APPENDIX

A PROPERTIES OF SEPARATORS

PROPOSITION Let 51,52 € 85.4(G). Then Cs(G-S1) C C5(G-52) if and only if Ct(G-S3) C C(G-S51).

Proof. If Cs(G-S1) C Cs(G-Ss), then Cs(G-S1) U Ng(Cs(G-51)) C Cs(G-S2) U Ng(Cs(G-S2)). By Lemma
we have that S; = Ng(Cs(G-51)). Therefore, Cs(G-S1) U S1 C Cs5(G-52) U Ng(Cs(G-S2)). In particular, S; N
Cy(G-S3) = 0. This means that C;(G-Ss) is contained in the connected component of G- that contains ¢. By definition,
Ci(G-S3) C C(G-Sy). The other direction is symmetrical. O

PROPOSITION Let S1,S2 be two s, t-separators in H. Then S1 <,, Sy if and only if Cs(H-51) C Cs(H-S2) and
Ci(H-S3) C C,(H-51).

Proof. 1If Cs(H-S1) C Cs(H-S2), then ) = Ci(H-S2) NSy 2 Cs(H-S1) N S, and hence Cs(H-S1) N Sy = 0.
Consequently, (S2\S1) N (Cs(H-S1) U S1) = (. Every vertex connected to s in H-S; belongs to Cs(H-S1). Since
(S2\S1) N (Cs(H-S1) U S1) = 0, then Sy separates s from S3\S7. Symmetrically, if Cy(H-Ss) € C;(H-S1), then
(S51\52) N (Cy(H-S2) U S3) = 0, thus Sy separates ¢ from S7\Ss.

If Sy separates s from S2\S7, then (S3\S1) N Cs(H-S1) = 0. By definition, S; N Cs(H-S1) = 0, and hence Sz N
Cs(H-S1) = 0. This, in turn, means that Cs(H-S1 ) is contained in the connected component of H-Ss that contains s. By
definition, Cs(H-S1) C Cs(H-Ss). Symmetrically, if Sy separates ¢ from S1\Ss, then Cy(H-S3) C Cy(H-S1). So, if
S1 <, S5 then C(S(G—Sl) - CS(H—SQ) and Ct(H_SQ) (- Ct(H—Sl). O

Proposition 3. Let S € S; +(G) where S C N¢(s). Forevery T' € S, +(G), it holds that Cs(G-S) C Cs(G-T).

Proof. Since S C Ng(s) C T UC(G-T), then Cs(G-S) C Cs(G-T). O

A.1 SEPARATORS BETWEEN VERTEX-SETS

Lemma 3. Let A and B be two disjoint, non-adjacent subsets of V(G). Then S € S4 p(G) if and only if S is an

A, B-separator, and for every w € S, there exist two connected components C4,Cp € C(G-S) such that C4 N A # (),
CpNB# 0, and w € Ng(CA) n Ng(CB).

Proof. If S € Sa,p(G), then for every w € S it holds that S\{w} no longer separates A from B. Hence, there is a path
from some a € A to some b € B in G-(S\{w}). Let C,, and C}, denote the connected components of C(G-S) containing
a € Aandb € B, respectively. Since C, and C}, are connected in G—(S\{w}), then w € Ng(Cy) N Ng(Cy).

Suppose that for every w € S, there exist two connected components C'4, Cg € C(S) such that CaNA # 0, CgNB # 0,
andw € Ng(Ca) N Ng(Cp). If S ¢ Sa,5(G), then S\{w} separates A from B for some w € S. Since w connects C'4 to
Cp in G-(S\{w}), no such w € S exists, and thus S € Sa 5(G). O

Observe that Lemma implies Lemma By Lemma it holds that S € S, (G) if and only if S is an s, t-separator
and S C Ng(Cs(G-S)) N Ng(C(G-S)). By definition, Ng(Cs(G-S)) € S and Ng(Cy(G-S)) € S, and hence
§ = Na(Cs(G-5)) N Na(Ci(G=5)), and § = Ng(Cs(G-5)) = Ng(Ct(G-9)).

Lemma 4. Let G and H be graphs where V(G) = V(H) and E(G) C E(H). Let A, B C V(G) disjoint and non-adjacent.
Let S € Ss 5(G).If Sisan A, B-separator in H, then S € Sx g(H).

Proof. Since S € Sy, 5(G), then by Lemma for every u € S there exist two distinct connected components CY, Cp €
C(G-S) where Ci N A #0,CtNB # (,and u € Ng(C4%) N Ng(C%). Since E(H) 2 E(G), and since S is an
A, B-separator in H, then H-S contains two distinct connected components D', D, where C% C D% and Cj C D¥%.
Therefore, w € Ny (D%) N Ny (D%). By Lemma we have that S € Sy p(H). O

Lemma 5. Let u € V(G)\sB such that Ng(u) € N¢(s). Then S, 5(G) = Ss,5(G-u)
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Proof. Let S € S5 p(G). We first show that u ¢ S. Suppose, by way of contradiction, that w € S. By Lemma there
exist two distinct vertices z,y € N¢(u) such that z € C5(G-S) and y € Cp(G-S), where Cp(G-S) N B # (. By the
assumption of the lemma that N (u) C N¢(s), theny € N (s). But then, S is not an s, B-separator of ; a contradiction.
Hence u ¢ S forany S € S5 g(G).

Let T' € S, p(G-u). We show that T is an s, B-separator of G. If it is not, then since every s, B-path of G-u is also an
s, B-path of G, then T U {u} € S, 5(G). But this contradicts the fact that v ¢ S for every S € S, p(G). Hence, T is
an s, B-separator of GG. By Lemma we have that T € S, p(G). Hence, we have that S 5(G-u) C S p(G). For the
other direction, let ' € S5 g(G). Clearly T is an s, B-separator of G—u. If T' ¢ S, p(G-u), then there exista 7" C T'
s.t. T/ € S p(G-u). By the previous direction, we have that T’ € S; p(G—u) C S, p(G). But then, TV € S; 5(G)
contradicting the minimality of T". Hence, S5 5(G-u) = S, 5(G). O

Lemma 6. Let A C V(G)\Bs. Let H be the graph that results from G by (1) adding all edges between s and N (A), and
(2) removing the vertices A and their adjacent edges from H. Then S;4 5(G) = Ss, 5(H).

Proof. LetT € S;a,5(G), and let C1, ..., Cy denote the connected components of C(G-T') containing vertices from
sA. By definition, BN C; = foralli € {1,2,...,k}. Assume wlog that s € Cy. Let H’' denote the graph that results
from G by adding all edges between s and Ng(A). By definition, the edges added to G to form H' are between C and
Cy - -+ Cy UT. Therefore, T separates sA from B in H'. Since E(H') 2 E(G), then by Lemma ifT € S;4,5(G)and T
is an sA, B-separator in H', then T' € S, 4, g(H'). Therefore, we have that S; 4, 5(G) C Ssa,5(H').

We now claim that S;4 p(H') = Ss,g(H'). Take T € S, p(H'). We claim that 7' is an s A, B-separator in H’. Suppose
it is not, and let C' € C(H'-T) such that a,b € C where a € Aand b € B. Lety € Ny (a) N C. By construction,
y € Npy(s). But then, s € Ny/(C') and hence T is not an s, B-separator in H'; a contradiction. Since T’ € S, g(H'), then
by Lemma|3| we have that for every u € T there exists a connected component C'}, € C(H'-T) s.t. BN C% # 0 and
uw € Ny (Cs(H'-T)) N N/ (C%). By Lemma we have that T' € S; 4, g(H'). Hence S5 g(H') C S;4,5(H’). For the
other direction, let T' € S;4 5(H'). Clearly, T is an s, B-separator of H'. If T' ¢ S, g(H'), then there existsa T/ C T'
such that T/ € S, g(H'). By the previous direction, we have that 77 € S, 4, g(H'), but this contradicts the minimality of 7.
Hence, S5 p(H') = Ssa,5(H’). Overall, we have shown that S, 4 5(G) C Ssa,5(H') = S, 5(H').

Let T € Ss p(H'). We first show that T" separates sA from B in G; if not, there is a path from = € sA to B in G-T'. Let
u be the first vertex on this path such that u ¢ sA. Note that such a vertex u ¢ sA must exist because B N sA = (). In
particular, u € Ng(sA), and by construction, v € Ng(s). This means that there is a path from s to B (via u) in H'-T,
which is a contradiction. Therefore, T"is an sA, B-separator in G. If T ¢ S, 4 p(G), then there is a T € S;4,5(G) where
T" C T. By the previous direction, 77 € S;4,5(G) C S, p(H'), and hence T” € S5 p(H'), contradicting the minimality
of T € Ss g(H'). Therefore, Ss4.+(G) = S, 5(H').

By construction, for every u € sA, we have that Ny (u) C Ng-(s). From Lemma we have that S p(H') = S, 5(H).
Therefore, Ss4,.(G) = Ss,5(H). O

THEOREM Let A, B C V(G) be disjoint and non-adjacent, where s € A andt € B. Let H be the graph that results from
G by: (1) adding all edges between s and Ng(A), (2) adding all edges between t and Ng(B), and (3) removing vertices
AB\{s,t} and their adjacent edges. Then Ss (H) = Sa,5(G).

Proof. Let H; be the graph that results from G by adding all edges between s and N (A), and removing vertices A\ {s} from
the graph. By Lemma@ we have that Sy p(G) = S, 5(H1). By the assumption that A and B are disjoint and non-adjacent,
then Ng[B] = Ny, [B]. Now, let Hs be the graph that results from H; by adding all edges between t and Ny, (B) = Ng(B),
and removing vertices B\{t} from the graph Hs. By Lemma@ we have that S, ;(Hs) = S5, p(H1) = Sa,8(G). O

A.2 MINIMUM SEPARATORS

THEOREM There exists a unigue minimum s,t-separator S* € L (G) such that S* < S for all S € L, (G), and
S* can be found in time O(n - £ - T'(n,m)), where { is the maximum-cardinality of any minimum-weight s, t-separator;

I dze’max{|S| 1S e L (G
Theorem is a straightforward extension of the following Theorem.
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Theorem 14. (Cygan et al.|[2015]) Let G be a non-weighted graph (i.e., w(v) = 1 for every v € V(G)). There exists a
unique minimum-cardinality s, {-separator S* € L, ;(G) such that S* < S forall S € £, ;(G), and S* can be found in
time O(n - T'(n, m)).

For completeness, we provide the proof of Theoremherein.

Theorem 15. (Theorem 8.3 in|Cygan et al.|[2015]) For X,Y C v(G). It holds that:

[Na(X)| + [Na(Y)| 2 [Na(X NY)|+ [Ng(X UY)].

Proof Overview. The proof establishes that for every vertex v € V(G), the number of times it is accounted for in the
left-hand-side (LHS) is at least as large as the number of times it is accounted for in the right-hand-side (RHS), thereby
proving the claim. 0

Lemma 7. Let G be an undirected, weighted graph, with weight function w : V(G) — N>;. For X, Y C V(G). It holds
that:
w(Na(X)) + w(Na(Y)) > w(Na(X 1Y) +w(Na(X UY)).

Proof Overview. The proof is identical to that of Theorem establishing that for every vertex v € V(G), the number of
times it is accounted for in the left-hand-side (LHS) is at least as large as the number of times it is accounted for in the
right-hand-side (RHS), thereby proving the claim. Since the weights are positive, the claim follows. O

Recall from Deﬁnitionthat for two minimal s, ¢-separators S1, So € S, +(G), it holds:

Sy < Sy if and only if Cs(G-S1) C Cs(G-Sa).
Theorem 16. (Theorem 8.4 in|Cygan et al.|[2015]) Let G be an undirected, uweighted graph. There exists a minimum-
cardinality s, t-separator S* € L, +(G), such that S* < S forevery S € L, .(G).
Lemma@ presents the weighted version of Theorem@ The proof is similar to that of Theorem@ and is provided below
for completeness.
Lemma 8. Let G be an undirected, weighted graph, with weight function w : V(G) — N>1. There exists a minimum-weight

s, t-separator S* € L, .(G), such that S* < S forevery S € L, +(G).

Proof. Let 51,52 € L,.(G). By Lemma and Lemma we have that:

w(S1) +w(S2) = wN(Cs(G=51))) +w(N(Cs(G=52)))
Lemma[T]
\2/ w(N(Cs(G-51) N Cs(G-952))) + w(N(Cs(G-S1) U Cs(G-52))). (11)
Lemma[7]
Define S~ £ N (C,s(G-S1)NC4(G-S5)) and ST = N(C,(G-S1)UC(G-Ss)). Since s € Cy(G-S1)NCys(G-S5), and
t ¢ Cs(G-S1)UCs(G-Ss), then both S~ and S are s, t-seprators of G. Therefore, w(S™) > ks +(G) = w(S1) = w(S2),
and w(ST) > ks+(G) = w(S1) = w(S2).

From (11), we have that
261 (G) = w(S1) + w(S2) > w(S™) +w(ST) > 2k,+(G),

and hence, w(S™) = w(ST) = Kk, (G). Since S~ = N(Cs(G-51) N Cs(G-Ss)), then by definition, S~ < S and
S~ < Ss. Since L, +(G), the set of minimum-weight s, ¢-separators of G, is finite, this proves the claim. O

We are now erady to prove Theorem

THEOREM 4| There exists a unique minimum s, t-separator S* € L, (G) such that S* < S forall S € L;+(G), and
S* can be found in time O(n - £ - T'(n,m)), where { is the maximum-cardinality of any minimum-weight s, t-separator;

¢ E max{|S|: S € L,+(G)}.
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Proof. From Lemma we have that S* € £, ;(G) exists and is unique. We show that it can be found in time O(n-1'(n, m)).
Finding a minimum-weight s, t-separator can be reduced, by standard techniques to the maximum-flow problem. Let
S1 € L54(G) be a minimum-weight s, t-separator found in this way. Now, we need to check whether there is another
Sy € L5 +(G) such that Sy < S1. If C(G-S2) C Cs5(G-S1), then by Proposition it holds that C,(G-S1) C Ci(G-S55).
In particular, S; = N(C¢(G-51)) C Ci(G-S2) U N(C(G-S2)) = C(G-S2) U Ss. Since 51,52 € L;+(G), then
S1 € Ss, and hence S; N Cy(G-S3) # (. In other words, if Sy < 51, then there must be a vertex v € S; that belongs
to C;(G-952). We check if this is the case by iterating over all vertices v € Sq, and contracting C;,(G-S7) U {v} to the
vertex t, and finding a minimum-weight s, t-separator in the resulting graph. If, for all v € Sj, this results in a separator
whose weight is strictly larger than ¢ (G), then we have identified the minimum-weight s, t-separator that is closest to s.
Otherwise, we repeat this procedure until no such vertex v € Sy is found — indicating that the computed s, t-seprator is both
minimum-weight, and closest to s. O

B PROOFS FROM SECTION CORRECTNESS OF ALGORITHM SmallMinimalSeps

Lemma 9. Let v € Ng(s), and let G’ denote the graph that results from G by contracting the edge (s, v) to s. Then
Sst(G) ={S€8:(G):v ¢St

Proof. Let G” be the graph that results from G by adding all edges between s and N (v). By definition, this means that
Ng(v) € Ngn(s). We first show that S5 1 (G") = {S € S51(G) : v ¢ S}.

Let S € S;+(G) such that v ¢ S. Since v € Ng(s), then v € C5(G-S), and hence N¢(v) € S U Cs(G-S). Therefore, S
is an s, t-separator in G”’ as well. Since E(G”) D E(G), then by Lemma S e 8. (G").

Now, let T' € S, (G"). Since E(G) C E(G") then clearly T is an s, t-separator of G. Since Ng» (v) C Ng~ (s), then by
Lemma it holds that S +(G") = S, (G"—v). Therefore, we have that v ¢ T.If T ¢ S, ;(G), then there existsa T’ C T
such that 77 € S; +(G). Since v ¢ T, then v ¢ T'. We have previously established that S, .(G") D {S € Ss+(G) : v ¢ S},
and hence T € S, ;(G"). But this contradicts the minimality of T'. Therefore, T € {S € S, +(G) : v ¢ S}, and we have
that S; :(G") = {S € Ss+(G) : v ¢ S}.

By construction, we have that Ng» (v) € Ngr(s). By Lemma we have that S, +(G") = S,+(G"-v) = Ss4(G).
Therefore, we get that S 1 (G') = {S € S;.+(G) : v ¢ S}. O

Lemma 10. Let S, T € S, .(G). Then:

Cs(G-S) C Cs(G-T) ifand only if ' C S U C(G-S).

Proof. f T C S UCy(G-S), then by definition T'N Cs(G-S) = (. Therefore, Cs(G-S) remains connected in G—T'. This
means that Cs(G-S) C Cs(G-T).

Now, suppose that Cs(G-S) C Cs(G-T). By Lemma it holds that S = Ng(Cs(G-S5)). Since Cs(G-5) C C ),
then S = Ng(Cs(G-S)) C T UC(G-T). Since S C T U Cs(G-T) then by definition it holds that S N C,(G-T') = (.
This, in turn, implies that C;(G-T') remains connected in G-S. In particular, we have that C;(G-T) C C¢(G-S). By

Lemmal1] it holds that 7' = N (Cy(G-T)). Since C(G-T) C C4(G-S), then T = N (Cy(G-T)) C SUC,(G-S). O

s(G-
T)

Lemma 11. Let S € S;,(G), and let Hg be the graph that results from G by adding all edges from s to S. That is,
E(Hgs) =E(G)U{(s,v) : v € S}. Then:

Sst(Hs) ={Q € S:1(Q) : Q C SUC(G-9)}

Proof. Let Q € 8;+(G) where @ C S U Cy(G-S). Since Q@ N Cs(G-S) = B, then Cs;(G-S) remains connected
in G-Q. Therefore, Cs(G-5) € Cs(G-Q). By Lemma([l] S = Ng(Cs(G-S)). Since C(G-S) C Cy(G-Q), then
S = Ng(Cs(G-S)) C Cs(G-Q) U Q. In particular, S N C;(G-Q) = 0. Consequently, Q separates Cy(G—-Q) from s in
Hg as well. That is, Q) is an s, t-separator in Hg. Since E(Hg) D E(G), then Q € S, +(Hs).

Let T € S,.(Hgs). By construction, S € S;(Hg) where S C Ny (s). By Proposition Cs(Hs-S) C Cy(Hs-T).
By Lemma it holds that ' C S U Cy(Hg-S). Since, by construction, Cy(Hs—S) = Ci(G-S), we get that T' C
S UC{(G-S). O
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Lemma 12. Let T' € S, (G). Exactly one of the following holds: (1) T € S;t’k(G) or (2) There exists a minimal
s, t-separator S € 87, ; (G) such that S < T.

Proof. By induction on |Cs(G-T)|. If |Cs(G-T')| = 1, then clearly T' C N¢(s). By Lemma T is the unique minimal
s, t-separator that is closest to s, and hence 7' € S, ;. (G). So, we assume that the claim holds for all 7' € Ss ;,x(G),
where 1 < |Cs(G-S)| < L. Let T € Sy x(G), where |[Cs(G-S)| = €+ 1.If T € S¥, ,.(G), then we are done. Otherwise,
if T ¢ S;, ,.(G), then since |T| < Fk, it must hold that T ¢ S; ,(G). By deﬁnitiong there exists a 77 € S, +(G) such
that T/ < T (i.e., Cs(G-T") C Cy(G-T)), and |T"| < |T| < k. Consequently, |C,(G-T")| < |Cs(G-T)| = £+ 1, and
|Cs(G-T")| < £.Since T € S;,1(G) and |Cs(G-T")| < £, then by the induction hypothesis, either 7 € S7, , (G), in
which case 77 < T, thus proving the claim. Otherwise, there exists an S € S:,t,k(G) such that S < 7. Hence, S < T" < T,
and S < T, thus proving the claim. O

Lemma 13. Let T € S; 1 (G). There exists a S € 87 ; ,(G) such that S < T, and T' C S U C(G-5).

Proof. If T € S}, ;.(G), then the claim is immediate. If T" ¢ S, ; (G) then, by Lemma there exists an S € 57, ;. (G),
such that S < T. By Lemmal[10] T€SUC,(G-S). O

THEOREM If S C V(G) is printed, then S € S; ;. 1,(G), and S is printed exactly once.

Proof. Every subset of vertices inserted into the queue (in lines and is pushed exactly once and has cardinality
at most k. Therefore, we only need to show that every subset of vertices pushed into the queue (), and printed by the
algorithm, belongs to Ss ;(G). Suppose, by way of contradiction, that this is not the case, and let ' C V(G) be the first
subset of vertices printed where T' ¢ S, +(G). Then T must be inserted into the queue in line[18| Consider the set .S’ that
was printed before 7' is inserted into the queue. By our assumption S' € S; +(G). Therefore, T' € 87,  (Hg), where v € S.
By Lemma Sst(Hs) C Ss4+(G). Since v € Ny (s), and HY is the graph that results from Hg by contracting the edge
(s,v) to vertex v, by Lemma|9| it holds that S ;(HY) C Ss+(Hg) C Ss+(G). Since T' € S¥,  (HY) C Ss+(HY), we get
that T € S, +(G), which brings us to a contradiction. - O

THEOREM@ LetT € S;41(G). Then T is printed by SmallMinimalSeps in Figure

Proof. IfT € S}, (G), then T'is inserted into the queue in line|7} and will be printed. Therefore, assume that " ¢ S, , (G).
Suppose that T is not printed. Let T € S, ;(G) be the largest minimal s, ¢-separator, with respect to <, that is printed by
the algorithm, such that 77 < T'. In other words, there does not exist a 7" € S, +(G), that is printed by the algorithm where
T <T" <T.By Lemma and the fact that T' ¢ S} ; ; (G) such a separator 7" exists.

Since Cs(G-T") C C4(G-T), then by Lemma it holds that ' € 17" U C(G-T"). By Lemma it holds that
T € S, (Hy). Consider what happens when T” is popped from the queue in line@ and the graph Hp is generated in
line Since T' # T’ (we assume that T' is not printed), 7" C Ny, (s), and T' € S, ¢(Hy), then there exists a vertex
v €T, such that T € S (Hy.) (see line[14). If T € S}, ;. (H7.), then T is pushed into the queue in line and will
therefore be printed. Otherwise, by Lemma|l3} there exists an S € S7,  (H7), such that Cs(Hp,-S) € Cs(Hp, -T). By
construction, we have that Cs(Hp-T") C C5(H{,—S) C Cs(Hp/—T). Since S is pushed into the queue in line[18] then it
will be printed by the algorithm in line By Theorem we have that S € S; ;1 (G) is printed by the algorithm, where
T’ < 8 <X T, contradicting our assumption that 7" is maximal with respect to the partial order <. 0

THEOREM Let 51,52 € Ss,41(G). If S1 < Sa, then S is printed before Sa by Algorithm SmallMinimalSeps.
Proof. By Theorem@, both S; and S, are printed by the algorithm. Consider the point in time where S5 is pushed into the
queue Q.

1. Case 1: S; € M. In that case, when S5 is pushed into the queue, S; has already been printed, and hence S; is printed
before Ss.

2. Case 2: S; € Q. Since @ is a priority queue sorted according to <, then S; will be popped from the queue @ (in
line@, and printed (in line before S5 is popped (and printed).
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3. Case 3: S is generated and inserted into the queue after Sy is printed. In that case, by the workings of the algorithm,
S1 € Ss.1.x(Hg,) for some v € Sy (see lines. By Lemma(9] S1 € S, ¢ x(Hg,) C Ss.¢x(Hs,). By Lemma
if 51 € S, k(Hs,), then Sy € S,41(G) where 57 C S U C,(G-S2). By Lemma we have that Cs(G-52) C
Cs(G-S1); a contradiction. Therefore, only cases 1 and 2 are possible, which means that S} is printed before Ss.

O

THEOREM The delay between the printing of minimal s, t-separators whose size is at most k is O(k24k(n +m)).

Proof. The size of the queue @ and the data structure M, can be at most n*. We make the standard assumption that
these data structures allow logarithmic insertion and extraction, which take time O(k log n). Applying Theorem which
states that there are at most 4F important separators that can be found in time O(k4%(n + m)), we get that the loop in
lines (13)-(I8) runs in time: O(k - (n + 4% - k - (n + m) + k - 4% - log n). Overall, the delay is O(4*k%(n + m)). O

C PROOFS FROM SECTION@

We prove that S (G, U) = S, +(Sat(G, U)). We proceed by a series of lemmas.

Lemma 14. Let u € V(G) such that N¢[u] forms a clique. Then u ¢ S for every S € S; (G).

Proof. Let S € S, +(G). By Lemma G-S contains two full connected components Cs(G-S) and C;(G-S) containing
s and t respectively, such that S = Ng(Cs(G-S)) = Ng(Ci(G-S5)). Therefore, if u € S, then it has two neighbors
v € C5(G-S) and vo € C(G-S) that are connected by an edge (because N [u] is a clique). But then, there is an s, t-path
in G-S that avoids S, which contradicts the fact that S is an s, ¢t-separator. O

Lemma 15. If S € S; (G, ), there exists a connected component C,, € C(G-S) such that Ng[u] C C, U S.

Proof. Let C,, € C(G-S) be the connected component that contains u. Such a component must exist because u ¢ S. If
Ng(u) € Cy, U S, then there exists a vertex v € N¢(u) that resides in a connected component C,, € C(G-S) distinct from
C',. But this is a contradiction because, by definition, (u,v) € E(G). Hence, C,, = C,,, and this proves the claim. O

Lemma 16. Let u € V(G). Then S +(G, @) = S, .(Sat(G, {u})).

Proof. Let S € S;4+(G,@). By Lemma there exists a connected component C,, € C(G-S) that contains u, where
Nglu] C C, U S. Therefore, no added edge in E(Sat(G, {u})) \ E(G) connects vertices in distinct connected components
in C(G-S). Hence, S separates s and ¢ also in Sat(G, {u}). Since the addition of edges cannot eliminate any path between
s and ¢, we get that S is a minimal s, ¢-separator also in Sat(G, {u}).

Now, let S € S, ;(Sat(G, {u})). Hence, N¢[u] is a clique in Sat(G, {u}). By Lemma u ¢ S. Since G is a subgraph of
Sat(G, {u}), then if S separates s from ¢ in Sat(G, {u}), it must separate s from ¢ in G. Hence, S is an s, t-separator in G
where u ¢ S. It is left to show that S is a minimal s, t-separator in G. To that end, we show that the connected components
Cy = Cy(Sat(G, {u})-5), C; £ Cy(Sat(G, {u})-S), containing s and ¢ respectively, are full connected components of S
also in G. That is, we show that S = Ng(Cs) = Ng(Ct). By Lemma this proves that S € S, (G, u) C Ss+(G).

Denote by D, D; € C(G-S) the connected components containing s and ¢ respectively in G-S. Since G[D;] (G[D;])
is connected, D, NS = 0 (D, NS = 0),and s € D, (t € D;), then D, C C, (D; C C;). We now prove that
Cs C D;. We first consider the case where u ¢ C. Hence, by definition of connected component of G-S, we have
that Ng[u] N Cs = (. Since the only added edges are between vertices in Ng(u), then E(Sat(G, u)[Cs]) = E(G[Cs)).
Therefore C; is a connected component containing s also in G-S, thus Cs C D, and Cs = Ds. Since Ng[u] N Cs = 0,
then Ng(Cs) = Nsat(a,{u})(Cs) = S as required.

We now consider the case where u € Cy, and suppose, by way of contradiction, that Cs Z Dg.Letv € Cs\ D,. This means
that there is a path from s to v in Sat(G, {u}) that avoids S. Let P denote the shortest such path. Then P passes through a
single edge (y, w) € E(Sat(G,w)) \ E(G). In other words, there is a path P,,, from v to y in G that avoids S, and a path Ps,,
from s to w in G that avoids S. In particular, V(Ps,) € Ds. By construction, {y, w} C Ng(u). Since V(P,s) NS = 0,
w € Ng(u), and {u,w,y} NS = (, this means that {u, w,y} C D;. But this means that the path P,,uP,, is contained
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in G, and avoids S. Consequently, v € Dy, and we arrive at a contradiction. Hence, D; = C5. Since u € C, we get that
Na(Cs) = Nsat(c,{u})(Cs), making Cy a full connected component of S also in G. |

THEOREM Ss1(G,U) = S 4(Sat(G,U)).

Proof. The fact that S, (G, U) = S, +(Sat(G, U)) follows from Lemmal16|by induction on |U|.
, , y

Let 0 < k < n be an integer, and S, (G, U)* and S, ¢(Sat(G, U))* denote the sets of minimal s, t-separators in S ; (G,
and S, ;(Sat(G,U)) whose size is exactly k, respectively. Since S; ;(G,U) = Ss(Sat(G,U)), then Ss (G, U)*
H

g

Ss.1(Sat (G, U))* for every integer 0 < k < n. In particular, this is the case for k = 5 ;(G,U) = ks 4(Sat(G,U)). Henc
Ls (G, U) = Ls4(Sat(G,U)).

a

()

O

THEOREM Let S be an s, t-separator of G. There exists an s, t-separator S’ printed by the algorithm where S’ C S.

Proof. LetT be an s, t-separator of (G, and suppose, by way of contradiction that neither T, nor any of its subsets are printed.
Every triple (H, S, I') pushed into the queue @ in linesandcorresponds to a pair of inclusion/exclusion constraints that
restrict the set of s, t-separators to those that include vertices I, and exclude vertices U C V() that have been saturated in
G (i.e., to form H). Let (H, S, I) be the triple, inserted into @), where: (1) I C T, and (2) U C V(G)\T, which maximizes
|| + |U|. Note that such a triple (H, S, I) must exist because the first triple pushed into the queue () in lineis (G, S,0)
where S € £, ,(G), I = C T, and no vertex of G has yet been saturated and hence U = ) C V(G)\T.

Let S\I = {v1,...,v4}. By our assumption, S ¢ T'. Let £ < ¢ be the smallest index such that v, ¢ T'. In other words,
{v1,...,ve—1} C T, and vy ¢ T. In the {th iteration of the loop in lines the algorithm generates a triple (Hy, Sy, ),

def

where I; & IU{vy,...,vi—1} CT,and H, is the graph that metrializes the condition of excluding U —¢ = UU{v,}. In other

wirds, the algoirithm generates a triple with inclusion constraints I C I, C T', and exclusion constraint Up “yu {ve} C U,
where Uy C V(G)\T, and |U,| > |U|. But then, (H, S, I} does not maximize |I| + |U]; a contradiction. O

D MINIMAL SEPARATORS AND CHORDLESS s, t-PATHS

In this section we show that given a set I C V(G), it is NP-hard to decide whether there exists a minimal s, ¢-separator
S € S;,.(G) such that I C S. We prove this by showing a reduction from the problem 3-IN-A-PATH that asks whether there
is an induced (or chordless) path containing three given terminals. Bienstock|Bienstock|[1991] has shown that deciding
whether two terminals belong to an induced cycle is NP-hard. From this, it is easy to show that the 3-IN-A-PATH problem is
NP-hard even for graphs whose degree is at most three Derhy and Picouleau|[2009]. In fact, even deciding whether there is
such a path of length at most k& was shown to be TW[1]-complete with respect to the length parameter k|Haas and Hoffmann
[2006]. The related problem, called THREE-IN-A-TREE, for deciding whether there is an induced tree containing three
terminals, is in PTIME|Lai et al.|[2020].

Theorem 17. Let v € V(G). There exists a minimal s, t-separator that includes v if and only if there exists a chordless
s, t-path through v.

Proof. Let S € S, (G) where v € S, and let Cs(G-S5), C;(G-S) denote the connected components of G-S that contain
s and ¢ respectively. By Lemma there exists a path from s to v where all the internal vertices belong to Cs(G-S5). Let Ps,
denote the shortest such path. Likewise, let P,; denote the shortest path from v to ¢ where all internal vertices belong to
Cy(G-S). Clearly, Py, and P, are both chordless paths. Since Cs(G-S) N C;(G-S) = 0, then V(Ps,,) N V(Py;) = {v}.
Since S € S;,+(G), then there are no edges between vertices in Cs(G-S) and vertices in C;(G-S). Consequently, there are
no edges between vertices in V(Ps,) and V(P,;). Therefore, the path Py, P, is a chordless s, t-path that passes through v.
In other words, if v € S, then there is an induced s, ¢-path through v.

Let P = s,ai1,...,ak,v,b1,...,bp,t denote a simple, chordless s, t-path through v. If v € Ng(s) (v € Ng(t)), then
k = 0 (¢ = 0). Contract all edges on the sub-path P, = (s,aq,...,ax) such that P, is reduced to an edge (s, v). Likewise,

contract all edges on the sub-path P, % (b1, ..., by, t) such that Py is reduced to an edge (v, t). Denote the resulting graph
by G’. Since P is chordless, then there are no edges between (a;, b;) foralli € [1, k] and all j € [1, £]. Therefore, following
the contraction, s and ¢ are not adjacent in the new graph G’, and hence separable.
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Let S’ € S,+(G') be a minimal s, ¢-separator in G’. By construction, v € Ng(s) N N/ (t), and hence v € S’. Tt is left
to show that S" € S, ;(G). Let C5(G'-S") and C;(G'-S") denote the full connected components of G’-S’ containing
s and t respectively. Define D,(G-S") £ C(G'-S") U {ay,...,a;} and D;(G-S') & C,(G'-S") U {b1,...,bs}. By
construction, D, (G-S") and D;(G-S") are disjoint, non-adjacent, and G[Ds(G-S")] (G[D:(G-S")]) are both connected
components in G. Since Cs(G'-S") and C;(G'-S") are full components of S’ in G’, and Ds(G-S") D Cs(G'-S’) and
D(G-5") 2 C(G'-S5"), then Ds(G-S") and D;(G-S") are full components of S’ in G. By Lemma S e S (G). O

Theoremprovides a characterization of when a vertex v is included in a minimal s, t-separator. By reduction from the
3-IN-A-PATH problem we conclude that deciding whether there is a minimal s, ¢-separator containing a subset I C V(G) is
an NP-complete problem.
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