5. Suppose Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), Assump-752

tion 3 (Convexity) and Assumption 4 (Smoothness) hold. Assume we are running FedExProx with753

τ -nice client sampling.754

(i) (FedExProx-GraDS-PP): If we are using αk = ατ,k,G(xk, Sk), where755

ατ,k,G(xk, Sk) =
1
τ

∑
i∈Sk

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

τ

∑
i∈Sk

(
xk − proxγfi (xk)

)∥∥2 . (19)

Then the iterates of Algorithm 1 satisfy756

E [f(x̄K)]− inf f ≤
(
1 + γLmax

2 + γLmax

)
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,G ·K
, (20)

where K is the total number of iteration, x̄K is samples uniformly at random from the first757

K iterates {x0, x1, . . . , xK−1}, inf ατ,k,G is defined as758

inf ατ,k,G := inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,G (x, S) .

satisfying759

ατ,k,G(xk, Sk) ≥ inf ατ,k,G ≥ 1.

(ii) (FedExProx-StoPS-PP): If we are using αk = ατ,k,S(xk, Sk), where760

ατ,k,S(xk, Sk) =

1
τ

∑τ
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
τ

∑τ
i=1 ∇Mγ

fi
(xk)

∥∥∥2 . (21)

Then the iterates of Algorithm 1 satisfy761

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,S ·K
, (22)

where K is the total number of iteration, x̄K is sampled uniformly at random from the first762

K iterates {x0, x1, . . . , xK−1}, inf ατ,k,G is defined as763

inf ατ,k,S := inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,S (x, S) .

satisfying764

ατ,k,S(xk, Sk) ≥ inf ατ,k,S ≥ 1

2

(
1 +

1

γLmax

)
.

Remark 15. For FedExProx-GraDS-PP, different from the full participation setting, the denomina-765

tor of the sublinear term on the right-hand side of (20) is replaced by K · inf ατ,k,G.766
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Table 5: Summary of convergence of new algorithms appeared in our paper in the convex setting.
The O (·) notation is hidden for all complexities in this table. For convergence in the full client
participation case, results of Theorem 1 and Theorem 2 are used where the relevant notations are
defined. For convergence in the partial participation, the results of Theorem 5 are used.

Method Full Participation Partial Participation Single Client

FedExProx Lγ(1+γLmax)/K Lγ,τ (1+γLmax)/K Lmax/K

FedExProx-GraDS (1+γLmax)/γ·∑K−1
k=0

αk,G
(1+γLmax)/(γK·inf ατ,k,G) (1+γLmax)/(γK)

FedExProx-StoPS (1+γLmax)/γ·∑K−1
k=0

αk,S
(1+γLmax)/(γK·inf ατ,k,S) (1+γLmax)/(γK·inf α1,k,S)

(i) In the single client case (τ = 1), we have767

α1,k,G = inf α1,k,G = 1.

(ii) In the partial participation case (1 < τ < n), it is possible that768

inf ατ,k,G > 1,

resulting in acceleration compared to single client case.769

(iii) For the full participation case (τ = n), we have770

αk,G = αn,k,G,

and771
K−1∑
k=0

αk,G ≥ K · inf αn,k,G,

thus the convergence guarantee here is a relaxed version of that presented in Theorem 2.772

A similar discussion also applies to FedExProx-StoPS-PP in the client partial participation setting.773

Remark 16. For FedExProx-StoPS-PP, different from the full participation setting, the denomina-774

tor of the sublinear term on the right-hand side of (22) is replaced by K · inf ατ,k,S .775

(i) In the single client case (τ = 1), we have776

α1,k,S ≥ inf α1,k,G =
1

2

(
1 +

1

γLmax

)
.

(ii) In the partial participation case (1 < τ < n), it is possible that777

inf ατ,k,S >
1

2

(
1 +

1

γLmax

)
,

resulting in acceleration compared to single client case.778

(iii) For the full participation case (τ = n), we have779

αk,S = αn,k,S ,

and780
K−1∑
k=0

αk,S ≥ K · inf αn,k,S ,

thus the convergence guarantee here is a relaxed version of that presented in Theorem 2.781

The following Table 5 summarizes the convergence of new algorithms and their variants appeared in782

our paper.783
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G Missing proofs of theorems and corollaries784

G.1 Proof of Theorem 1785

The proof of this theorem can be divided into three parts.786

Step 1: Reformulate the algorithm using Moreau envelope. We know from Lemma 2 that for787

any x ∈ Rd.788

∇Mγ
fi
(x) =

1

γ

(
x− proxγfi (x)

)
.

Using the above identity, we can rewrite the update rule given in (7) in the following form,789

xk+1 = xk − αkγ · 1
n

n∑
i=1

∇Mγ
fi
(xk) . (23)

The above reformulation suggests that running FedExProx with τ -nice sampling strategy is equivalent790

to running SGD with τ -nice sampling to the global objective Mγ (x) = 1
n

∑n
i=1 M

γ
fi
(x) with step791

size αkγ. Now, it seems natural to apply the theory of SGD adapted in Theorem 3. However, before792

proceeding, we list the properties we know about the global objective Mγ and each local objective793

Mγ
fi

.794

1. Each Mγ
fi
(x) is convex. This is a consequence of a direct application of Lemma 3 to each795

fi. Since Mγ is the average of convex functions Mγ
fi

, we conclude that Mγ (x) is also796

convex.797

2. Each Mγ
fi
(x) is Li

1+γLi
-smooth, where Li is the smoothness constant of fi. This is proved798

by applying Lemma 4 to each fi. Drawing on Lemma 13 for justification, it is reasonable to799

assume Mγ (x) is Lγ-smooth with Lγ ≤ 1
n

∑n
i=1

Li

1+γLi
-smooth.800

3. Each Mγ
fi
(x) has the same set of minimizers and minimum as fi. This result arises from801

applying Lemma 5 to each function fi.802

4. Furthermore, if Assumption 2 (Interpolation Regime) holds, Mγ (x) and f(x) have the803

same set of minimizers and minimum. This is demonstrated in Lemma 8.804

Step 2: Applying the theory of gradient type methods. Notice that here Mγ
fi
(x) is Li

1+γLi
-smooth805

and convex, Mγ (x) is convex and Lγ-smooth. Furthermore, due to the assumption of interpolation806

regime, Mγ (x) and f(x) have the same set of minimizers. Applying the theory of SGD with τ -nice807

sampling in this case, where808

Aτ = Lγ,τ =
n− τ

τ(n− 1)
·max
i∈[n]

(
Li

1 + γLi

)
+

n(τ − 1)

τ(n− 1)
Lγ .

Notice that using Fact 4, we know that809

max
i∈[n]

(
Li

1 + γLi

)
Fact 4
=

Lmax

1 + γLmax
,

thus Lγ can be simplified and written as810

Lγ,τ =
n− τ

τ(n− 1)
· Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
Lγ ,

where Lmax = maxi Li. We obtain the following result given that 0 < αγ < 2
Lγ,τ

in the convex811

setting,812

E [Mγ (x̄K)]−Mγ (x⋆)
Theorem 3

≤ 1

αγ(2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is sampled uniformly at random from the first K iterates {x0, x1, . . . , xK−1}. However,813

the convergence mentioned pertains to Mγ (x). Given our objective is to solve (1), it is necessary to814

reinterpret this outcome in terms of f .815
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Step 3: Translate the result into function values of f . This step is only needed in the convex816

setting. We use the lower bound in Lemma 10,817

Mγ (x̄K)−Mγ (x⋆)
(18)
≥ 1

1 + γLmax
(f(x̄K)− f(x⋆)) ,

to obtain the following result818

E [f(x̄K)]− f(x⋆) ≤
1 + γLmax

αγ (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
.

Observe that we have819

C (γ, τ, α) =
1 + γLmax

αγ (2− αγLγ,τ )
,

and its numerator does not depend on α. If we fix the choice of γ and τ , then the denominator is820

maximized when αγLγ,τ = 1. This yields the optimal constant extrapolation parameter αγ,τ =821
1

γLγ,τ
and the following convergence corresponding to it822

E [f(x̄K)]− f(x⋆) ≤ Lγ,τ (1 + γLmax) ·
∥x0 − x⋆∥2

K
.

Finally, notice that823

γLγ

Lemma 13
≤ 1

n

n∑
i=1

γLi

1 + γLi
< 1,

for any γ > 0. This suggests that,824

γLγ,τ =
n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
γLγ

<
n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
= 1,

which in turn tells us αγ,τ = 1
γLγ,τ

> 1. This concludes the proof.825

G.2 Proof of Theorem 2826

We start with the following decomposition,827

∥xk+1 − x⋆∥2 = ∥xk − αkγ∇Mγ (xk)− x⋆∥2

= ∥xk − x⋆∥2 − 2αkγ ⟨∇Mγ (xk) , xk − x⋆⟩+ α2
kγ

2 ∥∇Mγ (x)∥2 . (24)

Case 1: FedExProx-GraDS For gradient diversity based αk, we have828

αk = αk,G =

1
n

∑n
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2
∥γ∇Mγ (xk)∥2

=

1
n

∑n
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
∥∇Mγ (xk)∥2

.

For the last term of (24),829

α2
k,Gγ

2 ∥∇Mγ (xk)∥2 = αk,Gγ
2 · 1

n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= αk,Gγ

2 · 1
n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)−∇Mγ

fi
(x⋆)

∥∥∥2
(16)
≤ αk,Gγ

2 · 1
n

n∑
i=1

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
,

26



where the last inequality follows from the Li

1+γLi
-smoothness of Mγ

fi
given in Lemma 4. We further830

obtain using Fact 4 that831

α2
k,Gγ

2 ∥∇Mγ (xk)∥2
Fact 4
≤ αk,Gγ

2 · Lmax

1 + γLmax
· (DMγ (xk, x⋆) +DMγ (x⋆, xk))

= αk,Gγ · γLmax

1 + γLmax
(DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (25)

For the second term of (24), we have832

−2αk,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2αk,Gγ ⟨∇Mγ (xk)−∇Mγ (x⋆) , x⋆ − xk⟩
= −2αk,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (26)

Plugging (26) and (25) into (24), we have833

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Gγ

(
2− γLmax

1 + γLmax

)
(DMγ (xk, x⋆) +DMγ (x⋆, xk)) .

Notice that we know that834

DMγ (xk, x⋆)
(14)
= Mγ (xk)−Mγ (x⋆) , DMγ (x⋆, xk)

(15)
≥ 0.

As a result, we obtain835

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Gγ

(
2− γLmax

1 + γLmax

)
(Mγ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them will telescope836

and Mγ (x⋆) = infMγ due to interpolation regime as it is proved by Lemma 8. Thus, we obtain837

γ

(
2− γLmax

1 + γLmax

)K−1∑
k=0

αk,G (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = αk,G/
∑K−1

k=0 αk,G for k = 0, 1, ...,K − 1. If we pick x̄K randomly according to838

probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, then we can further write the above839

recursion as840

E
[
Mγ

(
x̄K
)]

− infMγ ≤ 1 + γLmax

2 + γLmax
· 1
γ
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

Utilizing Lemma 10, we further obtain,841

E [f(x̄K)]− inf f ≤ 1 + γLmax

2 + γLmax
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,G

.

The above inequality indicates convergence. Indeed, by convexity of standard Euclidean norm, we842

have843

αk,G ≥
∥∥ 1
n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2∥∥ 1
n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 = 1.

This tells us that844
K−1∑
k=0

αk,G ≥ K.

Case 2: FedExProx-StoPS For stochastic Polyak step size based αk,S , since we are in the845

interpolation regime, by Lemma 9, we have846

Mγ (x⋆) = infMγ =
1

n

n∑
i=1

infMγ
fi
.

As a result,847

αk = αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 =
Mγ (xk)−Mγ (x⋆)

γ ∥∇Mγ (xk)∥2
.
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We have for the last term of (24),848

α2
k,Sγ

2 ∥∇Mγ (xk)∥2 = αk,Sγ (M
γ (xk)−Mγ (x⋆)) . (27)

For the second term of (24), we have849

−2αk,Sγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2αk,Sγ ⟨∇Mγ (xk) , x⋆ − xk⟩
(5)
≤ 2αk,Sγ (M

γ (x⋆)−Mγ (xk))

= −2αk,Sγ (M
γ (xk)−Mγ (x⋆)) , (28)

where the inequality is due to the convexity of Mγ . Plugging (28) and (27) into (24), we obtain850

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − αk,Sγ (M
γ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them will telescope.851

Thus, we obtain852

γ

K−1∑
k=0

αk,S (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = αk,S/
∑K−1

k=0 αk,S for k = 0, 1, ...,K − 1. If we sample x̄K randomly according853

to probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, we can further write the above854

recursion as855

E
[
Mγ

(
x̄K
)]

− infMγ ≤ 1

γ
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

.

Utilizing the local bound in Lemma 10, we further obtain,856

E
[
f(x̄K)

]
− inf f

(17)
≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 αk,S

. (29)

Notice that the above inequality indeed indicates convergence, since857

K−1∑
k=0

αk,S =

K−1∑
k=0

Mγ (xk)−Mγ (x⋆)

γ ∥∇Mγ (xk)∥2
≥ 1

2γLγ
,

where the inequality follows from Lemma 20. The above upper bounds allow us to further write the858

convergence in (29) as859

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

This concludes the proof.860

G.3 Proof of Theorem 3861

We start from the decomposition862

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2η

〈
xk − x⋆,

1

τ

∑
i∈Sk

∇fi(xk)

〉
+ η2

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2

,

where Sk is the set sampled at iteration k. Taking expectation conditioned on xk, we have863

ESk

[
∥xk+1 − x⋆∥2

]
= ∥xk − x⋆∥2 − 2η ⟨xk − x⋆,∇f(xk)−∇f(x⋆)⟩+ η2ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 .

We can write the second inner product term as864

⟨xk − x⋆,∇f(xk)−∇f(x⋆)⟩
(14)
= Df (xk, x⋆) +Df (x⋆, xk) , (30)
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where Df (xk, x⋆) denotes the Bregman divergence associated with f between xk and x⋆. For the865

last squared norm term, we first define the indicator random variable χk,i as866

χk,i =

{
1, when i ∈ Sk,
0, when i /∈ Sk.

Since we are in the interpolation regime, we have867

ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 = ESk

∥∥∥∥∥1τ
n∑

i=1

χk,i (∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2
 .

Denote ak,i = ∇fi(xk)−∇fi(x⋆),868

ESk

∥∥∥∥∥1τ
n∑

i=1

χk,i (∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2


= ESk

∥∥∥∥∥1τ
n∑

i=1

χk,iak,i

∥∥∥∥∥
2


=
1

τ2
ESk

 n∑
i=1

χk,i ∥ak,i∥2 +
∑

1≤i ̸=j≤n

χk,iχj,k ⟨ak,i, ak,j⟩


=

1

τ2

n∑
i=1

ESk
i

[
χ2
k,i

]
∥ak,i∥2 +

∑
1≤i ̸=j≤n

ESk
i
[χk,iχj,k] ⟨ak,i, ak,j⟩

=
1

nτ

n∑
i=1

∥ak,i∥2 +
τ − 1

nτ(n− 1)

∥∥∥∥∥
n∑

i=1

ak,i

∥∥∥∥∥
2

−
n∑

i=1

∥ak,i∥2


=
n− τ

τ(n− 1)
· 1
n

n∑
i=1

∥ak,i∥2 +
n(τ − 1)

τ(n− 1)
·

∥∥∥∥∥ 1n
n∑

i=1

ak,i

∥∥∥∥∥
2

. (31)

For the first term above in (31), due to the smoothness and convexity of each fi, we have869

1

n

n∑
i=1

∥ak,i∥2 =
1

n

n∑
i=1

∥∇fi(xk)−∇fi(x⋆)∥2

≤ 1

n

n∑
i=1

Li (Dfi (x⋆, xk) +Dfi (xk, x⋆))

≤ Lmax
1

n

n∑
i=1

(Dfi (x⋆, xk) +Dfi (xk, x⋆))

= Lmax (Df (x⋆, xk) +Df (xk, x⋆)) ,

where the first inequality is obtained as a result of Fact 3. For the second term, we have due to the870

smoothness and convexity of f ,871 ∥∥∥∥∥ 1n
n∑

i=1

ak,i

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xk)−∇fi(x⋆))

∥∥∥∥∥
2

= ∥∇f(xk)−∇f(x⋆)∥2

≤ L (Df (x⋆, xk) +Df (xk, x⋆)) ,

where the inequality is obtained using Fact 3. Combining the above two inequalities and plugging872

them into (31), we obtain873

ESk

∥∥∥∥∥1τ ∑
i∈Sk

∇fi(xk)

∥∥∥∥∥
2
 ≤

(
n− τ

τ(n− 1)
· Lmax +

n(τ − 1)

τ(n− 1)
· L
)
(Df (x⋆, xk) +Df (xk, x⋆)) .

(32)
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Notice that we already defined Aτ as874

Aτ =
n− τ

τ(n− 1)
· Lmax +

n(τ − 1)

τ(n− 1)
· L.

Combining (30) and (32), we have875

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − η(2− ηAτ ) (Df (x⋆, xk) +Df (xk, x⋆)) .

If we require 0 < η < 2
Aτ

, we have η(2− ηAτ ) ≥ 0.876

Convex regime. It remains to notice that Df (xk, x⋆) +Df (x⋆, xk) ≥ Df (xk, x⋆) = f(xk) −877

f(x⋆) ≥ 0, and we have878

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − η(2− ηAτ ) (f(xk)− f(x⋆)) .

Taking expectation again and using tower property, we get879

E
[
∥xk+1 − x⋆∥2

]
≤ E

[
∥xk − x⋆∥2

]
− η(2− ηAτ ) (E [f(xk)]− inf f) .

Unrolling this recurrence, we get880

E [f(x̄K)]− inf f ≤ 1

η(2− ηAτ )
· ∥x0 − x⋆∥2

K
,

where K is the total number of iterations, x̄K is selected uniformly at random from the first K iterates881

{x0, x1, . . . , xK−1}.882

Star strongly convex regime. Due to star strong convexity of f , we further lower bound the883

Bregman divergence884

Df (xk, x⋆) = f(xk)− f(x⋆) ≥
µ

2
∥xk − x⋆∥2 .

and we have885

ESk

[
∥xk+1 − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)
∥xk − x⋆∥2 .

Taking expectation again, using tower property we get886

E
[
∥xk+1 − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)
E
[
∥xk − x⋆∥2

]
.

Unrolling the recurrence, we get887

E
[
∥xK − x⋆∥2

]
≤
(
1− η(2− ηAτ ) ·

µ

2

)K
∥x0 − x⋆∥2 .

This concludes the proof.888

G.4 Proof of Theorem 4889

Since each fi is proper, closed and convex, by Lemma 2, we know that each Mγ
fi

is 1
γ -smooth.890

Therefore, it is reasonable to assume that Mγ = 1
n

∑n
i=1 M

γ
fi

is Lγ-smooth, with Lγ ≤ 1
γ . Applying891

Theorem 3 in this case, we obtain,892

Mγ (x̄K)− infMγ
Theorem 3

≤ 1

αγ (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
,

where x̄K is chosen uniformly at random from the first K iterates {x0, x1, . . . , xK−1}, and893

Lγ,τ =
n− τ

τ(n− 1)
· 1
γ
+

n(τ − 1)

τ(n− 1)
· Lγ .
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Multiplying both sides by γ, we obtain894

γMγ (x̄K)− inf γMγ ≤ 1

α (2− αγLγ,τ )
· ∥x0 − x⋆∥2

K
.

It is easy to see that the coefficient on the right-hand side is minimized when α = 1
γLγ,τ

, and the895

convergence is given by896

γMγ (x̄K)− inf γMγ ≤
(

n− τ

τ(n− 1)
+

n(τ − 1)

τ(n− 1)
· γLγ

)
· ∥x0 − x⋆∥2

K
.

Notice that Lγ ≤ 1
γ . As a result,897

α⋆ =
1

γLγ
≥ 1.

G.5 Proof of Theorem 5898

Case of FedExProx-GraDS-PP. We start with the following identity899

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

+ α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

. (33)

For the last term, we have900

α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

= ατ,k,G · γ2 · 1
τ

∑
i∈Sk

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= ατ,k,G · γ2 · 1

τ

∑
i∈Sk

∥∥∥∇Mγ
fi
(xk)−∇Mγ

fi
(x⋆)

∥∥∥2 ,
where the last step is due to the assumption that we are in the interpolation regime. Using Fact 3, we901

can further upper bound the above expression,902

α2
τ,k,G · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

≤ ατ,k,G · γ2 · 1
τ

∑
i∈Sk

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
≤ ατ,k,G · γ · γLmax

1 + γLmax
· 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
, (34)

where the last inequality is due to Fact 4. Now we look at the second term in Equation (33).903

− 2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

= −2ατ,k,G · γ

〈
1

τ

∑
i∈Sk

(
∇Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
, xk − x⋆

〉

= −2ατ,k,G · γ · 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
. (35)
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Plugging (34) and (35) into (33), we obtain,904

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − ατ,k,G · γ
(
2− γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
≤ ∥xk − x⋆∥2 − ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
, (36)

where the last inequality is due to905

DMγ
fi
(xk, x⋆)

(14)
= Mγ

fi
(xk)−Mγ

fi
(x⋆) , and DMγ

fi
(x⋆, xk)

(15)
≥ 0.

Now we want to lower bound ατ,k,G, notice that it can be viewed as a function of the iterate x and906

the sampled set S. Therefore, we use the notation907

inf ατ,k,G = inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,G (x, S) .

As a result, we have908

ατ,k,G ≥ inf ατ,k,G ≥ 1,

where the second inequality comes from the convexity of standard Euclidean norm. Plugging this909

lower bound into (36), we obtain910

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ
(
2 + γLmax

1 + γLmax

)
· 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
.

Taking expectation conditioned on xk, we have911

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1
n

n∑
i=1

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
= ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· (Mγ (xk)− infM) ,

where the last identity is due to the fact that we are in the interpolation regime. Using Lemma 10, we912

have913

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1

1 + γLmax
(f(xk)− inf f) .

Taking expectation again and using tower property, we obtain914

E
[
∥xk+1 − x⋆∥2

]
≤ E

[
∥xk − x⋆∥2

]
− inf ατ,k,G · γ

(
2 + γLmax

1 + γLmax

)
· 1

1 + γLmax
E [f(xk)− inf f ] .

Following the same step as Theorem 1, we can unroll the above recurrence and obtain915

E [f(x̄K)]− inf f ≤
(
1 + γLmax

2 + γLmax

)
·
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,G ·K
,

where K is the total number of iterations, x̄K is sampled uniformly at random from the first K-iterates916

{x0, x1, . . . , xK−1}.917
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Case of FedExProx-StoPS-PP. We start with the following identity918

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2ατ,k,S · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

+ α2
τ,k,S · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

. (37)

For the last term of Equation (37), we have919

α2
τ,k,S · γ2 ·

∥∥∥∥∥1τ ∑
i∈Sk

∇Mγ
fi
(xk)

∥∥∥∥∥
2

= ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
= ατ,k,S · γ · 1

τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆)

)
. (38)

While for the second term we have920

− 2ατ,k,S · γ

〈
1

τ

∑
i∈Sk

∇Mγ
fi
(xk) , xk − x⋆

〉

= −2ατ,k,S · γ · 1
τ

∑
i∈Sk

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
(15)
≤ −2ατ,k,S · γ · 1

τ

∑
i∈Sk

DMγ
fi
(xk, x⋆) . (39)

Plugging (38) and (39) into (37), we obtain921

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
. (40)

Now we want to lower bound ατ,k,S , notice that it can be viewed as a function of the iterate x and922

the sampled set S. Therefore, we use the notation923

inf ατ,k,S = inf
x∈Rd,S⊆[n],|S|=τ

ατ,k,S (x, S) .

As a result, we have924

ατ,k,S ≥ inf ατ,k,S .

Notice that since each Mγ
fi

is Li

1+γLi
-smooth, we conclude that the function 1

τ

∑
i∈Sk

Mγ
fi

is at least925

Lmax

1+γLmax
-smooth5. Using the smoothness of the mentioned function and Fact 3, a lower bound on926

inf ατ,k,S is obvious,927

inf αk,τ,S ≥ 1

2 · Lmax

1+γLmax
γ
=

1

2

(
1 +

1

γLmax

)
.

This means that we have928

ατ,k,S ≥ inf ατ,k,S ≥ 1

2

(
1 +

1

γLmax

)
.

Using the above lower bound in (40), we have929

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ · 1
τ

∑
i∈Sk

(
Mγ

fi
(xk)− infMγ

fi

)
.

Taking expectation conditioned on xk, and noticing that we are in the interpolation regime, we obtain930

ESk

[
∥xk+1 − x⋆∥2

]
≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ · (Mγ (xk)− infM) .

5Same as Mγ (x), its smoothness constant can be much better.
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Using Lemma 10, we have931

ESk

[
∥xk+1 − x⋆∥2

] Lemma 10
≤ ∥xk − x⋆∥2 − inf ατ,k,S · γ

1 + γLmax
· (f(xk)− inf f) .

Now, following the exact same steps as in the previous case of FedExProx-GraDS, we result in932

E [f(x̄K)]− inf f ≤
(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2

inf ατ,k,S ·K
,

where K is the total number of iterations, x̄K is sampled uniformly at random from the first K-iterates933

{x0, x1, . . . , xK−1}.934

G.6 Proof of Corollary 1935

If additionally we assume f is µ-strongly convex, then from Lemma 11, we know it indicates the936

following star strong convexity of Mγ holds,937

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

Thus, we apply Theorem 3 with τ -nice sampling in the star strong convexity case, and obtain the938

following result:939

E
[
∥xK − x⋆∥2

] Theorem 3
≤

(
1− αγ(2− αγLγ,τ ) ·

µ

2

)K
∥x0 − x⋆∥2 .

Since the convergence here is stated in terms of squared distance to the minimizer, we do not need940

further transformation. Notice that the convergence rate in this case,941

1− αγ(2− αγLγ,τ ) ·
µ

2
,

is also minimized when α = αγ,τ = 1
γLγ,τ

. In case of α = αγ,τ , the convergence is given by942

E
[
∥xK − x⋆∥2

]
≤
(
1− µ

2Lγ,τ

)K

∥x0 − x⋆∥2 .

This concludes the proof.943

G.7 Proof of Corollary 2944

Similar to the proof of Theorem 2, we start with the following identity945

∥xk+1 − x⋆∥2 =
∥∥xk − α′

k,Gγ∇Mγ (xk)− x⋆

∥∥2
= ∥xk − x⋆∥2 − α′

k,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩+
(
α′
k,G

)2
γ2 ∥∇Mγ (x)∥2 . (41)

The extrapolation parameter can be rewritten as946

α′
k,G =

1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
∥∇Mγ (xk)∥2

.

We have for the last term of (41),947 (
α′
k,G

)2
γ2 ∥∇Mγ (xk)∥2

= α′
k,Gγ ·

(
γ +

1

Lmax

)
1

n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)

∥∥∥2
= α′

k,Gγ ·
(
γ +

1

Lmax

)
· 1
n

n∑
i=1

∥∥∥∇Mγ
fi
(xk)−∇Mγfix⋆

∥∥∥2
≤ α′

k,Gγ ·
(
γ +

1

Lmax

)
· 1
n

n∑
i=1

Li

1 + γLi

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
,
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where the last inequality follows from the Li

1+γLi
-smoothness of Mγ

fi
. Utilizing the monotonicity of948

x
1+γx , for x > 0, we further obtain949 (

α′
k,G

)2
γ2 ∥∇Mγ (xk)∥2

Fact 4
≤ α′

k,Gγ ·
(
γ +

1

Lmax

)
· Lmax

1 + γLmax
· 1
n

n∑
i=1

(
DMγ

fi
(xk, x⋆) +DMγ

fi
(x⋆, xk)

)
= α′

k,Gγ ·
(
γ +

1

Lmax

)
· Lmax

1 + γLmax
· (DMγ (xk, x⋆) +DMγ (x⋆, xk))

= α′
k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (42)

For the second term of (41), we have950

−2α′
k,Gγ ⟨∇Mγ (xk) , xk − x⋆⟩ = 2α′

k,Gγ ⟨∇Mγ (xk) , x⋆ − xk⟩
= 2α′

k,Gγ ⟨∇Mγ (xk)−∇Mγ (x⋆) , x⋆ − xk⟩
= −2α′

k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) . (43)
Plugging (43) and (42) into (41), we obtain951

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − α′
k,Gγ (DMγ (xk, x⋆) +DMγ (x⋆, xk)) .

Notice that we know that952

DMγ (xk, x⋆)
(14)
= Mγ (xk)−Mγ (x⋆) , DMγ (x⋆, xk)

(15)
≥ 0.

As a result, we have953

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − α′
k,Gγ (M

γ (xk)−Mγ (x⋆)) .

Summing up the above recursion for k = 0, 1, ...,K − 1, we notice that many of them telescope, we954

obtain955

γ

K−1∑
k=0

α′
k,G (Mγ (xk)− infMγ) ≤ ∥x0 − x⋆∥2 .

Denote pk = α′
k,G/

∑K−1
k=0 α′

k,G for k = 0, 1, ...,K − 1. If we sample x̄K randomly according956

to probabilities pk from the first K iterates {x0, x1, . . . , xK−1}, we can further write the above957

recursion as958

E [Mγ (x̄K)]− infMγ ≤ 1

γ
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

Utilizing the local bound in Lemma 10, we further obtain,959

E
[
f(x̄K)

]
− f inf ≤

(
1

γ
+ Lmax

)
· ∥x0 − x⋆∥2∑K−1

k=0 α′
k,G

.

This concludes the proof.960

H Missing proofs of lemmas961

H.1 Proof of Lemma 1962

Notice that since f is proper, closed and convex, by Fact 1, proxγf (x) is a singleton. We use the963

notation z(x) = proxγf (x). Using the definition of proxγf (x), we see that964

Mγ
f (x) = f(z(x)) +

1

2γ
∥z(x)− x∥2

= f
(
proxγf (x)

)
+

1

2γ

∥∥proxγf (x)− x
∥∥2 .

Now, assume Mγ
f (x) = +∞. We have for any z ∈ Rd,965

+∞ = Mγ
f (x) = f (z(x)) +

1

2γ
∥z(x)− x∥2 ≤ f(z) +

1

2γ
∥z − x∥2 ,

which means that z is also optimal, which contradicts the uniqueness z(x) = proxγf (x). This966

indicates that Mγ
f (x) < +∞, thus, it is real-valued, which concludes the proof.967
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H.2 Proof of Lemma 2968

Let f⋆ be the convex conjugate of f , using Corollary 6.56 in the book by Beck [2017], we have969 (
Mγ

f

)⋆
= f⋆ + γ

2 ∥·∥2. We know that the convex conjugate of a proper, closed and convex function970

is also proper closed and convex. As a result, f⋆ + γ
2 ∥·∥2 is γ-strongly convex. This indicates that971 (

Mγ
f

)⋆
is γ-strongly convex, which implies Mγ

f is 1
γ -smooth. Notice that we have972

proxγf (x) = arg min
z∈Rd

{
f(z) +

1

2γ
∥z − x∥2

}
,

by the definition of proximity operator. Using Theorem 5.30 from Beck [2017], we have973

∇Mγ
f (x) =

1

γ

(
x− proxγf (x)

)
.

This completes the proof.974

H.3 Proof of Lemma 3975

To prove this lemma, we use Theorem 2.19 in the book by Beck [2017]. From the key observation that976

Mγ
f is the infimal convolution of the proper, convex function f and the real-valued convex function977

1
2γ ∥·∥2, we deduce that Mγ

f is convex. This completes the proof.978

H.4 Proof of Lemma 4979

Let f⋆ be the convex conjugate of f . From Corollary 6.56 in the book by Beck [2017], it holds that980 (
Mγ

f

)⋆
= f⋆ + γ

2 ∥·∥2. Since f is L-smooth, we deduce that f⋆ is 1
L -strongly convex, and thus981 (

Mγ
f

)⋆
is 1

L + γ-strongly convex. This suggests that
(
Mγ

f

)⋆
is 1+γL

L -strongly convex, which in982

turn implies Mγ
f is L

1+γL -smooth. This completes the proof.983

H.5 Proof of Lemma 5984

Notice that since Mγ
f is convex and differentiable, the condition ∇Mγ

f (x) = 0 gives its set of985

minimizers. This optimality condition can be written exactly as x = proxγf (x) according to986

Lemma 2. Using Lemma 12, we know this condition also gives the set of minimizers of f , which987

suggests that f and Mγ
f have the same set of minimizers. Pick any x⋆ ∈ Rd that is a minimizer of f ,988

using Lemma 1, we have989

infMγ
f = Mγ

f (x⋆)

= f
(
proxγf (x⋆)

)
+

1

2γ

∥∥x⋆ − proxγf (x⋆)
∥∥2

= f(x⋆) = inf f.

This completes the proof.990

H.6 Proof of Lemma 6991

For any x ∈ Rd, we have992

Mγ
f (x) = min

z∈Rd

{
f(z) +

1

2γ
∥z − x∥2

}
≤ f(x) +

1

2γ
∥x− x∥2

= f(x).

This completes the proof.993
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H.7 Proof of Lemma 7994

From Lemma 3 and Lemma 4, we immediately obtain that each Mγ
fi

is convex and Li

1+γLi
-smooth.995

This immediately suggests that M = 1
n

∑n
i=1 M

γ
fi

is convex and Lγ-smooth with996

Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

Then by Lemma 13, we have997

1

n2

n∑
i=1

Li

1 + γLi

Lemma 13
≤ Lγ .

Combing the above two inequalities, we have998

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

We then look at the condition number defined in Theorem 1. It is easy to verify that999

C (γ, n, αγ,n) = Lγ (1 + γLmax) and, C (γ, 1, αγ,1) = Lmax.

As a result,1000

C (γ, n, αγ,n) = Lγ (1 + γLmax)

≤ 1

n

n∑
i=1

Li ·
1 + γLmax

1 + γLi

≤ Lmax = C (γ, n, 1) ,

Notice that we can write C (γ, τ, αγ,τ ) as an interpolation between C (γ, n, αγ,n) and C (γ, 1, αγ,1),1001

therefore1002

Lγ (1 + γLmax) ≤ C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) = Lmax.

In cases where there exists at least one Li < Lmax, we have1003

1

n

n∑
i=1

Li ·
1 + γLmax

1 + γLi
< Lmax.

which is true for all 0 < γ < +∞. Thus, C (γ, n, αγ,n) < C (γ, τ, αγ,τ ) < Lmax = C (γ, 1, αγ,1).1004

Now we give an example that when all Li = Lmax, still C (γ, n, αγ,n) =
1
nC (γ, 1, αγ,1) =

1
nLmax.1005

1006

Example 1. Consider the setting where fi : Rd 7→ R is defined as fi(x) = θ
2x

2
i for some θ > 0.1007

Here xi denotes the i-th coordinate of the vector x ∈ Rd, f : Rd 7→ R is given by f(x) = θ
2n ∥x∥2.1008

It is easy to show that for each fi is a convex, θ-smooth function and the smoothness constant θ1009

cannot be improved since1010

θ

2
∥x∥2 − θ

2
x2
i =

θ

2

∑
j ̸=i

x2
j .

For f(x) = θ
2n ∥x∥2, apparently, it is θ

n -smooth and convex. We have the following formula for the1011

Moreau envelope of fi(x),1012

Mγ
fi
(x) =

1

2
· θ

1 + γθ
· x2

i .

As expected, each one of them is convex and θ
1+γθ -smooth. For Mγ (x), it is given by1013

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) =

1

2
· θ

n(1 + γθ)
· ∥x∥2 ,

thus, we know it is convex and Lγ = θ
n(1+γθ) -smooth. In this case1014

Lmax

Lγ (1 + γLmax)
=

θ
θ

n(1+γθ) · (1 + γθ)
= n,

which is1015

Lγ (1 + γLmax) = C (γ, n, αγ,n) =
1

n
C (γ, 1, αγ,1) =

1

n
Lmax.
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H.8 Proof of Lemma 81016

By Lemma 5, we know that fi and Mγ
fi

have the same set of minimizers and minimum. Denote the1017

set of minimizers as Xi, since we are in the interpolation regime, we know that the set of minimizers1018

of f is given by,1019

X =

n⋂
i=1

Xi ̸= ∅.

Now we prove that every x in X is a minimizer of M = 1
n

∑n
i=1 M

γ
fi

. This is true since x ∈ X1020

minimizes each fi, thus Mγ
fi

at the same time. The minimum is given by1021

infM =
1

n

n∑
i=1

infMγ
fi

=
1

n

n∑
i=1

inf fi = inf f.

We then prove that every x /∈ X is not a minimizer of f . If x /∈ X , there exists at least one set Xj1022

such that x /∈ Xj . Thus Mγ
fj
(x) > infMγ

fj
. This indicates that Mγ (x) > infM , which means1023

x /∈ X is not a minimizer of M .1024

H.9 Proof of Lemma 91025

From Lemma 6, it is clear that Mγ
f is a global lower bound of f satisfying Mγ

f (x) ≤ f(x) for any1026

x ∈ Rd and γ > 0. Notice that the definition of Mγ indicates that1027

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x)

=
1

n

n∑
i=1

min
zi∈Rd

{
fi(zi) +

1

2γ
∥zi − x∥2

}

≤ min
z∈Rd

{
1

n

n∑
i=1

(
fi(z) +

1

2γ
∥z − x∥2

)}

= min
z∈Rd

{
1

n

n∑
i=1

fi(z) +
1

2γ
∥z − x∥2

}
= Mγ

f (x) ,

holds for any x ∈ Rd and γ > 0. Combining the above result, we have Mγ (x) ≤ Mγ
f (x) ≤ f(x)1028

for any x ∈ Rd and γ > 0. Notice that in Lemma 8, we have already shown that Mγ and f have the1029

same set of minimizers and minimum in the interpolation regime. A direct application of Lemma 51030

indicates that Mγ
f and f have the same set of minimizers and minimum. Therefore, combining the1031

above statement, we know that Mγ , Mγ
f and f have the same set of minimizers and minimum. Thus,1032

for any x⋆ belongs to the set of minimizers, we have1033

Mγ (x⋆) = Mγ
f (x⋆) = f(x⋆).

This completes the proof.1034

H.10 Proof of Lemma 101035

We start from noticing that according to Lemma 1, the following identity is true for Moreau envelope,1036

Mγ
fi
(x) = fi(proxγfi (x)) +

1

2γ

∥∥x− proxγfi (x)
∥∥2 . (44)

For the second squared norm term, we have the following inequality due to the smoothness of each fi1037

and the fact that ∇fi
(
proxγfi (x)

)
= 1

γ

(
x− proxγfi (x)

)
,1038 ∥∥x− proxγfi (x)

∥∥2 =
〈
x− proxγfi (x) , x− proxγfi (x)

〉
= γ

〈
∇fi(proxγfi (x)), x− proxγfi (x)

〉
≥ γ

(
fi(x)− fi

(
proxγfi (x)

))
− γLi

2

∥∥x− proxγfi (x)
∥∥2 ,
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which leads to the following lower bound:1039 ∥∥x− proxγfi (x)
∥∥2 ≥ 1

1
γ + Li

2

(
fi(x)− fi

(
proxγfi (x)

))
.

Plug in the above inequality into (44) and notice that infM = 1
n

∑n
i=1 infM

γ
fi

= 1
n

∑n
i=1 inf fi,1040

we obtain the following lower bound on Mγ
fi
(x),1041

Mγ
fi
(x)− infMγ

fi
≥ fi

(
proxγfi (x)

)
+

1

2 + γLi

(
fi(x)− fi

(
proxγfi (x)

))
− inf fi

=
1

2 + γLi
(fi(x)− inf fi) +

(
1− 1

2 + γLi

)(
fi(proxγfi (x))− inf fi

)
.

(45)

Now let us look at the term fi
(
proxγfi (x)

)
− inf f . Using again Li-smoothness of fi, we have1042

fi(x)− fi(proxγfi (x))−
〈
∇fi(proxγfi (x)), x− proxγfi (x)

〉
≤ Li

2

∥∥x− proxγfi (x)
∥∥2 .

Notice that x− proxγfi (x) = γ∇fi(proxγfi (x)). As a result, we have,1043

fi(x)− γ
∥∥∇fi(proxγfi (x))

∥∥2 − Liγ
2

2

∥∥∇fi(proxγfi (x))
∥∥2 ≤ fi(proxγfi (x)),

which is1044

fi(x)− inf fi −
(
γ +

γ2Li

2

)∥∥∇fi(proxγfi (x))
∥∥2 ≤ fi

(
proxγfi (x)

)
− inf fi.

Using the interpolation regime assumption, we have1045 ∥∥∇fi
(
proxγfi (x)

)∥∥2 =
∥∥∇fi

(
proxγfi (x)

)
−∇fi(x⋆)

∥∥2
≤ 2LiDfi

(
proxγfi (x) , x⋆

)
= 2Li

(
fi(proxγfi (x))− inf fi

)
,

where the inequality is obtained using Fact 3. As a result, we obtain the following bound,1046

fi
(
proxγfi (x)

)
− inf fi ≥

1

1 + γLi(2 + γLi)
(fi(x)− inf fi)

=
1

(1 + γLi)2
(fi(x)− inf fi) .

Plug the above lower bound into (45), we obtain1047

Mγ
fi
(x)− infMγ

fi
≥ 1

1 + γLi
(fi(x)− inf fi) , (46)

Notice that we have Mγ (x) = 1
n

∑n
i=1 M

γ
fi
(x). Since we are in the interpolation regime, from1048

Lemma 9, we know that1049

infMγ = Mγ (x⋆) =
1

n

n∑
i=1

Mγ
fi
(x⋆) =

1

n

n∑
i=1

infMγ
fi
,

and1050

inf f = f(x⋆) =
1

n

n∑
i=1

fi(x⋆) =
1

n

n∑
i=1

inf fi.

We average (46) for each i ∈ [n] and obtain1051

Mγ (x)− infMγ ≥ 1

n

n∑
i=1

1

1 + γLi
(fi(x)− inf fi)

≥ 1

1 + γLmax
· 1
n

n∑
i=1

(fi(x)− inf fi)

=
1

1 + γLmax
(f(x)− inf f) .

This concludes the proof.1052

39



H.11 Proof of Lemma 111053

We start with picking any point x ∈ Rd, since we are in the interpolation regime, according to1054

Lemma 9, we have Mγ (x⋆) = f(x⋆). Applying Lemma 10, we get1055

Mγ (x)−Mγ (x⋆) ≥
1

1 + γLmax
(f(x)− f(x⋆)) . (47)

We know that from the µ-strong convexity of f , we have for any x ∈ Rd,1056

f(x)− f(x⋆)− ⟨∇f(x⋆), x− x⋆⟩ ≥
µ

2
∥x− x⋆∥2 .

Notice that since ∇f(x⋆) = 0, we have1057

f(x)− f(x⋆) ≥
µ

2
∥x− x⋆∥2 . (48)

Combining the above two inequalities (47) and (48), we have1058

Mγ (x)−Mγ (x⋆) ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

This concludes the proof.1059

H.12 Proof of Lemma 121060

Notice that x ∈ Rd is a minimizer of f if and only if 0 ∈ ∂f(x). This inclusion holds if and only if1061

0 ∈ ∂ (γf(x)), which can be rewritten as x− x ∈ ∂ (γf(x)). By the equivalence of (i) and (ii) in1062

Fact 2, the above condition is the same as x = proxγf (x).1063

H.13 Proof of Lemma 131064

Since each fi is Li-smooth, the following function is convex for every i ∈ [n],1065

Li

2
∥x∥2 − fi (x) .

Thus,1066
1
n

∑n
i=1 Li

2
∥x∥2 − 1

n

n∑
i=1

fi(x),

is also a convex function, which indicates f(x) is also 1
n

∑n
i=1 Li-smooth. This means that1067

L ≤ 1

n

n∑
i=1

Li. (49)

Now notice that the L-smoothness of f is equivalent to the following function being convex1068

nL

2
∥x∥2 −

n∑
i=1

fi(x).

Pick any j ∈ [n], we have1069

nL

2
∥x∥2 −

n∑
i=1

fi(x) +
∑

1≤i ̸=j≤n

fi(x) =
nL

2
∥x∥2 − fj(x).

Since all functions are convex and the sum of convex functions is convex,1070

nL

2
∥x∥2 − fj(x),

is convex, which indicates that fj(x) is also nL-smooth. As a result, for every j ∈ [n], we have1071

nL ≥ Lj . Summing up the inequality for every j ∈ [n], we have1072

1

n2

n∑
j=1

Lj ≤ L. (50)
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Combining (49) and (50), we have1073

1

n2

n∑
i=1

Li ≤ L ≤ 1

n

n∑
i=1

Li.

In order to demonstrate that both bounds are tight in the above inequality, we consider cases where1074

they are identities.1075

(i): Consider the case that each function fi(x) =
1
2 · Li · ∥x∥2, it is easy to see that f(x) =1076

1
2 ·
(
1
n

∑n
i=1 Li

)
· ∥x∥2. In this case L = 1

n

∑n
i=1 Li, the upper bound is an identity.1077

(ii): Consider the case that each function fi(x) =
1
2 · θ · x2

i , where θ > 0 is a constant, xi is the1078

i-th coordinate of x ∈ Rd. In this case f(x) = 1
2 · θ

n ∥x∥2. It is easy to verify that in this1079

case Li = θ, L = 1
nθ. Thus 1

n2

∑n
i=1 Li = L, the lower bound is an identity.1080

This concludes the proof.1081

H.14 Proof of Lemma 141082

From the definition of C(γ, τ, 1) and C (γ, τ, αγ,τ ), we know that1083

C(γ, τ, 1)

C (γ, τ, αγ,τ )
=

1

γLγ,τ (2− γLγ,τ )
.

Now let t = γLγ,τ , we have the following bound on t according to the definition of Lγ,τ given in1084

Theorem 1.1085

t = γLγ,τ

=
n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· γLγ .

Notice that in Lemma 7, we have shown that1086

Lγ

Lemma 7
≤ 1

n

n∑
i=1

Li

1 + γLi
,

and due to Fact 4, we have1087

1

n

n∑
i=1

Li

1 + γLi

Fact 4
≤ Lmax

1 + γLmax
.

As a result,1088

t ≤ n− τ

τ(n− 1)
· γLmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· γLmax

1 + γLmax
=

γLmax

1 + γLmax
< 1.

It is easy to show that g(t) = 1
t(2−t) is monotone decreasing when t ∈ [0, 1], thus1089

C(γ, τ, 1)

C (γ, τ, αγ,τ )
≥ 1

γLmax

1+γLmax

(
1− γLmax

1+γLmax

)
= 2 +

1

γLmax
+ γLmax

AM-GM
≥ 4,

where the last inequality is due to the AM-GM inequality. This concludes the proof.1090
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H.15 Proof of Lemma 151091

As suggested by Lemma 7, we have1092

C (γ, n, αγ,n) ≤ C (γ, τ, αγ,τ ) ≤ C (γ, 1, αγ,1) , ∀τ ∈ [n].

Notice that αγ,τ is given by1093

αγ,τ =
1

γLγ,τ
,

and we know that1094

Lγ,τ =
n− τ

τ(1− n)
· Lmax

1 + γLmax
+

n(τ − 1)

τ(n− 1)
· Lγ .

From Lemma 7 and Fact 4, we know that1095

Lγ

Lemma 7
≤ 1

n

n∑
i=1

Li

1 + γLi

Fact 4
≤ Lmax

1 + γLmax
.

Consequently, Lγ,τ decreases as τ increases. Therefore, αγ,τ increases with the increase of τ , as1096

illustrated by the following inequality1097

αγ,1 ≤ αγ,τ ≤ αγ,n, ∀τ ∈ [n].

This concludes the proof.1098

H.16 Proof of Lemma 161099

We refer the readers to the proof of Lemma 3.1 of Böhm and Wright [2021].1100

H.17 Proof of Lemma 171101

We refer the readers to the proof of Proposition 7 of Yu et al. [2015].1102

H.18 Proof of Lemma 181103

Observe that since 0 < γ < 1
ρ , we do have f + 1

2 · 1
γ ∥·∥2 being strongly convex. This indicates1104

that proxγf is always a singleton and therefore Mγ
f is differentiable, as suggested by Lemma 16.1105

Notice that x is stationary point of Mγ
f if and only if ∇Mγ

f (x) = 0. This is equivalent to1106

1
γ

(
x− proxγf (x)

)
= 0, which is x = proxγf (x). In addition, x = proxγf (x) is equivalent1107

to1108

∇f(x) +
1

γ
(x− x) = 0,

which is ∇f(x) = 0. Combining the above statements, we have ∇f(x) = 0 if and only if1109

∇Mγ
f (x) = 0. This suggests that the two functions have the same set of stationarity points.1110

H.19 Proof of Lemma 191111

Apply Theorem 1 of Khaled and Richtárik [2023], notice that in this case GD satisfy the expected1112

smoothness assumption given in Assumption 2 of Khaled and Richtárik [2023] with A = 0, B = 11113

and C = 0, we obtain that when the stepsize η satisfies1114

0 < η <
1

LB
=

1

L
,

where L is the smoothness constant of f , the iterates of GD satisfy1115

min
0≤k≤K−1

E
[
∥∇f(xk)∥2

]
≤ 2 (f(x0)− inf f)

ηK
.

This completes the proof.1116
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H.20 Proof of Lemma 201117

Notice that we are in the interpolation regime, by Lemma 8, we know that f and Mγ have the same1118

set of minimizers and minimum. As a result,1119

Mγ (x⋆) =
1

n

n∑
i=1

Mγ
fi
(x⋆)

Lemma 8
= f(x⋆). (51)

From the above inequality, we obtain that1120

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2

(51)
=

Mγ (x)−Mγ (x⋆)

γ · ∥∇Mγ (x)∥2
.

Then by the smoothness of Mγ and Fact 3, we have1121

Mγ (x)−Mγ (x⋆)

γ · ∥∇Mγ (x)∥2
Fact 3
≥

1
2Lγ

∥∇Mγ (x)−∇Mγ (x⋆)∥2

γ · ∥∇Mγ (x)∥2

=
1

2γLγ
.

Thus, by combining the above inequalities, we have1122

1
n

∑n
i=1

(
Mγ

fi
(x)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(x)
∥∥∥2 ≥ 1

2γLγ
.

Notice that from the definition of αk,S for FedExProx-StoPS, we have1123

αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)−Mγ

fi
(x⋆)

)
γ ·
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 ≥ 1

2γLγ
.

Therefore, using the above lower bound, it is straight forward to further relax (12) to1124

E
[
f(x̄K)

]
− inf f ≤ 2Lγ (1 + 2γLmax) ·

∥x0 − x⋆∥2

K
.

This concludes the proof.1125

I Experiments1126

In this section, we describe the settings and results of numerical experiments to demonstrate the1127

effectiveness of our method.1128

I.1 Experiment settings1129

We consider the overparameterized linear regression problem in the finite sum setting1130

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

where d is the dimension of the problem, n is the total number of clients, each function fi has the1131

following form1132

fi(x) =
1

2
∥Aix− bi∥2 ,

where Ai ∈ Rni×d, bi ∈ Rni . Here ni is the number of samples on each client. It is easy to see that1133

for each function fi, we have1134

∇fi(x) = A⊤
i Aix−A⊤

i bi, and ∇2fi(x) = A⊤
i Ai ⪰ Od.
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Thus, it follows that1135

∇f(x) =
1

n

n∑
i=1

(
A⊤

i Aix−A⊤
i bi
)
, and ∇2f(x) =

1

n

n∑
i=1

A⊤
i Ai ⪰ Od.

The problem is therefore convex. Notice that one implicit assumption for the class of proximal point1136

methods in practice is that the proximity operator can be computed efficiently. In the setting of linear1137

regression, we have the following closed form formula for the proximity operator proxγfi , which1138

holds for any x ∈ Rd,1139

proxγfi (x) =

(
A⊤

i Ai +
1

γ
Id

)−1

·
(
A⊤

i bi +
1

γ
x

)
. (52)

Observe that in the linear regression problem, since we know the closed form expression of each fi1140

and f , we know the corresponding smoothness constant1141

Li = λmax

(
A⊤

i Ai

)
.

Notice that from Lemma 1, we have1142

Mγ
fi
(x) = fi

(
proxγ (fi)

)
+

1

2γ

∥∥x− proxγ (fi) (x)
∥∥2 .

Since we know proxγ (fi) in closed form using (52), we also know each local Moreau envelope in1143

closed form, and thus the same for Mγ = 1
n

∑n
i=1 M

γ
fi

. As a result, we can deduce Lγ for Mγ .1144

In our experiments, we pick d ≥
∑n

i=1 ni so that we are in the interpolation regime. Each Ai is1145

generated randomly from a uniform distribution between [0, 1), and the corresponding vector bi is1146

also generated from the same uniform distribution. In order to find a minimizer x⋆, we run gradient1147

descent for sufficient amount of iterations. All the codes for the experiments are written in Python1148

3.11 with NumPy and SciPy package. The code was run on a machine with AMD Ryzen 9 5900HX1149

Radeon Graphics @ 3.3 GHz and 8 cores 16 threads. For experiment in the small dimension regime,1150

each algorithm considers here only takes seconds to finish. For larger experiments, depending on1151

the specific implementation, the algorithms typically take a few minutes to half an hour to finish.1152

For FedProx, FedExP and our method FedExProx in the full participation case, the algorithm for1153

a specific dataset is deterministic, while in case where client sampling is taken into account, the1154

randomness of the algorithms comes from the specific sampling strategy used. Our code is publicly1155

available at the following link: https://anonymous.4open.science/r/FedExProx-F262/1156

I.2 Large dimension regime1157

In this section we provide the numerical experiments in the large dimension regime, where ni = 201158

for each i ∈ [n], n = 30, d = 900.1159

I.2.1 Comparison of FedExProx and FedProx1160

In this section, we compare the performance of FedProx with our method FedExProx in the full1161

participation case and in the client partial participation case, demonstrating that the extrapolated1162

counterpart outperforms FedProx in iteration complexity. Notice that here we are only concerned1163

with iteration complexity, since the amount of computations is almost the same for the two algorithms.1164

The only difference is that for FedExProx, instead of simply averaging the iterates obtained from1165

each client, the server performs extrapolation. From Figure 2, it is easy to see that our proposed1166

algorithm FedExProx outperforms FedProx, which provides numerical evidence for our theoretical1167

findings. Notably, in order to achieve the small level of function value sub-optimality, FedExProx1168

typically requires only half the number of iterations needed by FedProx, which indicates a factor1169

of 2 speed up in terms of iteration complexity. Another observation is that, αγ,n is decreasing as γ1170

increases, which suggests that when local step sizes are small, the practice of simply averaging the1171

iterates is far from optimal.1172

We also compare the performance of the two algorithms in the client partial participation setting.1173

As one can observe from Figure 3, FedExProx still outperforms FedProx in the client partial1174

participation setting, which further corroborates our theoretical findings. Observe that αγ,τ here1175

increases as τ becomes larger, which coincides with our predictions in Remark 7.1176
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Figure 2: Comparison of convergence of FedExProx and FedProx in terms of iteration
complexity in the full participation setting. For this experiment γ is picked from the set
{0.0001, 0.001, 0.01, 0.1, 1, 10}, the αγ,n indicates the optimal constant extrapolation parameter
as defined in Theorem 1. For each choice of γ, the two algorithms are run for K = 10000 iterations,
respectively.
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Figure 3: Comparison of convergence of FedExProx and FedProx in terms of iteration complexity
in the client partial participation setting. For this experiment γ is picked from the set {0.0001, 0.001},
the client minibatch size τ is chosen from {10, 15, 20} and the αγ,n indicates the optimal constant
extrapolation parameter as defined in Theorem 1. For each choice of γ and τ , the two algorithm are
run for K = 10000 iterations respectively.
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Figure 4: Comparison in terms of iteration complexity for FedExProx with different step sizes
γ chosen from {0.0001, 0.001, 0.01, 1, 10, 100} in the full participation setting. In the figure, we
use FedExP with different iterations of local training t ∈ {1, 5, 10} as a benchmark in the three
sub-figures. The local step size for FedExP is set to be the largest possible value 1

6tLmax
, where

Lmax = maxi Li.
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Figure 5: Comparison in terms of iteration complexity for FedExProx with different step sizes γ
chosen from {0.0001, 0.0005, 0.01, 1, 10} in the client partial participation case. Different client
minibatch sizes are used, the minibatch size τ is chosen from {5, 10, 20}.

I.2.2 Comparison of FedExProx with different local step size1177

In this section, we compare the performance in terms of iteration complexity for FedExProx with1178

different local step sizes. We also include FedExP as a reference. The local step size of FedExP is1179

chosen to be 1
6tLmax

, where t is the number of gradient descent iterations performed by each client1180

for local training, Lmax = maxi Li, where Li is the smoothness constant of fi.1181

As one can observe from Figure 4, for our proposed method FedExProx, the larger γ is, the faster1182

it will converge. However, as γ becomes larger, the improvement in iteration complexity becomes1183

trivial at some point. Note that for different γ, the complexities required to compute the proximity1184

operator locally varies and often larger γ requires more computation than smaller γ. Compared to1185

FedExP with the best local step size 1
6tLmax

, FedExProx with a large enough γ is better in terms1186

of iteration complexity. In the case where the computation of proximity operator is efficient, our1187

method has a better computation complexity as well. Notice that small γ leads to slow down of1188

our method, and we do not claim that the iteration complexity of FedExProx is always better than1189

FedExP. However, it is provable that FedExProx indeed has a better worst case iteration complexity.1190

We want to emphasize a key difference between FedExP and our method is that we do not have any1191

constraints on the local step size γ, and our method converges for arbitrary local step size γ > 0,1192

while for FedExP, a misspecified step size could lead to divergence.1193

We also compare FedExProx with different step sizes in the client sampling case, see Figure 5.1194

However, since there is no explicit convergence guarantee for FedExP in this case, we did not include1195

FedExP in the plot.1196

In the client partial participation case, the same behavior of how our proposed algorithm FedExProx1197

changes according to different local step sizes γ is observed. A small γ leads to slow convergence1198

of the algorithm, while for large γ, the convergence is improved. However, at some point, the1199

improvement becomes trivial.1200
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Figure 6: Comparison of FedExProx, FedExProx-GraDS and FedExProx-StoPS in terms of itera-
tion complexity with different step sizes γ chosen from {0.0005, 0.0005, 0.05, 0.5, 1, 5} in the full
participation setting.

I.2.3 Comparison of FedExProx and its adaptive variants1201

In this section, we compare FedExProx and its two adaptive variants FedExProx-GraDS and1202

FedExProx-StoPS. We first focus on the full participation case. Note that in this case the all1203

the algorithms are deterministic. For FedExProx-GraDS, as it is suggested by Theorem 2, the1204

extrapolation parameter is given by1205

αk = αk,G :=
1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
The server can use the local iterates it received from each client to compute αk,G directly. If, in1206

addition, we know Lmax, we can implement a version that has a better theoretical guarantee,1207

αk,G :=
1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
For FedExProx-StoPS, we have1208

αk = αk,S =

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 .

In order to implement αk,S , the server requires each client to send the function value of its Moreau1209

envelope at the current iterate to it, and we need to know each infMγ
fi

which, according to Lemma 5,1210

is the same as inf fi.1211

From Figure 6, we can observe that in all cases when γ is sufficiently large, FedExProx-StoPS is1212

the best among the three algorithms considered, and FedExProx-GraDS outperforms FedExProx,1213

this provides numerical evidence for the effectiveness of our proposed algorithms. In the cases when1214

γ is small, the convergence of FedExProx-GraDS seems to be better than the other two algorithms.1215

We also plot the difference of extrapolation parameter used by the algorithms in each iteration.1216

From Figure 7, observe that when γ is small, αk,G is often much larger than αk,S , resulting in1217

better convergence of FedExProx-GraDS as observed in the first two plots of Figure 6. When γ1218
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Figure 7: Comparison of the extrapolation parameter αk used by FedExProx, FedExProx-GraDS
and FedExProx-StoPS in each iteration with different step sizes γ chosen from
{0.0005, 0.0005, 0.05, 0.5, 1, 5} in the full participation setting.

becomes larger, αk,G and αk,S become comparable, and their performance is also comparable, with1219

FedExProx-StoPS slightly better than FedExProx-GraDS.1220

We also conduct the experiment where we take client partial participation into account. We can1221

observe from Figure 8 that in all cases, the two adaptive variants FedExProx-GraDS-PP and1222

FedExProx-StoPS-PP outperform FedExProx in iteration complexity, and between the two adap-1223

tive variants, FedExProx-GraDS is the better one almost all the time. However, FedExProx-GraDS1224

seems to be more stable than FedExProx-StoPS, especially when γ is small.1225
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Figure 8: Comparison of FedExProx, FedExProx-GraDS and FedExProx-StoPS in terms of
iteration complexity with different step sizes γ in the client partial participation (PP) setting.
The client minibatch size is chosen from {5, 10, 20}, for each minibatch size, a step size γ ∈
{0.001, 0.005, 0.1, 0.5, 1, 5, 10, 50, 100, 500} is randomly selected.
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