A IMPLEMENTATION DETAILS

Training. We used the Adam optimizer |Kingma & Bal(2014) for training the model. The exponential
moving average of the weights during training and inference steps. We ran 20 denoising steps in the
inference. Our final score-based diffusion model was trained on a single 48 GB RTX A6000 GPU
and Intel Xeon CPU E5-1650 3.6GHz for 300 epochs (approximately 36 hours).

Hyperparameters. To determine the hyperparameters in the diffusion model, we trained smaller
models with fewer than 0.5 million parameters before scaling up to the final model (5.5 million
parameters). The smaller models were trained for 300 epochs. We used the percentage of improvement
over the starting conformations with respect to the PDB structures to select the hyperparameters. The
examined hyperparameters are listed in Table|l} The most important hyperparameter in tuning is
the maximum noise level o« A large opmax results in large movement during inference, which can
break the constrained loop, while a small op,,x does not introduce noticeable changes in the structures.
For the MHC dataset, the model trained with the hyperparameter oy, = /12 produced the best
results in the loop ensembles. We presented the results from the model trained with this parameter in
the main text. For the nanobody dataset, the best results were obtained from the model trained with
the hyperparameter om,x = m/12. The results from the model trained with this parameter are also
shown in the main text.

Parameter Value
All atoms for remaining part of protein graph NO
Use Language model embeddings NO
Use hydrogens for ligands NO
Use exponential moving average YES
Maximum number of neighbors in protein graph 24
Maximum distance of the neighbors 15
Distance embedding method Sinusoidal
Dropout 0.1
Learning Rate 0.001
Activation function ReLU
Convolutional layers 2
Number of scalar features 48
Number of vector features 10
Omax 7/30,7/22,7/18, 7w /15,7 /12, 7/10

Table 1: Hyperparameter options for the score model. The parameter oy, indicating the maximum
noise level, was tuned for different datasets. For the MHC and nanobody datasets, the trained model
with omax = 7/12 produced the best results in the loop ensembles.

B COMPARISON BETWEEN REGULAR DIFFUSION IN TORSIONAL SPACE AND
DIFFUSION ON TORIC VARIETIES

In the diffusion on toric varieties, the basis vectors for the tangent space at a point on the manifold
depend on the position of that point. Therefore, we have to compute the basis vectors at every
step (both in the forward process and during denoising) using the Jacobian matrix P in Equation 2
and SVD. The differences between DiffDock |Corso et al.|(2023)) (focusing on the torsional score
part) and diffusion on toric varieties for the structure with n flexible torsions are summarized in
Table 2] In the DiffDock framework, the heterograph contains both the receptor and the ligand,
and the neural network predicts the binding poses of the small molecule to the protein by modeling
translation, rotation, and torsional changes in the ligand. The score model consists of several layers,
including embedding layers, interaction layers, and a pseudoscalar layer. Diffusion on toric varieties
is developed in a similar way. The graphs are constructed using detailed atomic representation for the
loop and a coarse-grained representation for the rest of the protein. Moreover, the only flexibility
in the loop arises from the backbone torsions ¢ and ), and translation and rotation of the loop are
not considered. A comparison of the neural network structures for diffusion on toric varieties and
DiffDock is shown in Fig.
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Figure 1: Schematic processes of training for diffusion on toric varieties (left) and DiffDock (right).
The sampled noise A7 is multiplied by the basis vectors V and then applied to the structure. The
structure is next input to the embedding layer, interaction layer, and torsional layer in sequence.
The torsional layer outputs scalars d¢ for the corresponding n torsions. These scalars are finally
multiplied with the basis vectors V in the magnitude layer to predict the magnitudes §7 in each
direction of the basis vectors. In DiffDock, the combination of the torsional layer and magnitude
layer is called the pseudoscalar layer because the standard basis vectors [ey, €, ..., €,] can be chosen
for Vand 7 = 6¢.

Toric varieties Torsional space
Degrees of Freedom n—=6 n
Basis vectors of tangent space | Null vector of Jacobian matrix | Standard basis of R"
Projection function R6B6 Exponential map

Table 2: Comparison between toric varieties diffusion and diffusion in torsional space for the structure
with n flexible torsions in the chain.

C DATA RELATED

C.1 DETAILS OF DATA SPLIT

We split the MHC class I dataset into three parts: training, validation, and testing. The training
dataset, consisting of 636 structures released up to September 30, 2020, and the validation set with
77 structures, released up to February 2, 2022, were used for training the model and optimizing
hyperparameters. The test set with 76 structures, containing data released up to August 23, 2023,
served as the first evaluation of the performance of the trained model. Similarly, we split the
nanobody dataset into training (403 structures, released up to August 31, 2022), validation (51
structures, released up to August 2, 2023), and testing (51 structures, released up to May 1, 2024).

C.2 DISTRIBUTION OF THE LENGTHS OF LOOPS

The distribution of the lengths of loops in MHC peptides and nanobody CDR loops are shown below.
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Figure 2: Length distributions for MHC peptides (Left) and nanobody loops (Right).
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