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Blind Video Bit-Depth Expansion
Anonymous Authors

ABSTRACT
With the rapid development of high-bit-depth display devices, bit-
depth expansion (BDE) algorithms that extend low-bit-depth images
to high-bit-depth images have received increasing attention. Due to
the sensitivity of bit-depth distortions to tiny numerical changes in
the least significant bits, the nuanced degradation differences in the
training process may lead to varying degradation data distributions,
causing the trained models to overfit specific types of degradations.
This paper focuses on the problem of blind video BDE, proposing a
degradation prediction and embedding framework, and designing a
video BDE network based on a recurrent structure and dual-frame
alignment fusion. Experimental results demonstrate that the pro-
posed model can outperform some state-of-the-art (SOTA) models
in terms of banding artifact removal and color correction, avoiding
overfitting to specific degradations and obtaining better general-
ization ability across multiple datasets. The proposed degradation
model and source codes will be open-sourced.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Video bit-depth expansion, false contour removal, quantization and
dequantization.

1 INTRODUCTION
With the continuous development of display technology, display
devices have expanded from traditional 8-bit to higher bit-depths,
such as ultra-high-definition (UHD) TVs and some smartphones
supporting 10-bit or even 12-bit display, to meet the human visual
system’s demand for finer grayscale variations. Therefore, there is
a need for better conversion of the low-bit-depth (LBD) image and
video resources to adapt to high-bit-depth (HBD) display devices.
The bit-depth expansion (BDE) task, which aims at recovering high-
quality HBD images/videos from LBD ones, has gradually attracted
more attention from academia and industry.

Traditional BDE methods include zero-padding (ZP), directly
filling missing bits with zeros; multiplication-by-ideal-gain (MIG),
commonly multiplying by a gain factor (2ℎ − 1)/(2𝑙 − 1) where
ℎ and 𝑙 represent high and low bit depths respectively; and bit
replication (BR), filling missing bits by replicating known higher
bits. These methods can expand bit-depth through simple strategies
but often introduce visual artifacts such as flat area banding (false
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Figure 1: The trained LBDEN model [31] tends to overfit the
degradation settings of the training data.

contours) and color distortion. Further improvement is achieved by
employing dithering or debanding algorithms [1, 3, 8, 15, 20–22, 24]
to alleviate visual artifacts.

In recent years, deep neural networks (DNNs) have brought a
significant revolution in the field of image enhancement and restora-
tion. BDE is a typical ill-posed image regression problem, which is
highly suitable for being addressed using deep models. Early DNN-
based methods introduce classic architectures like UNet and ResNet
to remove the flat area banding artifacts [2][11] or predict missing
bits [12]. Subsequently, numerous related improvements emerged.
For example, Zhao et al. [31] propose a lightweight residual-block-
in-residual-block structure with dilated convolutions. Punnappu-
rath et al. [19] employ a smart strategy of predicting each bit-plane
bit-by-bit to enhance prediction accuracy. Liu et al. have designed
many effective deep models for image BDE task, such as enhanced
variational autoencodermodel [12], shuffle-basedmulti-scale fusion
network [13] and iteratively recovered residual features [18]. Re-
cently, some video BDE models [14][10] have extended traditional
single-image BDE tasks to multi-frame BDE, which can eliminate
severe banding effects by utilizing multi-frame information.

Currently, in BDE research, HBD ground truth (GT) images are
often degraded to obtain corresponding LBD inputs. Unlike other
image restoration tasks, the least significant bits are susceptible to
tiny value changes, and the choice of different degradation strate-
gies significantly affects the BDE models. We observe that models
trained under different degradation conditions often tend to overfit
the specific degradations, thereby reducing the generalization and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The same image undergoes degradation from 14 different types. Tiny differences in the degradation settings may lead
to significant differences in the degraded results.

robustness of the BDE algorithm in practical applications. As shown
in Fig. 1, taking the light bit-depth expansion network (LBDEN)
[31] as an example, we employ quantization degradation to obtain
8-bit-to-4-bit BDE training data under different color spaces, i.e.,
RGB, YUV and YCbCr. The results indicate that these degradations
lead to significant banding effects, but the trained LBDEN model is
only effective for the banding artifacts consistent with the training
scenarios, performing poorly on images with other degradation
types. This shows that the current BDE learning methods overfit
to specific types of degradation, resulting in poor generalization
to other types of data distributions. Similarly, other settings in the
degradation process also cause overfitting problems, including dif-
ferent gain factors 2ℎ−𝑙 and (2ℎ −1)/(2𝑙 −1), and whether to round
down, round up, or round to the nearest integer after dividing by
the gain factor.

In practice, we aim for trained BDE models to be effective across
various types of data distributions, rather than being limited to
specific ones. Therefore, this paper proposes a robust blind video
bit-depth expansion (BVBDE) method. Specifically, the proposed
method first designs a series of bit-depth degradation models by
combining different color spaces, bit-depth quantization strategies,
and numerical rounding methods, and then a blend of various degra-
dation types is used to train the BDE model. For a LBD image with
unknown data distributions, a pre-trained discriminative model is
employed to predict the degradation type that is more similar to
the data distribution of the degradation model. The predicted degra-
dation information is then embedded into the BDE network using
positional encoding. Additionally, this paper proposes a recurrent
dual-frame fusion enhancement network that efficiently utilizes
temporal information and neighbor frame details to improve the
visual quality of BDE results.

The main contributions of this paper are summarized as follows.

• This paper experimentally points out the significant impact
of different degradations on the generalization and robust-
ness of BDE models. Consequently, the task of blind video
bit-depth expansion is introduced to avoid overfitting to
training data distributions of specific degradation.

• A video bit-depth expansion architecture is designed based
on degradation distribution prediction and embedding, which
effectively reduces the difficulty of learning multiple degra-
dations simultaneously while enhancing the robustness of
the model. In addition, the proposed network makes full
use of long-term temporal information and neighbor frame
details while balancing the benefits of both sliding window
structure and recurrent structure.

• Experimental results demonstrate that the proposed method
effectively improves the robustness of BDE models, outper-
forming some SOTA algorithms on blind BDE scenarios, and
achieving better subjective performance in false contouring
removal and color correction.

2 RELATEDWORKS
With the rise of deep learning, it has gradually become the main-
stream tool for BDE tasks. Liu et al. [11] firstly adopt DNN to restore
HBD images. Zhao et al. [32] introduce a dual-branch residual BDE
network, which removes banding artifacts on flat regions and pre-
dicts missing bits for texture regions, respectively. Then, by focusing
on flat regions, Zhao et al. propose a lightweight and efficient model
LBDEN [31] using a residual-block-in-residual-block structure with
dilated convolutions. Wen et al. [26] employ Transformer blocks to
extract multi-scale information, cyclically fusing local information
guided by global information. Unlike previous residual architec-
tures, BitNet [2] employs an encoder-decoder architecture with
dilated convolutions and multi-scale feature integration.

Instead of directly learning regression from LBD to HBD im-
ages, some methods reconstruct residual components through deep
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Figure 3: Framework of the proposed blind video bit-depth expansion (BVBDE) method.

models. In [19], Punnappurath et al. recover each bit-wise map iter-
atively, achieving impressive performance but requiring training
many times. Subsequently, Liu et al. [18] decompose the residual
maps into different frequency sums, proposing an iterative residual
feature optimization strategy. BRNet [16] utilizes network learning
to assign weights to each pixel, enabling the restoration of images
with different quantization levels. Han et al. [5] utilize implicit neu-
ral representation and a phase estimator to achieve the recovery of
dequantized images from inputs with arbitrary quantization levels.

Recently, some video BDE models have been proposed to lever-
age multi-frame information. Liu et al. [14] present an attention
mechanism for implicit alignment to remove banding artifacts
across multiple frames. However, due to the high computational
complexity of alignment operations, Liu et al. [10] subsequently
propose a two-stage progressive network for adaptive inter-frame
information fusion. Although these models have achieved superior
performance by using multi-frame information, their performance
on blindly quantized images is still not ideal. Note that Zhao et al.
[30] propose a blind image de-contouring algorithm, attempting
to simultaneously address banding artifacts caused by different
degradations such as BDE, image and video coding, and color ad-
justments. In this paper, we further observe that even different
bit-depth degradations will lead to significant generalization issues,
so we mainly focus on the blind BDE problem.

3 PROPOSED METHOD
3.1 Degradation Formulation for Blind BDE
For a h-bit HBD image 𝐼ℎ and corresponding l-bit LBD image 𝐼𝑙 ,
the degradation model in this paper is defined as,

𝑰 𝑙 =
[
𝑓
↑
𝐷𝑄

( [
𝑓
↓
𝑄
(𝑓𝐶 (𝑰ℎ))

] )]
(1)

where 𝑓𝐶 , 𝑓
↓
𝑄
, and 𝑓

↑
𝐷𝑄

denote color space conversion, quantization
process, and dequantization operation, respectively, and [·] repre-
sents a rounding function. Three different rounding functions are
used in our experiments, i.e., round down (floor), round up (ceiling),
or round to the nearest integer (round). In addition to RGB color
space, YUV and YCbCr color spaces are adopted, which are often
used in image and video coding. For quantization degradation 𝑓

↓
𝑄
,

two types of ideal gain factors (GF) are used, as follows,

𝑰 ∗
𝑙
= 𝑓

↓
𝑄
(𝑰ℎ) =

{
𝑰ℎ ∗ 2𝑙−1

2ℎ−1 , (𝐺𝐹1)
𝑰ℎ ∗ 1

2ℎ−𝑙 , (𝐺𝐹2)
(2)

where GF1 factor is commonly used in the multiplication-by-ideal-
gain (MIG) algorithm, and GF2 factor is equivalent to a bitwise
right-shift by (h-l) bits. These two factors are also employed during
the dequantization stage. Multiplying byGF1 factor is theMIGwhile
multiplying by GF2 factor corresponds to zero padding (ZP). Addi-
tionally, traditional bit replication (BR) methods are also utilized in
the dequantization process, as follows:

𝑰 ∗
ℎ
= 𝑓

↑
𝐷𝑄

(
𝑰 ∗
𝑙

)
=


𝑰 ∗
𝑙
∗ 2ℎ−1

2𝑙−1 , (𝑀𝐼𝐺)
𝑰 ∗
𝑙
∗ 2ℎ−𝑙 , (𝑍𝑃)

shift(ℎ−𝑙 )
𝐿

(
𝑰 ∗
𝑙

)
+ bitcopy

(
𝑰 ∗
𝑙

)
, (𝐵𝑅)

(3)
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Figure 4: Structure of frequency-separated fusion block (FSFB).

where shift𝐿 denotes bitwise left-shift, and bitcopy represents bit
replication operation that fills unknown (ℎ − 𝑙) bits using known
bits.

Theoretically, this degradation model contains a total of 54 (3 ×
3×2×3) different degradation combinations. However, some combi-
nations may result in unreasonable and erroneous values in practice.
For example, using the GF2 factor, ZP factor, and ceiling operations
in the YUV color space may produce artifacts such as black dots.
We further filter out degradation combinations that lead to visual
artifacts and then merge types of degradation with the same nu-
merical distributions, ultimately obtaining 14 different degradation
scenarios, as illustrated in Fig. 2. We can observe that the BDE
degradation model exhibits high sensitivity to numerical values.
Taking the first two classes as examples, even different rounding
functions may cause significantly different color deviations and
banding artifacts.

3.2 The Framework of Blind Video BDE Method
The framework of the proposed BVBDE method is illustrated in Fig.
3, which consists of a recurrent dual-frame enhancement module
and a degradation distribution prediction and embedding module.
Multi-frame enhancement networks often employ sliding-window-
based architectures or recurrent neural network (RNN) structures.
The sliding-window architecture can fully utilize spatial details
of neighbor frames by aligning and fusing multiple frames within
the window. However, its drawback lies in its inability to capture
long-term temporal information, and high computational cost for
multi-frame alignment and fusion. The RNN structure can transmit
long-term temporal information through hidden features, and the
computational complexity of each recurrent cell is close to that of
a single-frame model. However, RNN-based structure cannot fully
exploit the spatial details of neighbor frames. Therefore, by balanc-
ing the advantages of these two types of multi-frame enhancement
architectures, the proposed BVBDE adopts a recurrent structure,
and fuses two adjacent frames in each recurrent cell, as follows,

𝑰 𝑡𝐻 ,𝑯
𝑡 = 𝐹𝐵𝑉𝐵𝐷𝐸

(
𝑰 𝑡−1𝐿 , 𝑰 𝑡𝐿,𝑯

𝑡−1, 𝒄, 𝜽
)

(4)

where 𝑰 𝑡
𝐿
and 𝑰 𝑡

𝐻
denote LBD input and reconstructed HBD result

of the t-th frame, 𝑯 𝑡 represents the hidden state features of the

t-th frame, 𝐹BVBDE denotes the BVBDE network with learnable
parameters𝜽 . The symbol 𝒄 represents the embedded information of
the degradation distribution predicted by a pre-trained classification
model 𝐹𝐷 , calculated as follows:

𝒄 = 𝑃𝐸
(
𝐹𝐷

(
𝑰 𝑡𝐿

) )
(5)

where PE(·) denotes the positional encoding operation as in Trans-
former network [23]. It is worth noting that frames of one video
sequence typically have the same bit-depth degradation. Therefore,
for each video sequence, the discriminator network 𝐹𝐷 runs only
once, and the same encoded distortion prediction information 𝒄 is
embedded into the calculation of each frame.

3.3 Details of Each Module
As shown in Fig. 3, the BVBDE network comprises a shallow feature
extractionmodule, a dual-frame alignmentmodule, a reconstruction
module, and a degradation embedding module.
Shallow feature extraction module. This input module consists
of a 3×3 convolutional layer and a normal residual block (ResBlock)
[6]. In each recurrent cell, current frame 𝑰 𝑡

𝐿
and the previous neigh-

bor frame 𝑰 𝑡−1
𝐿

both independently utilize the feature extraction
module.
Dual-frame alignment module. Banding or false contour arti-
facts often occur in low-frequency flat regions. Therefore, we tend
to enforce the network to differentiate between flat regions and
high-frequency texture regions during optimization. Motivated by
the frequency-separation deblurring method [29], pooling oper-
ations can be used to downsample features to compel the model
to separately process the downsampled low-frequency features
and the high-frequency features. Thus, a frequency-separated fu-
sion block (FSFB) unit is designed, as illustrated in Fig. 4. First,
the pooling layer is employed to increase the receptive field and
reduce computational complexity, which also discards some high-
frequency details to focus on the low-frequency regions where
banding artifacts are more significant. Subsequently, two branches
are simultaneously utilized to process features in downsampling
and upsampling spaces, respectively, to perceive the differences
between high and low-frequency features. Finally, the high and
low-frequency features are added together and upsampled, and
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Figure 5: Structure of adaptive temporal alignment unit (ATA).

then fused through a simple feature fusion process. In the proposed
method, one FSFB unit is used to fuse the relevant features between
the previous frame 𝑰 𝑡−1

𝐿
and previous hidden features 𝑯 𝑡−1, the

other FSFB unit fuses the features between the current frame 𝑰 𝑡
𝐿

and the concatenated frames. These two FSFB units share weights.
After FSFB calculation, historical features and current-frame

features undergo alignment fusion through an adaptive temporal
alignment unit (ATA). Fig. 5 illustrates the structure of ATA, which
primarily employs cross-branch merging to fuse features and uti-
lizes channel and spatial attention mechanism to improve fusion
effectiveness. Commonly used channel attention (CA) and spatial
attention (SA) structures are used in this unit with minor modi-
fications. A concatenation operation is introduced in the CA to
capture interactions between historical and current features. Since
the banding artifacts often occur over large areas in flat regions,
multi-branch and multi-scale convolutions are adopted in the SA to
obtain a larger receptive field. Both CA and SA apply the Softmax
function to normalize the pixels at each position along the channel
direction, enabling the network to focus on relevant channels.
Reconstruction module. The reconstruction stage of this method
consists of 10 Transformer blocks and 2 residual blocks. To reduce
the computational cost, lightweight Transformer blocks (Trans-
Block) [28] [9] are applied, which reduces the dimensionality of
the computed attention maps from RHW×HW to RC×C through di-
mension exchange, allowing direct application to compute image
features without patch-level tokenization. We set the number of
attention heads in these blocks to 1 and add a branch with dilated
convolutions in the feed-forward network (FFN) to capture more
spatial information. In our experiments, the dilation parameters in
these TranBlocks are empirically set to [1, 1, 2, 2, 3, 3, 2, 2, 1, 1].
Details of these TransBlocks can be found in the supplementary
materials.
Degradation embedding module. For blind LBD input, a pre-
trained classification model is used to predict which class of degra-
dation data distribution is more similar to the data distribution of

the input image. In this paper, MobileNetV1 [7] is adopted as the
classification model, and is separately trained with different degra-
dation types as class labels (1∼14). Visual artifacts of BDE mainly
arise from the least significant bits, which are easily overlooked by
the classification model due to their small values. Therefore, during
the training of the classification model, the least significant l bits
are extracted by bitwise left-shift and then concatenated with the
original image to input into the classification model, allowing the
model to focus on the least significant bits. As mentioned before,
this model is computed only once for an entire video sequence.

Inspired by the positional encoding in Transformer models [23],
the degradation distribution prediction result of the classification
model is also embedded into the BDE network through positional
encoding operation. After positional encoding, a 4-layer multi-layer
perceptron (MLP) with ReLU activation function is employed. The
dimension of the encoded result is RN×C×1×1, which is then added
to the features of each block.

3.4 Loss functions
The proposed BVBDE network is trained by constraining the simi-
larity between the output 𝑰 𝑡

𝐻
and the ground truth 𝑶𝑡

𝐻
. For each

training video sequence with 𝑁𝑇 frames, we use common L1 loss
L1 and SSIM loss L𝑠𝑠𝑖𝑚 to optimize the BDE model, as following:

L =
1

𝑁𝑇 − 1

𝑁𝑇∑︁
𝑡=2

(
L1

(
𝑰 𝑡𝐻 ,𝑶

𝑡
𝐻

)
+ L𝑠𝑠𝑖𝑚

(
𝑰 𝑡𝐻 ,𝑶

𝑡
𝐻

) )
(6)

4 EXPERIMENT
4.1 Datasets and Implementational Details
Blind Video BDE Dataset. To build the dataset for blind video
BDE, many 8-bit 4K (3840 × 2160) videos are collected from the
Internet and further downsampled to 2K resolution (1920 × 1080).
These videos are then randomly degraded for 8-bit-to-4-bit and
8-bit-to-6-bit scenarios through the aforementioned 14 classes of
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Figure 6: Visualizing the restoration of a single frame of a 4-8-bit video using various BDE algorithms.

Table 1: The quantitative results of 4-8-bit and 6-8-bit on the blind video BDE dataset. The best result is marked in bold, and the
second-best result is underlined.

FFmpeg Filter AdaDeband BDEN BDEN-retrain LBDEN LBDEN-retrain BDCN BRNet MSTFN Our

4bit

PSNR↑ 27.69 27.66 26.07 29.43 25.75 29.12 28.12 28.22 29.00 31.30
SSIM↑ 0.9380 0.9392 0.9730 0.9718 0.9733 0.9695 0.9618 0.9745 0.9591 0.9804
LPIPS↓ 0.2888 0.2897 0.1406 0.1510 0.1472 0.1717 0.1516 0.1462 0.1912 0.0791
Time(s) / / / 0.1279 / 0.0499 0.0193 0.1008 1.0200 0.0371

6bit

PSNR↑ 38.58 38.81 37.19 40.01 36.97 39.76 37.02 39.36 39.09 41.65
SSIM↑ 0.9841 0.9878 0.9939 0.9942 0.9941 0.9942 0.9933 0.9931 0.9906 0.9953
LPIPS↓ 0.0595 0.0718 0.0292 0.0291 0.0260 0.0319 0.0294 0.0480 0.0582 0.0161
Time(s) / / / 0.1281 / 0.0493 0.0192 0.0992 1.0200 0.0361

Parameters(k) / / / 2100 / 183 1232 4086 4227 214

quantization degradation methods. Finally, the training set contains
428 video sequences with 50 frames for each sequence, and the test
set consists of 97 sequences with 5 frames for each sequence.
Generalization Test Sets. To evaluate the generalization ability
of BDE models, we add two public video datasets of REDS [17] and
Vimeo-90K [27], and another real-world test set. For the REDS test
set, the first 107 sequences from the training set are selected for
testing. For the Vimeo-90K set, we select one sequence from each
folder, resulting in a total of 96 sequences. The degradation types

of these test sequences are also randomly selected. To create the
real-world test set, we collect 9 sequences with unknown banding
artifacts from the Internet, each sequence contains 5 frames.
Implementational Details. To facilitate the learning of historical
information calculation and updating during the training of the
recurrent network, three recurrent cells are concatenated in series
and optimized together, with each cell outputting one reconstructed
frame. The training images are further cropped into image patches
with 128×128 resolution.We utilize the Adam optimizer and employ
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Figure 7: Visualization of 4-8-bit results on the Vimeo-90K and REDS datasets. The top section shows results on the Vimeo-90K
dataset, while the bottom section displays results on the REDS dataset.

Table 2: The quantitative results of different methods on the REDS and Vimeo-90K test sets.

FFmpeg Filter AdaDeband BDEN-retrain LBDEN-retrain BDCN BRNet MSTFN Our

REDS

4-8-bit
PSNR↑ 27.87 27.89 29.96 29.76 28.14 28.85 29.37 31.49
SSIM↑ 0.9199 0.9219 0.9493 0.9454 0.9319 0.9530 0.9365 0.9564
LPIPS↓ 0.1373 0.1373 0.0961 0.1021 0.1110 0.0958 0.0987 0.0769

6-8-bit
PSNR↑ 38.11 38.70 39.78 39.51 37.76 39.18 38.88 41.75
SSIM↑ 0.9845 0.9905 0.9926 0.9926 0.9916 0.9926 0.9907 0.9934
LPIPS↓ 0.0211 0.0200 0.0148 0.0155 0.0206 0.0167 0.0172 0.0109

Vimeo-90K

4-8-bit
PSNR↑ 28.12 28.09 29.64 29.32 28.73 28.47 29.14 31.40
SSIM↑ 0.9149 0.9169 0.9471 0.9475 0.9394 0.9530 0.9331 0.9612
LPIPS↓ 0.1761 0.1775 0.1011 0.1118 0.1097 0.0852 0.1251 0.0722

6-8-bit
PSNR↑ 38.66 39.06 39.82 39.64 37.58 39.65 38.80 41.60
SSIM↑ 0.9823 0.9874 0.9894 0.9914 0.9901 0.9913 0.9881 0.9924
LPIPS↓ 0.0231 0.0256 0.0145 0.0156 0.0218 0.0147 0.0240 0.0106

a cosine annealing learning rate schedule with a batch size of 4,
initializing the learning rate to 4 × 10−4. The proposed method is
implemented on the PyTorch platform and NVIDIA TITAN V GPU.

4.2 Experimental Results
Quantitative results. The proposed method is compared with
two non-learnable debanding methods of FFmpeg Filter [4] and
AdaDeband [8], a blind image debanding network BDCN [30], two
image BDE networks of BDEN [32] and LBDEN [31], and a video
BDE model MSTFN [10]. For BDCN, we directly use the pre-trained
model for testing. Although BRNet does not have publicly available

training codes, the pre-trained BRNet [16] models can support BDE
from arbitrary bits to 8 bits. For fair comparison, the BDEN, LBDEN,
and MSTFN have also been retrained on the proposed blind video
BDE dataset.

The quantitative results of 4-8-bit and 6-8-bit tests are listed
in Table 1. Firstly, by comparing the original BDEN and LBDEN
with the retrained BDEN and LBDEN, it can be observed that the
original BDEN and LBDEN overfit to specific training distributions,
resulting in worse performance than directly applying deband-
ing algorithms for blind BDE. However, through retraining on the
proposed dataset, these models exhibit significant improvements
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Table 3: Quantitative Results in Ablation Study.

BVBDE w/o degradation embedding degradation w/o FSFB w/o dilated convolution
embedding GT labels in TransBlock

4-8-bit
PSNR↑ 31.30 30.96 32.43 31.16 30.92
SSIM↑ 0.9804 0.9793 0.9804 0.9799 0.9782
LPIPS↓ 0.0791 0.0886 0.0763 0.0821 0.0998

6-8-bit
PSNR↑ 41.65 40.83 43.00 42.08 42.15
SSIM↑ 0.9953 0.9952 0.9952 0.9951 0.9949
LPIPS↓ 0.0161 0.0175 0.0140 0.0171 0.0186

Table 4: Comparison of different inter-frame alignment
methods on 4-8-bit blind video BDE task.

PSNR↑ SSIM↑ LPIPS↓ FLOPs

Adaptive temporal alignment 31.30 0.9804 0.0791 14.38G
Concat 30.89 0.9747 0.1187 3.79G

PCD module 31.25 0.9813 0.0787 76.12G

and can handle data distribution differences caused by different
degradations. Secondly, the results of the proposed method signif-
icantly outperform the retrained SOTA methods BDEN, LBDEN,
and MSTFN, which demonstrate the effectiveness of the proposed
degradation prediction and embedding framework and the recur-
rent dual-frame alignment network. Finally, the number of parame-
ters and average runtime for each method are also listed in Table 1.
The proposed method can achieve SOTA results with a relatively
lightweight structure. Note that for each video sequence, the clas-
sification model is only computed once (6 ms), so the additional
runtime of the classification model becomes proportionally smaller
as the number of frames in the sequence increases.

Table 2 presents the test results of these methods on the REDS
and Vimeo-90K test sets. It can be seen that the SOTA BDE models
trained on the proposed dataset exhibit good generalization perfor-
mance when tested on cross-datasets. Furthermore, the proposed
method still achieves better scores than other SOTA models in both
distortion and perceptual metrics.
Visual quality comparisons. Some 4-8-bit results of different
methods are illustrated in Fig. 6. It can be observed that the pro-
posed method effectively removes severe banding artifacts and
achieves better subjective quality than other SOTA methods. Addi-
tionally, other methods may result in varying degrees of color shifts,
whereas the proposed method can accurately restore color informa-
tion through perception and mapping of different data distributions.
Fig. 7 shows some 4-8-bit results of different methods on REDS and
Vimeo-90K test sets. We can find that the proposed method ro-
bustly removes banding artifacts caused by different degradations
and restores high-fidelity colors.

In addition, extended experiments are implemented on several
real-world videos with banding artifacts. Related visual results and
mean opinion scores can be found in the supplementary materials.

4.3 Ablation study
Table 3 lists the results of ablation experiments. The proposed
BVBDE model perceives the degradation type of the input LBD
image through a pre-trained classification model. Therefore, we
compare the results with two different embeddings, i.e., one with-
out using any degradation type embedding and the other using
ground truth labels. It can be observed that perceiving the degrada-
tion type during the training phase effectively improves the final
results. Furthermore, if the classification model can be more accu-
rate, there is still room for further improvement in reconstruction
quality. However, a larger classification model also means increased
computational cost for degradation prediction.

In addition, Table 3 also shows the results of removing the fre-
quency separation fusion block (FSFB) unit and the dilated convo-
lution branch in the feed-forward network of TransBlock. It can be
found that these designs can also bring improvements.

Table 4 compares the results of different inter-frame alignment
methods. It can be seen that the proposed adaptive temporal align-
ment (ATA) unit and common pyramid cascade deformable (PCD)
module [25] outperform the direct concatenation. The proposed
alignment unit can achieve similar performance to the PCDmodule,
but with less than one-fifth of the computational complexity.

5 CONCLUSION
This paper analyzed the problem of current bit-depth expansion
(BDE) networks overfitting to specific degradations and thus pro-
posed a blind video BDE algorithm. The proposed method syn-
thesizes and merges 14 types of degradations by analyzing the
computational differences in the quantization and dequantization
processes, pre-trains a classification model to perceive the degra-
dation distribution types of input low bit-depth images, and then
embeds degradation prediction into the learning process of the
BDE network. An efficient blind video BDE network is proposed
based on recurrent structure and dual-frame alignment fusion. In
addition, some detailed modules are designed or improved, such
as frequency separation fusion block and adaptive temporal align-
ment. Experimental results demonstrate that the proposed method
can outperform SOTA methods in banding artifact removal and
color restoration, and achieves better generalization and robustness
across multiple datasets.
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