
APPENDIX

A PROPERTIES OF SEPARATORS

PROPOSITION 1. Let S1, S2 → Ss,t(G). Then Cs(G↑S1) ↓ Cs(G↑S2) if and only if Ct(G↑S2) ↓ Ct(G↑S1).

Proof. If Cs(G↑S1) ↓ Cs(G↑S2), then Cs(G↑S1) ↔ NG(Cs(G↑S1)) ↓ Cs(G↑S2) ↔ NG(Cs(G↑S2)). By Lemma 1,
we have that S1 = NG(Cs(G↑S1)). Therefore, Cs(G↑S1) ↔ S1 ↓ Cs(G↑S2) ↔ NG(Cs(G↑S2)). In particular, S1 ↗

Ct(G↑S2) = ↘. This means that Ct(G↑S2) is contained in the connected component of G↑S1 that contains t. By definition,
Ct(G↑S2) ↓ Ct(G↑S1). The other direction is symmetrical.

PROPOSITION 2. Let S1, S2 be two s, t-separators in H . Then S1 ↭
H

S2 if and only if Cs(H↑S1) ↓ Cs(H↑S2) and

Ct(H↑S2) ↓ Ct(H↑S1).

Proof. If Cs(H↑S1) ↓ Cs(H↑S2), then ↘ = Cs(H↑S2) ↗ S2 ≃ Cs(H↑S1) ↗ S2, and hence Cs(H↑S1) ↗ S2 = ↘.
Consequently, (S2\S1) ↗ (Cs(H↑S1) ↔ S1) = ↘. Every vertex connected to s in H↑S1 belongs to Cs(H↑S1). Since
(S2\S1) ↗ (Cs(H↑S1) ↔ S1) = ↘, then S1 separates s from S2\S1. Symmetrically, if Ct(H↑S2) ↓ Ct(H↑S1), then
(S1\S2) ↗ (Ct(H↑S2) ↔ S2) = ↘, thus S2 separates t from S1\S2.

If S1 separates s from S2\S1, then (S2\S1) ↗ Cs(H↑S1) = ↘. By definition, S1 ↗ Cs(H↑S1) = ↘, and hence S2 ↗

Cs(H↑S1) = ↘. This, in turn, means that Cs(H↑S1) is contained in the connected component of H↑S2 that contains s. By
definition, Cs(H↑S1) ↓ Cs(H↑S2). Symmetrically, if S2 separates t from S1\S2, then Ct(H↑S2) ↓ Ct(H↑S1). So, if
S1 ↭

H
S2 then Cs(G↑S1) ↓ Cs(H↑S2) and Ct(H↑S2) ↓ Ct(H↑S1).

Proposition 3. Let S → Ss,t(G) where S ↓ NG(s). For every T → Ss,t(G), it holds that Cs(G↑S) ↓ Cs(G↑T ).

Proof. Since S ↓ NG(s) ↓ T ↔ Cs(G↑T ), then Cs(G↑S) ↓ Cs(G↑T ).

A.1 SEPARATORS BETWEEN VERTEX-SETS

Lemma 3. Let A and B be two disjoint, non-adjacent subsets of V(G). Then S → SA,B(G) if and only if S is an
A,B-separator, and for every w → S, there exist two connected components CA, CB → C(G↑S) such that CA ↗ A ⇐= ↘,
CB ↗B ⇐= ↘, and w → NG(CA) ↗NG(CB).

Proof. If S → SA,B(G), then for every w → S it holds that S\{w} no longer separates A from B. Hence, there is a path
from some a → A to some b → B in G↑(S\{w}). Let Ca and Cb denote the connected components of C(G↑S) containing
a → A and b → B, respectively. Since Ca and Cb are connected in G↑(S\{w}), then w → NG(Ca) ↗NG(Cb).

Suppose that for every w → S, there exist two connected components CA, CB → CG(S) such that CA↗A ⇐= ↘, CB ↗B ⇐= ↘,
and w → NG(CA)↗NG(CB). If S /→ SA,B(G), then S\{w} separates A from B for some w → S. Since w connects CA to
CB in G↑(S\{w}), no such w → S exists, and thus S → SA,B(G).

Observe that Lemma 3 implies Lemma 1. By Lemma 3, it holds that S → Ss,t(G) if and only if S is an s, t-separator
and S ↓ NG(Cs(G↑S)) ↗ NG(Ct(G↑S)). By definition, NG(Cs(G↑S)) ↓ S and NG(Ct(G↑S)) ↓ S, and hence
S = NG(Cs(G↑S)) ↗NG(Ct(G↑S)), and S = NG(Cs(G↑S)) = NG(Ct(G↑S)).

Lemma 4. Let G and H be graphs where V(G) = V(H) and E(G) ↓ E(H). Let A,B ↓ V(G) disjoint and non-adjacent.
Let S → SA,B(G). If S is an A,B-separator in H , then S → SA,B(H).

Proof. Since S → SA,B(G), then by Lemma 3, for every u → S there exist two distinct connected components Cu

A
, Cu

B
→

C(G↑S) where Cu

A
↗ A ⇐= ↘, Cu

B
↗ B ⇐= ↘, and u → NG(Cu

A
) ↗ NG(Cu

B
). Since E(H) ≃ E(G), and since S is an

A,B-separator in H , then H↑S contains two distinct connected components Du

A
, Du

B
where Cu

A
↓ Du

A
and Cu

B
↓ Du

B
.

Therefore, w → NH(Du

A
) ↗NH(Du

B
). By Lemma 3, we have that S → SA,B(H).

Lemma 5. Let u → V(G)\sB such that NG(u) ↓ NG(s). Then Ss,B(G) = Ss,B(G↑u)
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Proof. Let S → Ss,B(G). We first show that u /→ S. Suppose, by way of contradiction, that u → S. By Lemma 3, there
exist two distinct vertices x, y → NG(u) such that x → Cs(G↑S) and y → CB(G↑S), where CB(G↑S) ↗ B ⇐= ↘. By the
assumption of the lemma that NG(u) ↓ NG(s), then y → NG(s). But then, S is not an s,B-separator of G; a contradiction.
Hence u /→ S for any S → Ss,B(G).

Let T → Ss,B(G↑u). We show that T is an s,B-separator of G. If it is not, then since every s,B-path of G↑u is also an
s,B-path of G, then T ↔ {u} → Ss,B(G). But this contradicts the fact that u /→ S for every S → Ss,B(G). Hence, T is
an s,B-separator of G. By Lemma 4, we have that T → Ss,B(G). Hence, we have that Ss,B(G↑u) ↓ Ss,B(G). For the
other direction, let T → Ss,B(G). Clearly T is an s,B-separator of G↑u. If T /→ Ss,B(G↑u), then there exist a T →

⇒ T
s.t. T →

→ Ss,B(G↑u). By the previous direction, we have that T →
→ Ss,B(G↑u) ↓ Ss,B(G). But then, T →

→ Ss,B(G)
contradicting the minimality of T . Hence, Ss,B(G↑u) = Ss,B(G).

Lemma 6. Let A ↓ V(G)\Bs. Let H be the graph that results from G by (1) adding all edges between s and NG(A), and
(2) removing the vertices A and their adjacent edges from H . Then SsA,B(G) = Ss,B(H).

Proof. Let T → SsA,B(G), and let C1, . . . , Ck denote the connected components of C(G↑T ) containing vertices from
sA. By definition, B ↗ Ci = ↘ for all i → {1, 2, . . . , k}. Assume wlog that s → C1. Let H → denote the graph that results
from G by adding all edges between s and NG(A). By definition, the edges added to G to form H → are between C1 and
C1 · · ·Ck ↔ T . Therefore, T separates sA from B in H →. Since E(H →) ≃ E(G), then by Lemma 4, if T → SsA,B(G) and T
is an sA,B-separator in H →, then T → SsA,B(H →). Therefore, we have that SsA,B(G) ↓ SsA,B(H →).

We now claim that SsA,B(H →) = Ss,B(H →). Take T → Ss,B(H →). We claim that T is an sA,B-separator in H →. Suppose
it is not, and let C → C(H →

↑T ) such that a, b → C where a → A and b → B. Let y → NH→(a) ↗ C. By construction,
y → NH→(s). But then, s → NH→(C) and hence T is not an s,B-separator in H →; a contradiction. Since T → Ss,B(H →), then
by Lemma 3, we have that for every u → T there exists a connected component Cu

B
→ C(H →

↑T ) s.t. B ↗ Cu

B
⇐= ↘ and

u → NH→(Cs(H →
↑T )) ↗NH→(Cu

B
). By Lemma 3, we have that T → SsA,B(H →). Hence Ss,B(H →) ↓ SsA,B(H →). For the

other direction, let T → SsA,B(H →). Clearly, T is an s,B-separator of H →. If T /→ Ss,B(H →), then there exists a T →
⇒ T

such that T →
→ Ss,B(H →). By the previous direction, we have that T →

→ SsA,B(H →), but this contradicts the minimality of T .
Hence, Ss,B(H →) = SsA,B(H →). Overall, we have shown that SsA,B(G) ↓ SsA,B(H →) = Ss,B(H →).

Let T → Ss,B(H →). We first show that T separates sA from B in G; if not, there is a path from x → sA to B in G↑T . Let
u be the first vertex on this path such that u /→ sA. Note that such a vertex u /→ sA must exist because B ↗ sA = ↘. In
particular, u → NG(sA), and by construction, u → NH→(s). This means that there is a path from s to B (via u) in H →

↑T ,
which is a contradiction. Therefore, T is an sA,B-separator in G. If T /→ SsA,B(G), then there is a T →

→ SsA,B(G) where
T →

⇒ T . By the previous direction, T →
→ SsA,B(G) ↓ Ss,B(H →), and hence T →

→ Ss,B(H →), contradicting the minimality
of T → Ss,B(H →). Therefore, SsA,t(G) = Ss,B(H →).

By construction, for every u → sA, we have that NH→(u) ↓ NH→(s). From Lemma 5, we have that Ss,B(H →) = Ss,B(H).
Therefore, SsA,t(G) = Ss,B(H).

THEOREM 3. Let A,B ↓ V(G) be disjoint and non-adjacent, where s → A and t → B. Let H be the graph that results from

G by: (1) adding all edges between s and NG(A), (2) adding all edges between t and NG(B), and (3) removing vertices

AB\{s, t} and their adjacent edges. Then Ss,t(H) = SA,B(G).

Proof. Let H1 be the graph that results from G by adding all edges between s and NG(A), and removing vertices A\{s} from
the graph. By Lemma 6, we have that SA,B(G) = Ss,B(H1). By the assumption that A and B are disjoint and non-adjacent,
then NG[B] = NH1 [B]. Now, let H2 be the graph that results from H1 by adding all edges between t and NH1(B) = NG(B),
and removing vertices B\{t} from the graph H2. By Lemma 6, we have that Ss,t(H2) = Ss,B(H1) = SA,B(G).

A.2 MINIMUM SEPARATORS

THEOREM 4. There exists a unique minimum s, t-separator S↑
→ Ls,t(G) such that S↑

⇑ S for all S → Ls,t(G), and

S↑
can be found in time O(n · ω · T (n,m)), where ω is the maximum-cardinality of any minimum-weight s, t-separator;

ω
def
= max {|S| : S → Ls,t(G)}.

Theorem 4 is a straightforward extension of the following Theorem.
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Theorem 14. (Cygan et al. [2015]) Let G be a non-weighted graph (i.e., w(v) = 1 for every v → V(G)). There exists a
unique minimum-cardinality s, t-separator S↑

→ Ls,t(G) such that S↑
⇑ S for all S → Ls,t(G), and S↑ can be found in

time O(n · T (n,m)).

For completeness, we provide the proof of Theorem 4 herein.

Theorem 15. (Theorem 8.3 in Cygan et al. [2015]) For X,Y ↓ V(G). It holds that:

|NG(X)|+ |NG(Y )| ⇓ |NG(X ↗ Y )|+ |NG(X ↔ Y )|.

Proof Overview. The proof establishes that for every vertex v → V(G), the number of times it is accounted for in the
left-hand-side (LHS) is at least as large as the number of times it is accounted for in the right-hand-side (RHS), thereby
proving the claim.

Lemma 7. Let G be an undirected, weighted graph, with weight function w : V(G) ⇔ N↓1. For X,Y ↓ V(G). It holds
that:

w(NG(X)) + w(NG(Y )) ⇓ w(NG(X ↗ Y )) + w(NG(X ↔ Y )).

Proof Overview. The proof is identical to that of Theorem 15, establishing that for every vertex v → V(G), the number of
times it is accounted for in the left-hand-side (LHS) is at least as large as the number of times it is accounted for in the
right-hand-side (RHS), thereby proving the claim. Since the weights are positive, the claim follows.

Recall from Definition 1 that for two minimal s, t-separators S1, S2 → Ss,t(G), it holds:

S1 ⇑ S2 if and only if Cs(G↑S1) ↓ Cs(G↑S2).

Theorem 16. (Theorem 8.4 in Cygan et al. [2015]) Let G be an undirected, uweighted graph. There exists a minimum-
cardinality s, t-separator S↑

→ Ls,t(G), such that S↑
⇑ S for every S → Ls,t(G).

Lemma 8 presents the weighted version of Theorem 16. The proof is similar to that of Theorem 16, and is provided below
for completeness.

Lemma 8. Let G be an undirected, weighted graph, with weight function w : V(G) ⇔ N↓1. There exists a minimum-weight
s, t-separator S↑

→ Ls,t(G), such that S↑
⇑ S for every S → Ls,t(G).

Proof. Let S1, S2 → Ls,t(G). By Lemma 7, and Lemma 1, we have that:

w(S1) + w(S2) =︸︷︷︸
Lemma 1

w(N(Cs(G↑S1))) + w(N(Cs(G↑S2)))

⇓︸︷︷︸
Lemma 7

w(N(Cs(G↑S1) ↗ Cs(G↑S2))) + w(N(Cs(G↑S1) ↔ Cs(G↑S2))). (11)

Define S↔ def
= N(Cs(G↑S1)↗Cs(G↑S2)) and S+ def

= N(Cs(G↑S1)↔Cs(G↑S2)). Since s → Cs(G↑S1)↗Cs(G↑S2), and
t /→ Cs(G↑S1)↔Cs(G↑S2), then both S↔ and S+ are s, t-seprators of G. Therefore, w(S↔) ⇓ εs,t(G) = w(S1) = w(S2),
and w(S+) ⇓ εs,t(G) = w(S1) = w(S2).

From (11), we have that

2εs,t(G) = w(S1) + w(S2) ⇓ w(S↔) + w(S+) ⇓ 2εs,t(G),

and hence, w(S↔) = w(S+) = εs,t(G). Since S↔ = N(Cs(G↑S1) ↗ Cs(G↑S2)), then by definition, S↔
⇑ S1 and

S↔
⇑ S2. Since Ls,t(G), the set of minimum-weight s, t-separators of G, is finite, this proves the claim.

We are now erady to prove Theorem 4.

THEOREM 4. There exists a unique minimum s, t-separator S↑
→ Ls,t(G) such that S↑

⇑ S for all S → Ls,t(G), and

S↑
can be found in time O(n · ω · T (n,m)), where ω is the maximum-cardinality of any minimum-weight s, t-separator;

ω
def
= max {|S| : S → Ls,t(G)}.
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Proof. From Lemma 8, we have that S↑
→ Ls,t(G) exists and is unique. We show that it can be found in time O(n·T (n,m)).

Finding a minimum-weight s, t-separator can be reduced, by standard techniques to the maximum-flow problem. Let
S1 → Ls,t(G) be a minimum-weight s, t-separator found in this way. Now, we need to check whether there is another
S2 → Ls,t(G) such that S2 ↖ S1. If Cs(G↑S2) ⇒ Cs(G↑S1), then by Proposition 1, it holds that Ct(G↑S1) ⇒ Ct(G↑S2).
In particular, S1 = N(Ct(G↑S1)) ↓ Ct(G↑S2) ↔ N(Ct(G↑S2)) = Ct(G↑S2) ↔ S2. Since S1, S2 → Ls,t(G), then
S1 ⇐↓ S2, and hence S1 ↗ Ct(G↑S2) ⇐= ↘. In other words, if S2 ↖ S1, then there must be a vertex v → S1 that belongs
to Ct(G↑S2). We check if this is the case by iterating over all vertices v → S1, and contracting Ct(G↑S1) ↔ {v} to the
vertex t, and finding a minimum-weight s, t-separator in the resulting graph. If, for all v → S1, this results in a separator
whose weight is strictly larger than εs,t(G), then we have identified the minimum-weight s, t-separator that is closest to s.
Otherwise, we repeat this procedure until no such vertex v → S1 is found – indicating that the computed s, t-seprator is both
minimum-weight, and closest to s.

B PROOFS FROM SECTION 5: CORRECTNESS OF ALGORITHM SmallMinimalSeps

Lemma 9. Let v → NG(s), and let G→ denote the graph that results from G by contracting the edge (s, v) to s. Then
Ss,t(G→) = {S → Ss,t(G) : v /→ S}.

Proof. Let G→→ be the graph that results from G by adding all edges between s and NG(v). By definition, this means that
NG→→(v) ↓ NG→→(s). We first show that Ss,t(G→→) = {S → Ss,t(G) : v /→ S}.

Let S → Ss,t(G) such that v /→ S. Since v → NG(s), then v → Cs(G↑S), and hence NG(v) ↓ S ↔ Cs(G↑S). Therefore, S
is an s, t-separator in G→→ as well. Since E(G→→) ≃ E(G), then by Lemma 4, S → Ss,t(G→→).

Now, let T → Ss,t(G→→). Since E(G) ↓ E(G→→) then clearly T is an s, t-separator of G. Since NG→→(v) ↓ NG→→(s), then by
Lemma 5, it holds that Ss,t(G→→) = Ss,t(G→→

↑v). Therefore, we have that v /→ T . If T /→ Ss,t(G), then there exists a T →
⇒ T

such that T →
→ Ss,t(G). Since v /→ T , then v /→ T →. We have previously established that Ss,t(G→→) ≃ {S → Ss,t(G) : v /→ S},

and hence T →
→ Ss,t(G→→). But this contradicts the minimality of T . Therefore, T → {S → Ss,t(G) : v /→ S}, and we have

that Ss,t(G→→) = {S → Ss,t(G) : v /→ S}.

By construction, we have that NG→→(v) ↓ NG→→(s). By Lemma 5, we have that Ss,t(G→→) = Ss,t(G→→
↑v) = Ss,t(G→).

Therefore, we get that Ss,t(G→) = {S → Ss,t(G) : v /→ S}.

Lemma 10. Let S, T → Ss,t(G). Then:

Cs(G↑S) ↓ Cs(G↑T ) if and only if T ↓ S ↔ Ct(G↑S).

Proof. If T ↓ S ↔Ct(G↑S), then by definition T ↗Cs(G↑S) = ↘. Therefore, Cs(G↑S) remains connected in G↑T . This
means that Cs(G↑S) ↓ Cs(G↑T ).

Now, suppose that Cs(G↑S) ↓ Cs(G↑T ). By Lemma 1, it holds that S = NG(Cs(G↑S)). Since Cs(G↑S) ↓ Cs(G↑T ),
then S = NG(Cs(G↑S)) ↓ T ↔ Cs(G↑T ). Since S ↓ T ↔ Cs(G↑T ) then by definition it holds that S ↗ Ct(G↑T ) = ↘.
This, in turn, implies that Ct(G↑T ) remains connected in G↑S. In particular, we have that Ct(G↑T ) ↓ Ct(G↑S). By
Lemma 1, it holds that T = NG(Ct(G↑T )). Since Ct(G↑T ) ↓ Ct(G↑S), then T = NG(Ct(G↑T )) ↓ S↔Ct(G↑S).

Lemma 11. Let S → Ss,t(G), and let HS be the graph that results from G by adding all edges from s to S. That is,
E(HS) = E(G) ↔ {(s, v) : v → S}. Then:

Ss,t(HS) = {Q → Ss,t(G) : Q ↓ S ↔ Ct(G↑S)}

Proof. Let Q → Ss,t(G) where Q ↓ S ↔ Ct(G↑S). Since Q ↗ Cs(G↑S) = ↘, then Cs(G↑S) remains connected
in G↑Q. Therefore, Cs(G↑S) ↓ Cs(G↑Q). By Lemma 1, S = NG(Cs(G↑S)). Since Cs(G↑S) ↓ Cs(G↑Q), then
S = NG(Cs(G↑S)) ↓ Cs(G↑Q) ↔Q. In particular, S ↗ Ct(G↑Q) = ↘. Consequently, Q separates Ct(G↑Q) from s in
HS as well. That is, Q is an s, t-separator in HS . Since E(HS) ≃ E(G), then Q → Ss,t(HS).

Let T → Ss,t(HS). By construction, S → Ss,t(HS) where S ↓ NH(s). By Proposition 3, Cs(HS↑S) ↓ Cs(HS↑T ).
By Lemma 10, it holds that T ↓ S ↔ Ct(HS↑S). Since, by construction, Ct(HS↑S) = Ct(G↑S), we get that T ↓

S ↔ Ct(G↑S).
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Lemma 12. Let T → Ss,t,k(G). Exactly one of the following holds: (1) T → S
↑

s,t,k
(G) or (2) There exists a minimal

s, t-separator S → S
↑

s,t,k
(G) such that S ↖ T .

Proof. By induction on |Cs(G↑T )|. If |Cs(G↑T )| = 1, then clearly T ↓ NG(s). By Lemma 2, T is the unique minimal
s, t-separator that is closest to s, and hence T → S

↑

s,t,k
(G). So, we assume that the claim holds for all T → Ss,t,k(G),

where 1 ↙ |Cs(G↑S)| ↙ ω. Let T → Ss,t,k(G), where |Cs(G↑S)| = ω+ 1. If T → S
↑

s,t,k
(G), then we are done. Otherwise,

if T /→ S
↑

s,t,k
(G), then since |T | ↙ k, it must hold that T /→ S

↑

s,t
(G). By definition 2, there exists a T →

→ Ss,t(G) such
that T →

↖ T (i.e., Cs(G↑T →) ⇒ Cs(G↑T )), and |T →
| ↙ |T | ↙ k. Consequently, |Cs(G↑T →)| < |Cs(G↑T )| = ω + 1, and

|Cs(G↑T →)| ↙ ω. Since T →
→ Ss,t,k(G) and |Cs(G↑T →)| ↙ ω, then by the induction hypothesis, either T →

→ S
↑

s,t,k
(G), in

which case T →
↖ T , thus proving the claim. Otherwise, there exists an S → S

↑

s,t,k
(G) such that S ↖ T →. Hence, S ↖ T →

↖ T ,
and S ↖ T , thus proving the claim.

Lemma 13. Let T → Ss,t,k(G). There exists a S → S
↑

s,t,k
(G) such that S ⇑ T , and T ↓ S ↔ Ct(G↑S).

Proof. If T → S
↑

s,t,k
(G), then the claim is immediate. If T /→ S

↑

s,t,k
(G) then, by Lemma 12, there exists an S → S

↑

s,t,k
(G),

such that S ↖ T . By Lemma 10, T→S↔Ct(G↑S).

THEOREM 8. If S ↓ V(G) is printed, then S → Ss,t,k(G), and S is printed exactly once.

Proof. Every subset of vertices inserted into the queue (in lines 7 and 18) is pushed exactly once and has cardinality
at most k. Therefore, we only need to show that every subset of vertices pushed into the queue Q, and printed by the
algorithm, belongs to Ss,t(G). Suppose, by way of contradiction, that this is not the case, and let T ↓ V(G) be the first
subset of vertices printed where T /→ Ss,t(G). Then T must be inserted into the queue in line 18. Consider the set S that
was printed before T is inserted into the queue. By our assumption S → Ss,t(G). Therefore, T → S

↑

s,t,k
(Hv

S
), where v → S.

By Lemma 11, Ss,t(HS) ↓ Ss,t(G). Since v → NHS
(s), and Hv

S
is the graph that results from HS by contracting the edge

(s, v) to vertex v, by Lemma 9, it holds that Ss,t(Hv

S
) ↓ Ss,t(HS) ↓ Ss,t(G). Since T → S

↑

s,t,k
(Hv

S
) ↓ Ss,t(Hv

S
), we get

that T → Ss,t(G), which brings us to a contradiction.

THEOREM 9. Let T → Ss,t,k(G). Then T is printed by SmallMinimalSeps in Figure 2.

Proof. If T → S
↑

s,t,k
(G), then T is inserted into the queue in line 7, and will be printed. Therefore, assume that T /→ S

↑

s,t,k
(G).

Suppose that T is not printed. Let T →
→ Ss,t(G) be the largest minimal s, t-separator, with respect to ↖, that is printed by

the algorithm, such that T →
⇑ T . In other words, there does not exist a T →→

→ Ss,t(G), that is printed by the algorithm where
T →

↖ T →→
⇑ T . By Lemma 13, and the fact that T /→ S

↑

s,t,k
(G) such a separator T → exists.

Since Cs(G↑T →) ⇒ Cs(G↑T ), then by Lemma 10, it holds that T → T →
↔ Ct(G↑T →). By Lemma 11, it holds that

T → Ss,t(HT →). Consider what happens when T → is popped from the queue in line 9, and the graph HT → is generated in
line 12. Since T ⇐= T → (we assume that T is not printed), T →

↓ NH
T →
(s), and T → Ss,t(HT →), then there exists a vertex

v → T →, such that T → Ss,t(Hv

T →) (see line 14). If T → S
↑

s,t,k
(Hv

T →), then T is pushed into the queue in line 18, and will
therefore be printed. Otherwise, by Lemma 13, there exists an S → S

↑

s,t,k
(Hv

T →), such that Cs(Hv

T →↑S) ↓ Cs(Hv

T →↑T ). By
construction, we have that Cs(HT →↑T →) ⇒ Cs(Hv

T →↑S) ↓ Cs(HT →↑T ). Since S is pushed into the queue in line 18, then it
will be printed by the algorithm in line 10. By Theorem 8, we have that S → Ss,t,k(G) is printed by the algorithm, where
T →

↖ S ⇑ T , contradicting our assumption that T → is maximal with respect to the partial order ↖.

THEOREM 10. Let S1, S2 → Ss,t,k(G). If S1 ↖ S2, then S1 is printed before S2 by Algorithm SmallMinimalSeps.

Proof. By Theorem 9, both S1 and S2 are printed by the algorithm. Consider the point in time where S2 is pushed into the
queue Q.

1. Case 1: S1 → M. In that case, when S2 is pushed into the queue, S1 has already been printed, and hence S1 is printed
before S2.

2. Case 2: S1 → Q. Since Q is a priority queue sorted according to ↖, then S1 will be popped from the queue Q (in
line 9), and printed (in line 10) before S2 is popped (and printed).
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3. Case 3: S1 is generated and inserted into the queue after S2 is printed. In that case, by the workings of the algorithm,
S1 → Ss,t,k(Hv

S2
) for some v → S2 (see lines 13–18). By Lemma 9, S1 → Ss,t,k(Hv

S2
) ↓ Ss,t,k(HS2). By Lemma 11,

if S1 → Ss,t,k(HS2), then S1 → Ss,t,k(G) where S1 ↓ S2 ↔ Ct(G↑S2). By Lemma 10, we have that Cs(G↑S2) ↓
Cs(G↑S1); a contradiction. Therefore, only cases 1 and 2 are possible, which means that S1 is printed before S2.

THEOREM 11. The delay between the printing of minimal s, t-separators whose size is at most k is O(k24k(n+m)).

Proof. The size of the queue Q and the data structure M, can be at most nk. We make the standard assumption that
these data structures allow logarithmic insertion and extraction, which take time O(k log n). Applying Theorem 5, which
states that there are at most 4k important separators that can be found in time O(k4k(n + m)), we get that the loop in
lines (13)-(18) runs in time: O(k · (n+ 4k · k · (n+m) + k · 4k · log n). Overall, the delay is O(4kk2(n+m)).

C PROOFS FROM SECTION 6

We prove that Ss,t(G,U) = Ss,t(Sat(G,U)). We proceed by a series of lemmas.

Lemma 14. Let u → V(G) such that NG[u] forms a clique. Then u /→ S for every S → Ss,t(G).

Proof. Let S → Ss,t(G). By Lemma 1, G↑S contains two full connected components Cs(G↑S) and Ct(G↑S) containing
s and t respectively, such that S = NG(Cs(G↑S)) = NG(Ct(G↑S)). Therefore, if u → S, then it has two neighbors
v1 → Cs(G↑S) and v2 → Ct(G↑S) that are connected by an edge (because NG[u] is a clique). But then, there is an s, t-path
in G↑S that avoids S, which contradicts the fact that S is an s, t-separator.

Lemma 15. If S → Ss,t(G, u), there exists a connected component Cu → C(G↑S) such that NG[u] ↓ Cu ↔ S.

Proof. Let Cu → C(G↑S) be the connected component that contains u. Such a component must exist because u /→ S. If
NG(u) ⇐↓ Cu ↔ S, then there exists a vertex v → NG(u) that resides in a connected component Cv → C(G↑S) distinct from
Cu. But this is a contradiction because, by definition, (u, v) → E(G). Hence, Cv = Cu, and this proves the claim.

Lemma 16. Let u → V(G). Then Ss,t(G, u) = Ss,t(Sat(G, {u})).

Proof. Let S → Ss,t(G, u). By Lemma 15, there exists a connected component Cu → C(G↑S) that contains u, where
NG[u] ↓ Cu ↔ S. Therefore, no added edge in E(Sat(G, {u})) \ E(G) connects vertices in distinct connected components
in C(G↑S). Hence, S separates s and t also in Sat(G, {u}). Since the addition of edges cannot eliminate any path between
s and t, we get that S is a minimal s, t-separator also in Sat(G, {u}).

Now, let S → Ss,t(Sat(G, {u})). Hence, NG[u] is a clique in Sat(G, {u}). By Lemma 14, u /→ S. Since G is a subgraph of
Sat(G, {u}), then if S separates s from t in Sat(G, {u}), it must separate s from t in G. Hence, S is an s, t-separator in G
where u /→ S. It is left to show that S is a minimal s, t-separator in G. To that end, we show that the connected components
Cs

def
= Cs(Sat(G, {u})↑S), Ct

def
= Ct(Sat(G, {u})↑S), containing s and t respectively, are full connected components of S

also in G. That is, we show that S = NG(Cs) = NG(Ct). By Lemma 1, this proves that S → Ss,t(G, u) ↓ Ss,t(G).

Denote by Ds, Dt → C(G↑S) the connected components containing s and t respectively in G↑S. Since G[Ds] (G[Dt])
is connected, Ds ↗ S = ↘ (Dt ↗ S = ↘), and s → Ds (t → Dt), then Ds ↓ Cs (Dt ↓ Ct). We now prove that
Cs ↓ Ds. We first consider the case where u /→ Cs. Hence, by definition of connected component of G↑S, we have
that NG[u] ↗ Cs = ↘. Since the only added edges are between vertices in NG(u), then E(Sat(G, u)[Cs]) = E(G[Cs]).
Therefore Cs is a connected component containing s also in G↑S, thus Cs ↓ Ds, and Cs = Ds. Since NG[u] ↗ Cs = ↘,
then NG(Cs) = NSat(G,{u})(Cs) = S as required.

We now consider the case where u → Cs, and suppose, by way of contradiction, that Cs ⇐↓ Ds. Let v → Cs \Ds. This means
that there is a path from s to v in Sat(G, {u}) that avoids S. Let P denote the shortest such path. Then P passes through a
single edge (y, w) → E(Sat(G, u))\E(G). In other words, there is a path Pvy from v to y in G that avoids S, and a path Psw

from s to w in G that avoids S. In particular, V(Psw) ↓ Ds. By construction, {y, w} ↓ NG(u). Since V(Pws) ↗ S = ↘,
w → NG(u), and {u,w, y} ↗ S = ↘, this means that {u,w, y} ↓ Ds. But this means that the path PvyuPws is contained
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in G, and avoids S. Consequently, v → Ds, and we arrive at a contradiction. Hence, Ds = Cs. Since u → Cs, we get that
NG(Cs) = NSat(G,{u})(Cs), making Cs a full connected component of S also in G.

THEOREM 12. Ss,t(G,U) = Ss,t(Sat(G,U)).

Proof. The fact that Ss,t(G,U) = Ss,t(Sat(G,U)) follows from Lemma 16 by induction on |U |.

Let 0 ↙ k ↙ n be an integer, and Ss,t(G,U)k and Ss,t(Sat(G,U))k denote the sets of minimal s, t-separators in Ss,t(G,U)
and Ss,t(Sat(G,U)) whose size is exactly k, respectively. Since Ss,t(G,U) = Ss,t(Sat(G,U)), then Ss,t(G,U)k =
Ss,t(Sat(G,U))k for every integer 0 ↙ k ↙ n. In particular, this is the case for k = εs,t(G,U) = εs,t(Sat(G,U)). Hence,
Ls,t(G,U) = Ls,t(Sat(G,U)).

THEOREM 13. Let S be an s, t-separator of G. There exists an s, t-separator S→
printed by the algorithm where S→

↓ S.

Proof. Let T be an s, t-separator of G, and suppose, by way of contradiction that neither T , nor any of its subsets are printed.
Every triple ∝H,S, I′ pushed into the queue Q in lines 3 and 11 corresponds to a pair of inclusion/exclusion constraints that
restrict the set of s, t-separators to those that include vertices I , and exclude vertices U ↓ V(G) that have been saturated in
G (i.e., to form H). Let ∝H,S, I′ be the triple, inserted into Q, where: (1) I ↓ T , and (2) U ↓ V(G)\T , which maximizes
|I|+ |U |. Note that such a triple ∝H,S, I′ must exist because the first triple pushed into the queue Q in line 3 is ∝G,S, ↘′
where S → Ls,t(G), I = ↘ ↓ T , and no vertex of G has yet been saturated and hence U = ↘ ↓ V(G)\T .

Let S\I = {v1, . . . , vq}. By our assumption, S ⇐↓ T . Let ω ↙ q be the smallest index such that vω /→ T . In other words,
{v1, . . . , vω↔1} ↓ T , and vω /→ T . In the ωth iteration of the loop in lines 7–11, the algorithm generates a triple ∝Hω, Sω, Iω′,
where Iω

def
= I↔{v1, . . . , vω↔1} ↓ T , and Hω is the graph that metrializes the condition of excluding U↑ω

def
= U↔{vω}. In other

wirds, the algoirithm generates a triple with inclusion constraints I ↓ Iω ↓ T , and exclusion constraint Uω

def
= U ↔ {vω} ⇒ U ,

where Uω ↓ V(G)\T , and |Uω| > |U |. But then, ∝H,S, I′ does not maximize |I|+ |U |; a contradiction.

D MINIMAL SEPARATORS AND CHORDLESS s, t-PATHS

In this section we show that given a set I ↓ V(G), it is NP-hard to decide whether there exists a minimal s, t-separator
S → Ss,t(G) such that I ⇒ S. We prove this by showing a reduction from the problem 3-IN-A-PATH that asks whether there
is an induced (or chordless) path containing three given terminals. Bienstock Bienstock [1991] has shown that deciding
whether two terminals belong to an induced cycle is NP-hard. From this, it is easy to show that the 3-IN-A-PATH problem is
NP-hard even for graphs whose degree is at most three Derhy and Picouleau [2009]. In fact, even deciding whether there is
such a path of length at most k was shown to be W [1]-complete with respect to the length parameter k Haas and Hoffmann
[2006]. The related problem, called THREE-IN-A-TREE, for deciding whether there is an induced tree containing three
terminals, is in PTIME Lai et al. [2020].

Theorem 17. Let v → V(G). There exists a minimal s, t-separator that includes v if and only if there exists a chordless
s, t-path through v.

Proof. Let S → Ss,t(G) where v → S, and let Cs(G↑S), Ct(G↑S) denote the connected components of G↑S that contain
s and t respectively. By Lemma 1, there exists a path from s to v where all the internal vertices belong to Cs(G↑S). Let Psv

denote the shortest such path. Likewise, let Pvt denote the shortest path from v to t where all internal vertices belong to
Ct(G↑S). Clearly, Psv and Pvt are both chordless paths. Since Cs(G↑S) ↗ Ct(G↑S) = ↘, then V(Psv) ↗ V(Pvt) = {v}.
Since S → Ss,t(G), then there are no edges between vertices in Cs(G↑S) and vertices in Ct(G↑S). Consequently, there are
no edges between vertices in V(Psv) and V(Pvt). Therefore, the path PsvPvt is a chordless s, t-path that passes through v.
In other words, if v → S, then there is an induced s, t-path through v.

Let P = s, a1, . . . , ak, v, b1, . . . , bω, t denote a simple, chordless s, t-path through v. If v → NG(s) (v → NG(t)), then
k = 0 (ω = 0). Contract all edges on the sub-path Pa

def
= (s, a1, . . . , ak) such that Pa is reduced to an edge (s, v). Likewise,

contract all edges on the sub-path Pb

def
= (b1, . . . , bω, t) such that Pb is reduced to an edge (v, t). Denote the resulting graph

by G→. Since P is chordless, then there are no edges between (ai, bj) for all i → [1, k] and all j → [1, ω]. Therefore, following
the contraction, s and t are not adjacent in the new graph G→, and hence separable.
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Let S→
→ Ss,t(G→) be a minimal s, t-separator in G→. By construction, v → NG→(s) ↗NG→(t), and hence v → S→. It is left

to show that S→
→ Ss,t(G). Let Cs(G→

↑S→) and Ct(G→
↑S→) denote the full connected components of G→

↑S→ containing
s and t respectively. Define Ds(G↑S→)

def
= Cs(G→

↑S→) ↔ {a1, . . . , ak} and Dt(G↑S→)
def
= Ct(G→

↑S→) ↔ {b1, . . . , bω}. By
construction, Ds(G↑S→) and Dt(G↑S→) are disjoint, non-adjacent, and G[Ds(G↑S→)] (G[Dt(G↑S→)]) are both connected
components in G. Since Cs(G→

↑S→) and Ct(G→
↑S→) are full components of S→ in G→, and Ds(G↑S→) ≃ Cs(G→

↑S→) and
Dt(G↑S→) ≃ Ct(G→

↑S→), then Ds(G↑S→) and Dt(G↑S→) are full components of S→ in G. By Lemma 1, S→
→ Ss,t(G).

Theorem 17 provides a characterization of when a vertex v is included in a minimal s, t-separator. By reduction from the
3-IN-A-PATH problem we conclude that deciding whether there is a minimal s, t-separator containing a subset I ↓ V(G) is
an NP-complete problem.
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